Next Article in Journal
A Novel Fractal Model for Contact Resistance Based on Axisymmetric Sinusoidal Asperity
Previous Article in Journal
Modelling Yeast Prion Dynamics: A Fractional Order Approach with Predictor–Corrector Algorithm
Previous Article in Special Issue
Advances in Boundary Value Problems for Fractional Differential Equations
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Positive Solutions to a System of Coupled Hadamard Fractional Boundary Value Problems

1
Department of Computer Science and Engineering, Gh. Asachi Technical University, 700050 Iasi, Romania
2
Department of Mathematics, Gh. Asachi Technical University, 700506 Iasi, Romania
*
Author to whom correspondence should be addressed.
Fractal Fract. 2024, 8(9), 543; https://doi.org/10.3390/fractalfract8090543
Submission received: 13 August 2024 / Revised: 15 September 2024 / Accepted: 17 September 2024 / Published: 19 September 2024

Abstract

:
We explore the existence, uniqueness, and multiplicity of positive solutions to a system of Hadamard fractional differential equations that contain fractional integral terms. Defined on a finite interval, this system is subject to general coupled nonlocal boundary conditions encompassing Riemann–Stieltjes integrals and Hadamard fractional derivatives. To establish the main results, we employ several fixed-point theorems, namely the Banach contraction mapping principle, the Schauder fixed-point theorem, the Leggett–Williams fixed-point theorem, and the Guo–Krasnosel’skii fixed-point theorem.

1. Introduction

We analyze the system of Hadamard fractional differential equations
D 1 + α H u ( ξ ) + f ( ξ , u ( ξ ) , v ( ξ ) , H I 1 + γ 1 u ( ξ ) , H I 1 + δ 1 v ( ξ ) ) = 0 , ξ [ 1 , e ] , D 1 + β H v ( ξ ) + g ( ξ , u ( ξ ) , v ( ξ ) , H I 1 + γ 2 u ( ξ ) , H I 1 + δ 2 v ( ξ ) ) = 0 , ξ [ 1 , e ] ,
supplemented with the coupled nonlocal boundary conditions
u ( i ) ( 1 ) = 0 , i = 0 , , n 2 , v ( i ) ( 1 ) = 0 , i = 0 , , m 2 , D 1 + ς H u ( e ) = i = 1 a 1 e D 1 + ϱ i H u ( ν ) d H i ( ν ) + i = 1 b 1 e D 1 + σ i H v ( ν ) d K i ( ν ) , D 1 + ϑ H v ( e ) = i = 1 c 1 e D 1 + η i H u ( ν ) d P i ( ν ) + i = 1 d 1 e D 1 + θ i H v ( ν ) d Q i ( ν ) ,
where α ( n 1 , n ] , n N , n 3 , β ( m 1 , m ] , m N , m 3 ; a , b , c , d N ; ς 1 , 0 ϱ i ς < α 1 , i = 1 , , a , 0 η k ς , k = 1 , , c , ϑ 1 , 0 σ j ϑ < β 1 , j = 1 , , b , 0 θ ι ϑ , ι = 1 , , d ; γ i , δ i > 0 , i = 1 , 2 ; D 1 + κ H (for κ = α , ς , β , ϑ , ϱ i , σ j , η k , θ ι , i = 1 , , a , j = 1 , , b , k = 1 , , c , ι = 1 , , d ) is the Hadamard fractional derivative of order κ ; and I 1 + κ H (for κ = γ i , δ i , i = 1 , 2 ) is the Hadamard fractional integral of order κ . The integrals from the boundary conditions (2) are Riemann–Stieltjes integrals with H i , K j , P k , Q ι , i = 1 , , a , j = 1 , , b , k = 1 , , c , ι = 1 , , d , bounded variation functions. The functions f , g : [ 1 , e ] × R + 4 R + are given ones, ( R + = [ 0 , ) ), and u , v : [ 1 , e ] R are the unknown functions of Problem (1),(2).
