The Delayed Effect of Multiplicative Noise on the Blow-Up for a Class of Fractional Stochastic Differential Equations
Abstract
:1. Introduction
2. Preliminaries and Main Results
3. Existence and Uniqueness
4. Delayed Blow-Up
4.1. Proof of Theorem 1
4.2. Proof of Theorem 2
5. Example
6. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tien, D.N. Fractional stochastic differential equations with applications to finance. J. Math. Anal. Appl. 2013, 397, 334–348. [Google Scholar] [CrossRef]
- Browning, A.P.; Warne, D.J.; Burrage, K. Identifiability analysis for stochastic differential equation models in systems biology. J. R. Soc. Interface 2020, 17, 20200652. [Google Scholar] [CrossRef] [PubMed]
- Strauss, R.D.T.; Effenberger, F. A Hitch-hiker’s Guide to stochastic differential equations: Solution methods for energetic particle transport in space physics and astrophysics. Space Sci. Rev. 2017, 212, 151–192. [Google Scholar] [CrossRef]
- Lukin, A.S.; Artemyev, A.V.; Petrukovich, A.A. On application of stochastic differential equations for simulation of nonlinear wave–particle resonant interactions. Phys. Plasmas 2021, 28, 092904. [Google Scholar] [CrossRef]
- Peng, S.; Wu, Z. Fully coupled forward-backward stochastic differential equations and applications to optimal control. SIAM J. Control Optim. 1999, 37, 825–843. [Google Scholar] [CrossRef]
- Da Prato, G.; Flandoli, F. Pathwise uniqueness for a class of SDE in Hilbert spaces and applications. J. Funct. Anal. 2010, 259, 243–267. [Google Scholar] [CrossRef]
- Galeati, L. On the convergence of stochastic transport equations to a deterministic parabolic one. Stoch. Part. Differ. Equ. Anal Comput. 2020, 8, 833–868. [Google Scholar] [CrossRef]
- Flandoli, F.; Gubinelli, M.; Priola, E. Well-posedness of the transport equation by stochastic perturbation. Invent. Math. 2018, 180, 1–53. [Google Scholar] [CrossRef]
- Gess, B.; Maurelli, M. Well-posedness by noise for scalar conservation laws. Commun. Part. Differ. Equ. 2018, 43, 1702–1736. [Google Scholar] [CrossRef]
- Galaktionov, V.A.; Vázquez, J.L. The problem of blow-up in nonlinear parabolic equations. Discret. Contin. Dyn. Syst. A 2002, 8, 399–434. [Google Scholar] [CrossRef]
- Lv, G.; Duan, J. Impacts of noise on a class of partial differential equations. J. Differ. Equ. 2015, 258, 2196–2220. [Google Scholar] [CrossRef]
- Alonso-Orán, D.; Miao, Y.; Tang, H. Global existence, blow-up and stability for a stochastic transport equation with non-local velocity. J. Differ. Equ. 2022, 335, 244–293. [Google Scholar] [CrossRef]
- Flandoli, F.; Galeati, L.; Luo, D. Delayed blow-up by transport noise. Commun. Part. Differ. Equ. 2021, 46, 1757–1788. [Google Scholar] [CrossRef]
- Sher, M.; Shah, K.; Rassias, J. On qualitative theory of fractional order delay evolution equation via the prior estimate method. Math. Method Appl. Sci. 2020, 43, 6464–6475. [Google Scholar] [CrossRef]
- Flandoli, F.; Romito, M. Markov selections for the 3D stochastic Navier–Stokes equations. Probab. Theory Relat. Fields 2008, 140, 407–458. [Google Scholar] [CrossRef]
- Blömker, D.; Hairer, M. Stationary solutions for a model of amorphous thin-film growth. Stoch. Anal. Appl. 2004, 22, 903–922. [Google Scholar] [CrossRef]
- Zhou, Y.; Manimaran, J.; Shangerganesh, L.; Debbouche, A. Weakness and mittag–leffler stability of solutions for time-fractional keller–segel models. Int. J. Nonlinear Sci. Numer. Simul. 2018, 17, 753–761. [Google Scholar] [CrossRef]
- Guo, L.; Gao, F.; Zhan, H. Existence, uniqueness and l∞-bound for weak solutions of a time-fractional keller-segel system. Chaos Solitons Fractals 2022, 160, 112185. [Google Scholar] [CrossRef]
- Flandoli, F.; Luo, D. High mode transport noise improves vorticity blow-up control in 3d navier–stokes equations. Probab. Theory Relat. Fields 2021, 180, 309–363. [Google Scholar] [CrossRef]
- Liu, W.; Röckner, M. Local and global well-posedness of SPDE with generalized coercivity conditions. J. Differ. Equ. 2013, 254, 725–755. [Google Scholar] [CrossRef]
- Alikhanov, A.A. A priori estimates for solutions of boundary value problems for fractional-order equations. Diff. Equ. 2010, 46, 660–666. [Google Scholar] [CrossRef]
- Ren, Y.F. On the burkholder–davis–gundy inequalities for continuous martingales. Stat. Probab. Lett. 2008, 78, 3034–3039. [Google Scholar] [CrossRef]
- Billingsley, P. Convergence of Probability Measures, 2nd ed.; John Wiley & Sons, Inc.: New York, NY, USA, 2013. [Google Scholar]
- Cortissoz, J. On the skorokhod representation theorem. Proc. Am. Math. Soc. 2007, 135, 3995–4007. [Google Scholar] [CrossRef]
- Gao, F.; Xie, X.; Zhan, H. Delayed blow-up of nonlinear time-fractional stochastic differential equations. arXiv 2022, arXiv:2207.05567. [Google Scholar]
- Zhu, T. New Henry–Gronwall integral inequalities and their applications to fractional differential equations. Bull. Braz. Math. Soc. 2018, 49, 647–657. [Google Scholar] [CrossRef]
- Calvez, V.; Corrias, L.; Ebde, M.A. Blow-up, concentration phenomenon and global existence for the Keller–Segel model in high dimension. Commun. Part. Differ. Equ. 2012, 37, 561–584. [Google Scholar] [CrossRef]
- Li, L.; Liu, J.G.; Wang, L. Cauchy problems for Keller–Segel type time–space fractional diffusion equation. J. Differ. Equ. 2018, 265, 1044–1096. [Google Scholar] [CrossRef]
- Nguyen, A.T.; Tuan, N.H.; Yang, C. On Cauchy problem for fractional parabolic-elliptic Keller-Segel model. Adv. Nonlinear Anal. 2022, 12, 97–116. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, X.; Gao, F. The Delayed Effect of Multiplicative Noise on the Blow-Up for a Class of Fractional Stochastic Differential Equations. Fractal Fract. 2024, 8, 127. https://doi.org/10.3390/fractalfract8030127
Xie X, Gao F. The Delayed Effect of Multiplicative Noise on the Blow-Up for a Class of Fractional Stochastic Differential Equations. Fractal and Fractional. 2024; 8(3):127. https://doi.org/10.3390/fractalfract8030127
Chicago/Turabian StyleXie, Xinyi, and Fei Gao. 2024. "The Delayed Effect of Multiplicative Noise on the Blow-Up for a Class of Fractional Stochastic Differential Equations" Fractal and Fractional 8, no. 3: 127. https://doi.org/10.3390/fractalfract8030127
APA StyleXie, X., & Gao, F. (2024). The Delayed Effect of Multiplicative Noise on the Blow-Up for a Class of Fractional Stochastic Differential Equations. Fractal and Fractional, 8(3), 127. https://doi.org/10.3390/fractalfract8030127