New Version of Fractional Pachpatte-Type Integral Inequalities via Coordinated ℏ-Convexity via Left and Right Order Relation
Abstract
:1. Introduction
2. Preliminaries
- Scaler multiplication:
- Addition:
- Multiplication:
3. Main Results
4. Conclusions and Future Plans
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dragomir, S.S.; Pearce, C. Selected Topics on Hermite-Hadamard Inequality and Applications; Victoria University: Melbourne, Australia, 2000. [Google Scholar]
- Hadamard, J. Étude sur les propriétés des fonctions entiéres et en particulier d’une fonction considérée par Riemann. J. Math. Pures Appl. 1893, 9, 171–216. [Google Scholar]
- Hermite, C. Sur deux limites d’une intégrale définie. Mathesis 1883, 3, 1–82. [Google Scholar]
- Dragomir, S.S.; Agarwal, R. Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula. Appl. Math. Lett. 1998, 11, 91–95. [Google Scholar] [CrossRef]
- Kirmaci, U.S. Inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula. Appl. Math. Comput. 2004, 147, 137–146. [Google Scholar] [CrossRef]
- Awan, M.U.; Javed, M.Z.; Rassias, M.T.; Noor, M.A.; Noor, K.I. Simpson type inequalities and applications. J. Anal. 2021, 29, 1403–1419. [Google Scholar] [CrossRef]
- Alomari, M.; Darus, M. On some inequalities of Simpson-type via quasi-convex functions and applications. Transylv. J. Math. 2010, 2, 15–24. [Google Scholar]
- İşcan, İ. Hermite-Hadamard and Simpson-like type inequalities for differentiable harmonically convex functions. J. Math. 2014, 2014, 346305. [Google Scholar] [CrossRef]
- Sarikaya, M.Z.; Set, E.; Özdemir, M.E. On new inequalities of Simpson’s type for convex functions. Res. Group Math. Inequalities Appl. 2010, 60, 2191–2199. [Google Scholar] [CrossRef]
- Set, E.; Akdemir, A.O.; Özdemir, E.M. Simpson type integral inequalities for convex functions via Riemann-Liouville integrals. Filomat 2017, 31, 4415–4420. [Google Scholar] [CrossRef]
- Breckner, W.W. Stetigkeitsaussagen für eine Klasse verallgemeinerter konvexer Funktionen in topologischen linearen Räumen. Publ. Inst. Math. 1978, 23, 13–20. [Google Scholar]
- Hudzik, H.; Maligranda, L. Some remarks on s-convex functions. Aequationes Math. 1994, 48, 100–111. [Google Scholar] [CrossRef]
- Godunova, E.K.; Levin, V.I. Inequalities for functions of a broad class that contains convex, monotone and some other forms of functions. Numer. Math. Math. Phys. 1985, 138, 166. [Google Scholar]
- Noor, M.A.; Noor, K.I.; Awan, M.U.; Li, J. On Hermite-Hadamard Inequalities for h-Preinvex Functions. Filomat 2014, 28, 1463–1474. [Google Scholar] [CrossRef]
- Awan, M.U.; Talib, S.; Noor, M.A.; Noor, K.I. On γ-preinvex functions. Filomat 2020, 34, 4137–4159. [Google Scholar] [CrossRef]
- Tunç, M.; Göv, E.; Sanal, Ü. On tgs-convex function and their inequalities. Facta Univ. Ser. Math. Inform. 2015, 30, 679–691. [Google Scholar]
- Varošanec, S. On h-convexity. J. Math. Anal. Appl. 2007, 326, 303–311. [Google Scholar] [CrossRef]
- Rentería-Baltiérrez, F.Y.; Reyes-Melo, M.E.; Puente-Córdova, J.G.; López-Walle, B. Application of fractional calculus in the mechanical and dielectric correlation model of hybrid polymer films with different average molecular weight matrices. Polym. Bull. 2023, 80, 6327–6347. [Google Scholar] [CrossRef]