We give various assumptions on the functions f and g such that Problem (1),(2) has at least one positive solution ( u ( ξ ) , v ( ξ ) ) , ξ [ 1 , e ] . For the proof of our main results, we use several fixed-point theorems, such as the Banach contraction mapping principle, the Guo–Krasnosel’skii fixed-point theorem, the Schauder fixed-point theorem, and the Leggett–Williams fixed-point theorem. In what follows, we present some papers that are connected to our Problem (1),(2). In [1], the authors examined the system of nonlinear Hadamard fractional differential equations on the infinite interval [ 1 , ) , namely,
D 1 + α H x ( ν ) + a ( ν ) f ( x ( ν ) , y ( ν ) ) = 0 , ν ( 1 , ) , D 1 + β H y ( ν ) + b ( ν ) g ( x ( ν ) , y ( ν ) ) = 0 , ν ( 1 , ) ,
subject to the nonlocal boundary conditions
x ( 1 ) = x ( 1 ) = = x ( n 2 ) ( 1 ) = 0 , D 1 + α 1 H x ( ) = 1 x ( ρ ) d H 1 ( ρ ) + 1 y ( ρ ) d H 2 ( ρ ) , y ( 1 ) = y ( 1 ) = = y ( m 2 ) ( 1 ) = 0 , D 1 + β 1 H y ( ) = 1 x ( ρ ) d K 1 ( ρ ) + 1 y ( ρ ) d K 2 ( ρ ) ,
where α ( n 1 , n ] , n N , n 2 ; β ( m 1 , m ] , m N , m 2 ; the functions f , g are nonnegative and bounded; and the functions H 1 , H 2 , K 1 , K 2 : [ 1 , ) R have bounded variations. Using the Leggett–Williams fixed-point theorem and the Guo–Krasnosel’skii fixed-point theorem, the authors proved the existence of positive solutions to Problem (3),(4). In paper [2], the authors investigated Problem (3),(4) in the case in which the functions f , g are unbounded, and in the main results, they relied on the Banach contraction mapping principle, the Schauder fixed-point theorem, and the Avery–Peterson fixed-point theorem. In [3], the authors analyzed the existence and uniqueness of solutions to the system of Hilfer–Hadamard fractional differential equations
D 1 α , β HH u ( ξ ) = f ( ξ , u ( ξ ) , v ( ξ ) ) , ξ [ 1 , T ] , D 1 γ , δ HH v ( ξ ) = g ( ξ , u ( ξ ) , v ( ξ ) ) , ξ [ 1 , T ] ,
with the nonlocal coupled boundary conditions
u ( 1 ) = 0 , D 1 ς H u ( T ) = i = 1 m 1 T D 1 ϱ i H u ( ρ ) d H i ( ρ ) + i = 1 n 1 T D 1 σ i H v ( ρ ) d K i ( ρ ) , v ( 1 ) = 0 , D 1 ϑ H v ( T ) = i = 1 p 1 T D 1 η i H u ( ρ ) d P i ( ρ ) + i = 1 q 1 T D 1 θ i H v ( ρ ) d Q i ( ρ ) ,
where T > 1 ; β , δ [ 0 , 1 ] ; α , γ ( 1 , 2 ] ; m , n , p , q N ; ς , ϑ , ϱ i , σ i , η i , θ i [ 0 , 1 ] ; D 1 κ 1 , κ 2 HH denotes the Hilfer–Hadamard fractional derivative of order κ 1 and type κ 2 (for κ 1 = α , γ and κ 2 = β , δ ); the continuous functions f and g are defined on [ 1 , T ] × R 2 ; and the integrals from the boundary conditions (5) are Riemann–Stieltjes integrals with H i , K j , P k , Q ι , i = 1 , , m ,   j = 1 , , n , k = 1 , , p , and ι = 1 , , q functions of bounded variation. In the proof of the main results, they used the Krasnosel’skii fixed-point theorem applied to the sum of two operators, the Banach contraction mapping principle, the Leray–Schauder nonlinear alternative, and the Schaefer fixed-point theorem. In the paper [4], the authors studied the system of random sequential fractional differential equations with integral boundary conditions
D α ( D β + λ 1 ) x ( s , ω ) = f ( s , x ( s , ω ) , y ( s , ω ) , ω ) , s [ 1 , e ] , D γ ( D σ + λ 2 ) y ( s , ω ) = g ( s , x ( s , ω ) , y ( s , ω ) , ω ) , s [ 1 , e ] , i = 1 m θ i I μ i x ( η i , ω ) = j = 1 n ϕ j I γ j x ( ξ j , ω ) , k = 1 p ϵ k I ς k x ( ψ k , ω ) = l = 1 q ν l I τ l x ( φ l , ω ) , i = 1 m θ ¯ i I μ ¯ i y ( η ¯ i , ω ) = j = 1 n ϕ ¯ j I γ ¯ j y ( ξ ¯ j , ω ) , k = 1 p ϵ ¯ k I ς ¯ k y ( ψ ¯ k , ω ) = l = 1 q ν ¯ l I τ ¯ l y ( φ ¯ l , ω ) ,
where α , β , γ , σ ( 0 , 1 ) , α + β ( 1 , 2 ) ; γ + σ ( 1 , 2 ) ; the constants λ 1 , λ 2 are given ones; the constants η i , η ¯ i , ξ j , ξ ¯ j , ψ k , ψ ¯ k , φ l , φ ¯ l ( 1 , e ) ; θ i , θ ¯ i , ϕ j , ϕ ¯ j , ϵ k , ϵ ¯ k , ν l , ν ¯ l R for i = 1 , , m , j = 1 , , n , k = 1 , , p , l = 1 , , q ; f , g : [ 1 , e ] × R m × R m × Ω R m ; ( Ω , A ) is a measurable space; and D q and I q are the Hadamard–Caputo fractional derivative and Hadamard fractional integral, respectively. Based on the random fixed-point principles of Perov and Schaefer and a vector approach that uses matrices convergent to zero, they authors showed the existence and uniqueness of solutions for Problem (6). In paper [5], the authors examined the Hadamard fractional boundary value problem at resonance
D 1 + γ H u ( ξ ) + f ( ξ , u ( ξ ) ) = 0 , ξ ( 1 , e ) , u ( 1 ) = 0 , u ( e ) = 1 e u ( ν ) d A ( ν ) ,
where γ ( 1 , 2 ) and the function f : [ 1 , e ] × R 2 R satisfies Caratheodory conditions. By using the coincidence degree theory of Mawhin and the method of constructing appropriate operators, the authors proved the existence of solutions to Problem (7).
