Global Dynamics of Fractional-Order Discrete Maps
Abstract
:1. Introduction
2. Primary Fundamental of Discrete Fractional Calculus
3. Global Dynamics of fractional-order Discrete Maps
3.1. The EGCM Method
3.2. Global Dynamics of Three fractional-order Discrete Maps
3.2.1. Global Dynamics of a fractional-order Duffing Map
3.2.2. Global Dynamics of a fractional-order Noninvertible Map of Cubic Type
3.2.3. Global Dynamics of a fractional-order Piecewise-Linear Map
3.2.4. Analysis and Comparision
4. Conclusions and Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Z.; Wang, X.; Li, Y.; Huang, X. Stability and hopf bifurcation of fractional-order complex-valued single neuron model with time delay. Int. J. Bifurc. Chaos 2017, 27, 1750209. [Google Scholar] [CrossRef]
- Wu, G.C.; Baleanu, D. Discrete fractional logistic system and its chaos. Nonlinear Dyn. 2014, 75, 283–287. [Google Scholar] [CrossRef]
- Hu, T. Discrete chaos in fractional Hénon system. Appl. Math. 2014, 5, 2243–2248. [Google Scholar] [CrossRef]
- Ouannas, A.; Khennaoui, A.A.; Odibat, Z.; Pham, V.T.; Grassi, G. On the dynamics, control and synchronization of fractional-order Ikeda system. Chaos Soliton Fract. 2019, 123, 108–115. [Google Scholar] [CrossRef]
- Wu, G.C.; Baleanu, D. Chaos synchronization of the discrete fractional logistic system. Signal Process 2014, 102, 96–99. [Google Scholar] [CrossRef]
- Edelman, M. Fractional Systems and fractional attractors. Part I: Families of Systems. Discontinuity Nonlinearity Complex. 2012, 1, 305–324. [Google Scholar] [CrossRef]
- Wu, G.C.; Baleanu, D. Discrete chaos in fractional delayed logistic system. Nonlinear Dyn. 2015, 80, 1697–1703. [Google Scholar] [CrossRef]
- Edelman, M. Fractional systems and fractional attractors. Part II: Fractional difference families of Systems. Discontinuity Nonlinearity Complex. 2015, 4, 391–402. [Google Scholar] [CrossRef]
- Khennaoui, A.A.; Ouannas, A.; Bendoukha, S.; Grassi, G.; Lozi, R.P.; Pham, V.T. On fractional-order discrete-time systems: Chaos, stabilization and synchronization. Chaos Soliton Fract. 2019, 119, 150–162. [Google Scholar] [CrossRef]
- Goodrich, C.; Peterson, A.C. Discrete Fractional Calculus; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Ostalczyk, P. Discrete Fractional Calculus: Applications in Control and Image Processing; World Scientific Publishing: Hackensack, NJ, USA, 2016. [Google Scholar]
- Edelman, M.; Macau, E.E.; Sanjuan, M.A. (Eds.) Chaotic, Fractional, and Complex Dynamics: New Insights and Perspectives; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Othman, A.A.; Khennaoui, A.A.; Ouannas, A.; Pham, V.T. Infinite line of equilibriums in a novel fractional system with coexisting infinitely many attractors and initial offset boosting. Int. J. Nonlinear Sci. Numer. Simul. 2023, 24, 373–391. [Google Scholar]
- Hsu, C.S. Cell-to-Cell Mapping: A Method of Global Analysis for Nonlinear Systems; Springer: New York, NY, USA, 1987. [Google Scholar]
- Hsu, C.S. Global analysis by cell mapping. Int. J. Bifurc. Chaos 1992, 2, 727–771. [Google Scholar] [CrossRef]
- Hsu, C.S. Global analysis of dynamical systems using posets and digraphs. Int. J. Bifurc. Chaos 1995, 5, 1085–1118. [Google Scholar] [CrossRef]
- Jiang, J.; Xu, J.X. A method of point mapping under cell reference for global analysis of nonlinear dynamical systems. Phys. Lett. A 1994, 188, 137–145. [Google Scholar] [CrossRef]
- Jiang, J.; Xu, J.X. An iterative method of point mapping under cell reference for the global analysis of non-linear dynamical systems. J. Sound Vib. 1996, 194, 605–622. [Google Scholar] [CrossRef]