- Sun, H.; Zhang, Y.; Baleanu, D.; Chen, W.; Chen, Y. A new collection of real world applications of fractional calculus in science and engineering. Commun. Nonlinear Sci. Numer. Simul. 2018, 64, 213–231. [Google Scholar] [CrossRef]
- Viera-Martin, E.; Gómez-Aguilar, J.F.; Solís-Pérez, J.E.; Hernández-Pérez, J.A.; Escobar-Jiménez, R.F. Artificial neural networks: A practical review of applications involving fractional calculus. Eur. Phys. J. Spec. Top. 2022, 231, 2059–2095. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Abbaszadeh, S.; Gordji, M.E.; Pap, E.; Szakál, A. Jensen-type inequalities for Sugeno integral. Inf. Sci. 2017, 376, 148–157. [Google Scholar] [CrossRef]
- Agahi, H.; Mesiar, R.; Ouyang, Y. General Minkowski type inequalities for Sugeno integrals. Fuzzy Sets Syst. 2010, 161, 708–715. [Google Scholar] [CrossRef]
- Pap, E.; Štrboja, M. Generalization of the Jensen inequality for pseudo-integral. Inf. Sci. 2010, 180, 543–548. [Google Scholar] [CrossRef]
- Wang, R.S. Some inequalities and convergence theorems for Choquet integral. J. Appl. Math. Comput. 2011, 35, 305–321. [Google Scholar] [CrossRef]
- Aumann, R.J. Integrals of set-valued functions. J. Math. Anal. Appl. 1965, 12, 1–12. [Google Scholar] [CrossRef]
- Klein, E.; Thompson, A.C. Theory of Correspondences; A Wiley-Interscience Publication: New York, NY, USA, 1984. [Google Scholar]
- Costa, T.M.; Román-Flores, H. Some integral inequalities for fuzzy-interval-valued functions. Inf. Sci. 2017, 420, 110–125. [Google Scholar] [CrossRef]
- Khan, M.B.; Zaini, H.G.; Treanţă, S.; Soliman, M.S.; Nonlaopon, K. Riemann–liouville fractional integral inequalities for generalized pre-invex functions of interval-valued settings based upon pseudo order relation. Mathematics 2022, 10, 204. [Google Scholar] [CrossRef]
- Budak, H.; Tun, T.; Sarikaya, M.Z. Fractional hermite-hadamard-type inequalities for interval-valued functions. Proc. Am. Math. Soc. 2019, 148, 705–718. [Google Scholar] [CrossRef]
- Zhao, D.; An, T.; Ye, G.; Liu, W. Chebyshev type inequalities for interval-valued functions. Fuzzy Sets Syst. 2020, 396, 82–101. [Google Scholar] [CrossRef]
- Zhao, D.; An, T.; Ye, G.; Liu, W. Some generalizations of opial type inequalities for interval-valued functions. Fuzzy Sets Syst. 2021, 436, 128–151. [Google Scholar] [CrossRef]
- Zhao, D.; Zhao, G.; Ye, G.; Liu, W.; Dragomir, S.S. On hermite–hadamard-type inequalities for coordinated h-convex interval-valued functions. Mathematics 2021, 9, 2352. [Google Scholar] [CrossRef]
- Budak, H.; Kashuri, A.; Butt, S. Fractional Ostrowski type inequalities for interval valued functions. Mathematics 2022, 36, 2531–2540. [Google Scholar] [CrossRef]
- Khan, M.B.; Abdullah, L.; Noor, M.A.; Noor, K.I. New hermite–hadamard and jensen inequalities for log-h-convex fuzzy interval valued functions. Int. J. Comput. Intell. Syst. 2021, 14, 155. [Google Scholar] [CrossRef]
- Anastassiou, G.A. Fuzzy ostrowski type inequalities. Comput. Appl. Math. 2003, 22, 279–292. [Google Scholar] [CrossRef]
- Bede, B.; Gal, S.G. Generalizations of the differentiability of fuzzy-number-valued functions with applications to fuzzy differential equations. Fuzzy Sets Syst. 2005, 151, 581–599. [Google Scholar] [CrossRef]