The Hadamard fractional calculus has applications in various fields, such as rheology and probability (see papers [6,7] and their references). For example, the generalizations of the Lomnitz logarithmic creep law describes geophysical phenomena to fluid-like materials including igneous rocks. For additional recent studies on Hadamard derivatives, integrals, and fractional differential equations and systems, we recommend the monograph [8] and its references, as well as papers [9,10,11,12,13,14,15,16,17,18,19,20,21,22].
The novelty of our Problem (1),(2) consists of the consideration of the system of Hadamard fractional differential equations with derivatives of diverse orders and the presence of fractional integral terms in the nonlinearities of the system. In addition, the last two conditions from (2) are very general, encompassing cases of classical integral boundary conditions, multi-point boundary conditions (when the functions H i , K j , P k , Q ι , for i = 1 , a , j = 1 , , b , k = 1 , , c , ι = 1 , , d are step functions), and combinations of them. A very important remark is the fact that, in the penultimate condition of (2), the Hadamard fractional derivative of order ς of function u at point e is dependent on the fractional derivatives of various orders of both u and v over the entire interval [ 1 , e ] . And, in the last condition of (2), the Hadamard fractional derivative of order ϑ of function v at point e depends on the fractional derivatives of varied orders of both the functions u and v on the entire interval [ 1 , e ] . We also note that the Hadamard fractional integrals that appear in the boundary conditions of some fractional boundary value problems in the literature can be written as Riemann–Stieltjes integrals, similar to those in our conditions (2) (see [1]). All these remarks lead to the conclusion that Problem (1),(2) are novel in the context of the systems of coupled Hadamard boundary value problems.
This paper is organized as follows. In Section 2, we examine the linear boundary value problem associated to Problem (1),(2) and present the corresponding Green functions and some of their properties. Section 3 outlines the main theorems regarding the existence of positive solutions to our problem. Section 4 provides examples that illustrate the main results, and finally, Section 5 offers the conclusions of the paper.

2. Preliminary Results

We consider the linear problem associated to our Problem (1),(2), namely, the system of Hadamard fractional differential equations
D 1 + α H u ( ξ ) + h ( ξ ) = 0 , ξ [ 1 , e ] , D 1 + β H v ( ξ ) + k ( ξ ) = 0 , ξ [ 1 , e ] ,
with the boundary conditions (2), where h , k C ( [ 1 , e ] ) .
We denote
Ξ 1 = Γ ( α ) Γ ( α ς ) i = 1 a Γ ( α ) Γ ( α ϱ i ) 1 e ( ln ν ) α ϱ i 1 d H i ( ν ) , Ξ 2 = i = 1 b Γ ( β ) Γ ( β σ i ) 1 e ( ln ν ) β σ i 1 d K i ( ν ) , Ξ 3 = i = 1 c Γ ( α ) Γ ( α η i ) 1 e ( ln ν ) α η i 1 d P i ( ν ) , Ξ 4 = Γ ( β ) Γ ( β ϑ ) i = 1 d Γ ( β ) Γ ( β θ i ) 1 e ( ln ν ) β θ i 1 d Q i ( ν ) , Δ = Ξ 1 Ξ 4 Ξ 2 Ξ 3 .
Lemma 1. 