- Hong, L.; Xu, J.X. Crises and chaotic transients studied by the generailized cell mapping diagraph method. Phys. Lett. A 1999, 262, 361–375. [Google Scholar] [CrossRef]
- Li, Z.G.; Kang, J.Q.; Jiang, J.; Hong, L. Parallel subdomain synthesis of cell mapping for capturing global invariant sets in higher-dimensional dynamical systems. Int. J. Bifurc. Chaos 2022, 32, 2250231. [Google Scholar] [CrossRef]
- Wu, G.C.; Baleanu, D.; Zeng, S.D. Discrete chaos in fractional sine and standard systems. Phys. Lett. A 2014, 378, 484–487. [Google Scholar] [CrossRef]
- Liu, X.J.; Hong, L.; Jiang, J. Global bifurcations in fractional-order chaotic systems with an extended generalized cell mapping method. Chaos 2016, 26, 084304. [Google Scholar] [CrossRef]
- Liu, X.J.; Hong, L.; Jiang, J.; Yang, L.X. Global dynamics of fractional-order systems with an extended generalized cell mapping method. Nonlinear Dyn. 2016, 83, 1419–1428. [Google Scholar] [CrossRef]
- Liu, X.J.; Hong, L.; Tang, D.F.; Yang, L.X. Crises in a fractional-order piecewise system. Nonlinear Dyn. 2021, 103, 2855–2866. [Google Scholar] [CrossRef]
- Abdeljawad, T. Riemann and Caputo fractional differences. Comput. Math. Appl. 2011, 62, 1602–1611. [Google Scholar] [CrossRef]
- Gray, H.I.; Zhang, N.F. On a new definition of the fractional difference. Math. Comput. 1988, 50, 513–529. [Google Scholar] [CrossRef]
- Miller, K.S.; Ross, B. Univalent functions, fractional calculus, and their applications. In Chichester: Eills Howard; Chichester/Society of Chemical Industry: London, UK, 1989; pp. 139–152. [Google Scholar]
- Anastassiou, G.A. Principles of delta fractional calculus on time scales and inequalities. Math. Comput. Model. 2010, 52, 556–566. [Google Scholar] [CrossRef]
- Ouannas, A.; Khennaoui, A.A.; Momani, S.; Pham, V.T. The discrete fractional duffing system: Chaos, 0–1 test, C0 complexity, entropy, and control. Chaos 2020, 30, 083131. [Google Scholar] [CrossRef] [PubMed]
- Čermák, J.; Györi, I.; Něchvátal, L. On explicit stability condition for a linear fractional difference system. Fract. Calc. Appl. Anal. 2015, 18, 651–672. [Google Scholar] [CrossRef]
- Rahmat, M.R.S.; Noorani, M.S.M. Caputo type fractional difference operator and its application on discrete time scales. Adv. Diff. Eqs. 2015, 2015, 1–15. [Google Scholar]
- Danca, M.F.; Kuznetsov, N. D3 Dihedral Logistic system of fractional order. Mathematics 2022, 10, 213. [Google Scholar] [CrossRef]
- Liu, X.J.; Hong, L.; Yang, L.X.; Tang, D.F. A fractional-order discrete noninvertible system of cubic type: Dynamics, control, and synchronization. Complexity 2020, 2020, 2935192. [Google Scholar]
- Ouannas, A.; Khennaoui, A.A.; Bendoukha, S.; Grassi, G. On the dynamics and control of a fractional form of the discrete double scroll. Int. J. Bifurc. Chaos 2019, 29, 1950078. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Hong, L.; Tang, D. Global Dynamics of Fractional-Order Discrete Maps. Fractal Fract. 2023, 7, 655. https://doi.org/10.3390/fractalfract7090655
Liu X, Hong L, Tang D. Global Dynamics of Fractional-Order Discrete Maps. Fractal and Fractional. 2023; 7(9):655. https://doi.org/10.3390/fractalfract7090655
Chicago/Turabian StyleLiu, Xiaojun, Ling Hong, and Dafeng Tang. 2023. "Global Dynamics of Fractional-Order Discrete Maps" Fractal and Fractional 7, no. 9: 655. https://doi.org/10.3390/fractalfract7090655
APA StyleLiu, X., Hong, L., & Tang, D. (2023). Global Dynamics of Fractional-Order Discrete Maps. Fractal and Fractional, 7(9), 655. https://doi.org/10.3390/fractalfract7090655