- Chalco-Cano, Y.; Román-Flores, H.; Jiménez-Gamero, M.D. Generalized derivative and π-derivative for set-valued functions. Inf. Sci. 2011, 181, 2177–2188. [Google Scholar] [CrossRef]
- Chalco-Cano, Y.; Román-Flores, H.; Jiménez-Gamero, M.D. Ostrowski type inequalities for interval-valued functions using generalized Hukuhara derivative. Comput. Appl. Math. 2011, 181, 2177–2188. [Google Scholar]
- Lupulescu, V. Fractional calculus for interval-valued functions. Fuzzy Set. Syst. 2015, 265, 63–85. [Google Scholar] [CrossRef]
- Budak, H.; Kara, H.; Ali, M.A.; Khan, S.; Chu, Y. Fractional Hermite-Hadamard-type inequalities for interval-valued co-ordinated convex functions. Open Math. 2021, 19, 1081–1097. [Google Scholar] [CrossRef]
- Zhao, D.F.; Ali, M.A.; Murtaza, G. On the Hermite-Hadamard inequalities for interval-valued coordinated convex functions. Adv. Differ. Equ. 2020, 2020, 570. [Google Scholar] [CrossRef]
- Khan, M.B.; Srivastava, H.M.; Mohammed, P.O.; Nonlaopon, K.; Hamed, Y.S. Some new estimates on coordinates of left and right convex interval-valued functions based on pseudo order relation. Symmetry 2022, 14, 473. [Google Scholar] [CrossRef]
- Budak, H.; Sarıkaya, M.Z. Hermite-Hadamard type inequalities for products of two coordinated convex mappings via fractional integrals. Int. J. Appl. Math. Stat. 2019, 58, 11–30. [Google Scholar]
- Khan, M.B.; Treanțǎ, T.; Alrweili, H.; Saeed, T.; Soliman, M.S. Some new Riemann-Liouville fractional integral inequalities for interval-valued mappings. AIMS Math. 2022, 7, 15659–15679. [Google Scholar] [CrossRef]
- Khan, M.B.; Zaini, H.G.; Macías-Díaz, J.E.; Treanţă, S.; Soliman, M.S. Some integral inequalities in interval fractional calculus for left and right coordinated interval-valued functions. AIMS Math. 2022, 7, 10454–10482. [Google Scholar] [CrossRef]
- Zhang, D.; Guo, C.; Chen, D.; Wang, G. Jensen’s inequalities for set-valued and fuzzy set-valued functions. Fuzzy Sets Syst. 2020, 404, 178–204. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saeed, T.; Nwaeze, E.R.; Khan, M.B.; Hakami, K.H. New Version of Fractional Pachpatte-Type Integral Inequalities via Coordinated ℏ-Convexity via Left and Right Order Relation. Fractal Fract. 2024, 8, 125. https://doi.org/10.3390/fractalfract8030125
Saeed T, Nwaeze ER, Khan MB, Hakami KH. New Version of Fractional Pachpatte-Type Integral Inequalities via Coordinated ℏ-Convexity via Left and Right Order Relation. Fractal and Fractional. 2024; 8(3):125. https://doi.org/10.3390/fractalfract8030125
Chicago/Turabian StyleSaeed, Tareq, Eze R. Nwaeze, Muhammad Bilal Khan, and Khalil Hadi Hakami. 2024. "New Version of Fractional Pachpatte-Type Integral Inequalities via Coordinated ℏ-Convexity via Left and Right Order Relation" Fractal and Fractional 8, no. 3: 125. https://doi.org/10.3390/fractalfract8030125
APA StyleSaeed, T., Nwaeze, E. R., Khan, M. B., & Hakami, K. H. (2024). New Version of Fractional Pachpatte-Type Integral Inequalities via Coordinated ℏ-Convexity via Left and Right Order Relation. Fractal and Fractional, 8(3), 125. https://doi.org/10.3390/fractalfract8030125