If Δ 0 , then the solution of Problem (8),(2) is given by
u ( ξ ) = 1 Γ ( α ) 1 ξ ln ξ ν α 1 h ( ν ) ν d ν + ( ln ξ ) α 1 Δ ( Ξ 4 L + Ξ 2 M ) , ξ [ 1 , e ] , v ( ξ ) = 1 Γ ( β ) 1 ξ ln ξ ν β 1 k ( ν ) ν d ν + ( ln ξ ) β 1 Δ ( Ξ 3 L + Ξ 1 M ) , ξ [ 1 , e ] ,
where
L = 1 Γ ( α ς ) 1 e ln e ν α ς 1 h ( ν ) ν d ν i = 1 a 1 Γ ( α ϱ i ) 1 e 1 ν ln ν ρ α ϱ i 1 h ( ρ ) ρ d ρ d H i ( ν ) i = 1 b 1 Γ ( β σ i ) 1 e 1 ν ln ν ρ β σ i 1 k ( ρ ) ρ d ρ d K i ( ν ) , M = 1 Γ ( β ϑ ) 1 e ln e ν β ϑ 1 k ( ν ) ν d ν i = 1 c 1 Γ ( α η i ) 1 e 1 ν ln ν ρ α η i 1 h ( ρ ) ρ d ρ d P i ( ν ) i = 1 d 1 Γ ( β θ i ) 1 e 1 ν ln ν ρ β θ i 1 k ( ρ ) ρ d ρ d Q i ( ν ) .
Proof. 
To the equations of system (8), we apply the integral operators I 1 + α H and I 1 + β H , respectively. Then, the solutions of System (8) are given by
u ( ξ ) = H I 1 + α h ( ξ ) + a 1 ( ln ξ ) α 1 + a 2 ( ln ξ ) α 2 + + a n ( ln ξ ) α n = 1 Γ ( α ) 1 ξ ln ξ ν α 1 h ( ν ) ν d s + a 1 ( ln ξ ) α 1 + a 2 ( ln ξ ) α 2 + + a n ( ln ξ ) α n , v ( ξ ) = H I 1 + β k ( ξ ) + b 1 ( ln ξ ) β 1 + b 2 ( ln ξ ) β 2 + + b m ( ln ξ ) β m = 1 Γ ( β ) 1 ξ ln ξ ν β 1 k ( ν ) ν d ν + b 1 ( ln ξ ) β 1 + b 2 ( ln ξ ) β 2 + + b m ( ln ξ ) β m ,
for all ξ [ 1 , e ] , with a i , b j R , i = 1 , , n , j = 1 , , m . Because u ( i ) ( 1 ) = 0 for all i = 0 , , n 2 and v ( j ) ( 1 ) = 0 for all j = 0 , , m 2 , we obtain a i = 0 for all i = 2 , , n and b j = 0 for all j = 2 , , m . Therefore, by (12), we deduce
u ( ξ ) = 1 Γ ( α ) 1 ξ ln ξ ν α 1 h ( ν ) ν d ν + a 1 ( ln ξ ) α 1 , ξ [ 1 , e ] , v ( ξ ) = 1 Γ ( β ) 1 ξ ln ξ ν β 1 k ( ν ) ν d ν + b 1 ( ln ξ ) β 1 , ξ [ 1 , e ] .
For κ = ς , κ = ϱ i , i = 1 , , a , and κ = η j , j = 1 , , c , we have
D 1 + κ H u ( ξ ) = H D 1 + κ I 1 + α H h ( ξ ) + a 1 D 1 + κ H ( ( ln ξ ) α 1 ) = H I 1 + α κ h ( ξ ) + a 1 Γ ( α ) Γ ( α κ ) ( ln ξ ) α κ 1 = 1 Γ ( α κ ) 1 ξ ln ξ ν α κ 1 h ( ν ) ν d ν + a 1 Γ ( α ) Γ ( α κ ) ( ln ξ ) α κ 1 ,
and for κ ˜ = ϑ , κ ˜ = σ i , i = 1 , , b , and κ ˜ = θ j , j = 1 , , d , we find
D 1 + κ ˜ H v ( ξ ) = H D 1 + κ ˜ I 1 + β H k ( ξ ) + b 1 D 1 + κ ˜ H ( ( ln ξ ) β 1 ) = H I 1 + β κ ˜ k ( ξ ) + b 1 Γ ( β ) Γ ( β κ ˜ ) ( ln ξ ) β κ ˜ 1 = 1 Γ ( β κ ˜ ) 1 ξ ln ξ ν β κ ˜ 1 k ( ν ) ν d ν + b 1 Γ ( β ) Γ ( β κ ˜ ) ( ln ξ ) β κ ˜ 1 .
By applying the last two conditions of (2) to the functions u and v from (13) and by using Relations (14) and (15), we deduce
1 Γ ( α ς ) 1 e ln e ν α ς 1 h ( ν ) ν d ν + a 1 Γ ( α ) Γ ( α ς ) = i = 1 a 1 e 1 Γ ( α ϱ i ) 1 ν ln ν ρ α ϱ i 1 h ( ρ ) ρ d ρ + a 1 Γ ( α ) Γ ( α ϱ i ) ( ln ν ) α ϱ i 1 d H i ( ν ) + i = 1 b 1 e 1 Γ ( β σ i ) 1 ν ln s ρ β σ i 1 k ( ρ ) ρ d ρ + b 1 Γ ( β ) Γ ( β σ i ) ( ln ν ) β σ i 1 d K i ( ν ) , 1 Γ ( β ϑ ) 1 e ln e ν β ϑ 1 k ( ν ) ν d ν + b 1 Γ ( β ) Γ ( β ϑ ) = i = 1 c 1 e 1 Γ ( α η i ) 1 ν ln ν ρ α η i 1 h ( ρ ) ρ d ρ + a 1 Γ ( α ) Γ ( α η i ) ( ln ν ) α η i 1 d P i ( ν ) + i = 1 d 1 e 1 Γ ( β θ i ) 1 s ln ν ρ β θ i 1 k ( ρ ) ρ d ρ + b 1 Γ ( β ) Γ ( β θ i ) ( ln ν ) β θ i 1 d Q i ( ν ) .
The system (16) can be written equivalently as
Ξ 1 a 1 Ξ 2 b 1 = L , Ξ 3 a 1 + Ξ 4 b 1 = M ,
where Ξ i , i = 1 , , 4 , is given by (9) and L , M are given by (11). System (17) in the unknowns a 1 and b 1 has the determinant Δ = Ξ 1 Ξ 4 Ξ 2 Ξ 3 , (given by (9)), which is different from zero. Then, the solution of system (17) is unique, given by
a 1 = 1 Δ ( Ξ 4 L + Ξ 2 M ) , b 1 = 1 Δ ( Ξ 3 L + Ξ 1 M ) .
By replacing the formulas for a 1 and b 1 (from (18)) in (13), we find the solution ( u ( ξ ) , v ( ξ ) ) , ξ [ 1 , e ] of Problem (8),(2), given by (10). □
Lemma 2. 
If Δ 0 , then the solution of Problem (8),(2) (given by (10)) can be expressed as
u ( ξ ) = 1 e G 1 ( ξ , ν ) h ( ν ) ν d ν + 1 e G 2 ( ξ , ν ) k ( ν ) ν d ν , ξ [ 1 , e ] , v ( ξ ) = 1 e G 3 ( ξ , ν ) h ( ν ) ν d ν + 1 e G 4 ( ξ , ν ) k ( ν ) ν d ν , ξ [ 1 , e ] ,
where the Green functions G i , i = 1 , , 4 , are given by
G 1 ( ξ , ν ) = g 1 ( ξ , ν ) + ( ln ξ ) α 1 Δ Ξ 4 i = 1 a 1 e g 1 i ( ρ , ν ) d H i ( ρ ) + Ξ 2 i = 1 c 1 e g 2 i ( ρ , ν ) d P i ( ρ ) , G 2 ( ξ , ν ) = ( ln ξ ) α 1 Δ Ξ 4 i = 1 b 1 e g 3 i ( ρ , ν ) d K i ( ρ ) + Ξ 2 i = 1 d 1 e g 4 i ( ρ , ν ) d Q i ( ρ ) , G 3 ( ξ , ν ) = ( ln ξ ) β 1 Δ Ξ 3 i = 1 a 1 e g 1 i ( ρ , ν ) d H i ( ρ ) + Ξ 1 i = 1 c 1 e g 2 i ( ρ , ν ) d P i ( ρ ) , G 4 ( ξ , ν ) = g 2 ( ξ , ν ) + ( ln ξ ) β 1 Δ Ξ 3 i = 1 b 1 e g 3 i ( ρ , ν ) d K i ( ρ ) + Ξ 1 i = 1 d 1 e g 4 i ( ρ , ν ) d Q i ( ρ ) ,
for all ξ , ν [ 1 , e ] , with
g 1 ( ξ , ν ) = 1 Γ ( α ) ( ln ξ ) α 1 ln e ν α ς 1 ln ξ ν α 1 , 1 ν ξ e , ( ln ξ ) α 1 ln e ν α ς 1 , 1 ξ ν e , g 2 ( ξ , ν ) = 1 Γ ( β ) ( ln ξ ) β 1 ln e ν β ϑ 1 ln ξ ν β 1 , 1 ν ξ e , ( ln ξ ) β 1 ln e ν β ϑ 1 , 1 ξ ν e , g 1 i ( ξ , ν ) = 1 Γ ( α ϱ i ) ( ln ξ ) α ϱ i 1 ln e ν α ς 1 ln ξ ν α ϱ i 1 , 1 ν ξ e , ( ln ξ ) α ϱ i 1 ln e ν α ς 1 , 1 ξ ν e , g 2 j ( ξ , ν ) = 1 Γ ( α η j ) ( ln ξ ) α η j 1 ln e ν α ς 1 ln ξ ν α η j 1 , 1 ν ξ e , ( ln ξ ) α η j 1 ln e ν α ς 1 , 1 ξ ν e , g 3 k ( ξ , ν ) = 1 Γ ( β σ k ) ( ln ξ ) β σ k 1 ln e ν β ϑ 1 ln ξ ν β σ k 1 , 1 ν ξ e , ( ln ξ ) β σ k 1 ln e ν β ϑ 1 , 1 ξ ν e , g 4 ι ( ξ , ν ) = 1 Γ ( β θ ι ) ( ln ξ ) β θ ι 1 ln e ν β ϑ 1 ln ξ ν β θ ι 1 , 1 ν ξ e , ( ln ξ ) β θ ι 1 ln e ν β ϑ 1 , 1 ξ ν e ,
for all ξ , ν [ 1 , e ] , i = 1 , , a , j = 1 , , c , k = 1 , , b , ι = 1 , , d .
Proof. 
By Lemma 1 (Formula (10)), we obtain
u ( ξ ) = ( ln ξ ) α 1 Γ ( α ) 1 e ln e ν α ς 1 h ( ν ) ν d ν Δ Γ ( α ) Δ 1 e ( ln ξ ) α 1 ln e ν α ς 1 h ( ν ) ν d ν 1 Γ ( α ) 1 ξ ln ξ ν α 1 h ( ν ) ν d ν + ( ln ξ ) α 1 Δ ( Ξ 4 L + Ξ 2 M ) = 1 Γ ( α ) 1 e ( ln ξ ) α 1 ln e ν α ς 1 h ( ν ) ν d ν 1 Γ ( α ) 1 ξ ln ξ ν α 1 h ( ν ) ν d ν L 0 Δ Γ ( α ) Δ 1 e ( ln ξ ) α 1 ln e ν α ς 1 h ( ν ) ν d ν + ( ln ξ ) α 1 Δ ( Ξ 4 L + Ξ 2 M ) = L 0 1 Δ Γ ( α ) ( Ξ 1 Ξ 4 Ξ 2 Ξ 3 ) 1 e ( ln ξ ) α 1 ln e ν α ς 1 h ( ν ) ν d ν + ( ln ξ ) α 1 Δ ( Ξ 4 L + Ξ 2 M ) , ξ [ 1 , e ] .
By replacing the formulas for L , M , and Ξ i , i = 1 , , 4 , we deduce
u ( ξ ) = L 0 + ( ln ξ ) α 1 Δ Γ ( α ) Γ ( α ς ) i = 1 a Γ ( α ) Γ ( α ϱ i ) 1 e ( ln ν ) α ϱ i 1 d H i ( ν ) × Γ ( β ) Γ ( β ϑ ) i = 1 d Γ ( β ) Γ ( β θ i ) 1 e ( ln ν ) β θ i 1 d Q i ( ν ) i = 1 b Γ ( β ) Γ ( β σ i ) 1 e ( ln ν ) β σ i 1 d K i ( ν ) × i = 1 c Γ ( α ) Γ ( α η i ) 1 e ( ln ν ) α η i 1 d P i ( ν ) 1 Γ ( α ) 1 e ln e ν α ς 1 h ( ν ) ν d ν + Γ ( β ) Γ ( β ϑ ) i = 1 d Γ ( β ) Γ ( β θ i ) 1 e ( ln ν ) β θ i 1 d Q i ( ν ) × 1 Γ ( α ς ) 1 e ln e ν α ς 1 h ( ν ) ν d ν i = 1 a 1 Γ ( α ϱ i ) 1 e 1 ν ln ν ρ α ϱ i 1 h ( ρ ) ρ d ρ d H i ( ν ) i = 1 b 1 Γ ( β σ i ) 1 e 1 ν ln ν ρ β σ i 1 k ( ρ ) ρ d ρ d K i ( ν ) + i = 1 b Γ ( β ) Γ ( β σ i ) 1 e ( ln ν ) β σ i 1 d K i ( ν ) 1 Γ ( β ϑ ) 1 e ln e ν β ϑ 1 k ( ν ) ν d s i = 1 c 1 Γ ( α η i ) 1 e 1 ν ln ν ρ α η i 1 h ( ρ ) ρ d ρ d P i ( ν ) i = 1 d 1 Γ ( β θ i ) 1 e 1 ν ln ν ρ β θ i 1 k ( ρ ) ρ d ρ d Q i ( ν ) = L 0 + ( ln ξ ) α 1 Δ Γ ( β ) Γ ( α ς ) Γ ( β ϑ ) 1 e ln e ν α ς 1 h ( ν ) ν d ν + Γ ( α ) Γ ( α ς ) i = 1 d Γ ( β ) Γ ( β θ i ) 1 e ( ln ν ) β θ i 1 d Q i ( ν ) 1 Γ ( α ) 1 e ln e ν α ς 1 h ( ν ) ν d ν + Γ ( β ) Γ ( β ϑ ) i = 1 a Γ ( α ) Γ ( α ϱ i ) 1 e ( ln ν ) α ϱ i 1 d H i ( ν ) 1 Γ ( α ) 1 e ln e ν α ς 1 h ( ν ) ν d ν i = 1 a Γ ( α ) Γ ( α ϱ i ) 1 e ( ln ν ) α ϱ i 1 d H i ( ν ) i = 1 d Γ ( β ) Γ ( β θ i ) 1 e ( ln ν ) β θ i 1 d Q i ( ν ) × 1 Γ ( α ) 1 e ln e ν α ς 1 h ( ν ) ν d ν + i = 1 b Γ ( β ) Γ ( β σ i ) 1 e ( ln ν ) β σ i 1 d K i ( ν ) × i = 1 c Γ ( α ) Γ ( α η i ) 1 e ( ln ν ) α η i 1 d P i ( ν ) 1 Γ ( α ) 1 e ln e ν α ς 1 h ( ν ) ν d ν + Γ ( β ) Γ ( β ϑ ) Γ ( α ς ) 1 e ln e ν α ς 1 h ( ν ) ν d ν Γ ( β ) Γ ( β ϑ ) i = 1 a 1 Γ ( α ϱ i ) 1 e 1 ν ln ν ρ α ϱ i 1 h ( ρ ) ρ d ρ d H i ( ν ) Γ ( β ) Γ ( β ϑ ) i = 1 b 1 Γ ( β σ i ) 1 e 1 ν ln ν ρ β σ i 1 k ( ρ ) ρ d ρ d K i ( ν ) i = 1 d Γ ( β ) Γ ( β θ i ) 1 e ( ln ν ) β θ i 1 d Q i ( ν ) 1 Γ ( α ς ) 1 e ln e ν α ς 1 h ( ν ) ν d ν + i = 1 d Γ ( β ) Γ ( β θ i ) 1 e ( ln ν ) β θ i 1 d Q i ( ν ) i = 1 a 1 Γ ( α ϱ i ) 1 e 1 ν ln ν ρ α ϱ i 1 h ( ρ ) ρ d ρ d H i ( ν ) + i = 1 d Γ ( β ) Γ ( β θ i ) 1 e ( ln ν ) β θ i 1 d Q i ( ν ) i = 1 b 1 Γ ( β σ i ) 1 e 1 ν ln ν ρ β σ i 1 k ( ρ ) ρ d ρ d K i ( ν ) + i = 1 b Γ ( β ) Γ ( β σ i ) 1 e ( ln ν ) β σ i 1 d K i ( ν ) 1 Γ ( β ϑ ) 1 e ln e ν β ϑ 1 k ( ν ) ν d ν i = 1 b Γ ( β ) Γ ( β σ i ) 1 e ( ln ν ) β σ i 1 d K i ( ν ) i = 1 c 1 Γ ( α η i ) 1 e 1 ν ln ν ρ α η i 1 h ( ρ ) ρ d ρ d P i ( ν ) i = 1 b Γ ( β ) Γ ( β σ i ) 1 e ( ln ν ) β σ i 1 d K i ( ν ) i = 1 d 1 Γ ( β θ i ) 1 e 1 ν ln ν ρ β θ i 1 k ( ρ ) ρ d ρ d Q i ( ν ) .
For the above double integrals, we change the order of the integrals by using the formulas
1 e 1 ν ln ν ρ α ϱ i 1 h ( ρ ) ρ d ρ d H i ( ν ) = 1 e ρ e ln ν ρ α ϱ i 1 d H i ( ν ) h ( ρ ) ρ d ρ = 1 e ν e ln ρ ν α ϱ i 1 d H i ( ρ ) h ( ν ) ν d ν , i = 1 , , a ,
and similar ones for the double integrals with functions K j , j = 1 , , b , P k , k = 1 , , c , and Q ι , ι = 1 , , d . In addition, by changing the notation of the variable (from s to ρ ) in the simple integrals and by grouping the terms according to the functions h and k in (22), we find
u ( ξ ) = L 0 + ( ln ξ ) α 1 Δ × Γ ( β ) Γ ( β ϑ ) i = 1 a Γ ( α ) Γ ( α ϱ i ) 1 e ( ln ρ ) α ϱ i 1 d H i ( ρ ) 1 Γ ( α ) 1 e ln e ν α ς 1 h ( ν ) ν d ν i = 1 a Γ ( α ) Γ ( α ϱ i ) 1 e ( ln ρ ) α ϱ i 1 d H i ( ρ ) i = 1 d Γ ( β ) Γ ( β θ i ) 1 e ( ln ρ ) β θ i 1 d Q i ( ρ ) × 1 Γ ( α ) 1 e ln e ν α ς 1 h ( ν ) ν d ν Γ ( β ) Γ ( β ϑ ) i = 1 a 1 Γ ( α ϱ i ) 1 e ν e ln ρ ν α ϱ i 1 d H i ( ρ ) h ( ν ) ν d ν + i = 1 d Γ ( β ) Γ ( β θ i ) 1 e ( ln ρ ) β θ i 1 d Q i ( ρ ) i = 1 a 1 Γ ( α ϱ i ) 1 e ν e ln ρ ν α ϱ i 1 d H i ( ρ ) h ( ν ) ν d ν i = 1 b Γ ( β ) Γ ( β σ i ) 1 e ( ln ρ ) β σ i 1 d K i ( ρ ) i = 1 c 1 Γ ( α η i ) 1 e ν e ln ρ ν α η i 1 d P i ( ρ ) h ( ν ) ν d ν + i = 1 b Γ ( β ) Γ ( β σ i ) 1 e ( ln ν ) β σ i 1 d K i ( ν ) i = 1 c Γ ( α ) Γ ( α η i ) 1 e ( ln ν ) α η i 1 d P i ( ν ) × 1 Γ ( α ) 1 e ln e ν α ς 1 h ( ν ) ν d ν Γ ( β ) Γ ( β ϑ ) i = 1 b 1 Γ ( β σ i ) 1 e ν e ln ρ ν β σ i 1 d K i ( ρ ) k ( ν ) ν d ν + i = 1 d Γ ( β ) Γ ( β θ i ) 1 e ( ln ρ ) β θ i 1 d Q i ( ρ ) i = 1 b 1 Γ ( β σ i ) 1 e ν e ln ρ ν β σ i 1 d K i ( ρ ) k ( ν ) ν d ν + i = 1 b Γ ( β ) Γ ( β σ i ) 1 e ( ln ρ ) β σ i 1 d K i ( ρ ) 1 Γ ( β ϑ ) 1 e ln e ν β ϑ 1 k ( ν ) ν d ν i = 1 b Γ ( β ) Γ ( β σ i ) 1 e ( ln ρ ) β σ i 1 d K i ( ρ ) i = 1 d 1 Γ ( β θ i ) 1 e ν e ln ρ ν β θ i 1 d Q i ( ρ ) k ( ν ) ν d ν = L 0 + ( ln ξ ) α 1 Δ 1 e Γ ( β ) Γ ( β ϑ ) i = 1 a 1 Γ ( α ϱ i ) 1 e ( ln ρ ) α ϱ i 1 d H i ( ρ ) ln e ν α ς 1 i = 1 a 1 Γ ( α ϱ i ) 1 e ( ln ρ ) α ϱ i 1 d H i ( ρ ) i = 1 d Γ ( β ) Γ ( β θ i ) 1 e ( ln ρ ) β θ i 1 d Q i ( ρ ) ln e ν α ς 1 + i = 1 b Γ ( β ) Γ ( β σ i ) 1 e ( ln ν ) β σ i 1 d K i ( ν ) i = 1 c 1 Γ ( α η i ) 1 e ( ln ν ) α η i 1 d P i ( ν ) ln e ν α ς 1 Γ ( β ) Γ ( β ϑ ) i = 1 a 1 Γ ( α ϱ i ) ν e ln ρ ν α ϱ i 1 d H i ( ρ ) + i = 1 d Γ ( β ) Γ ( β θ i ) 1 e ( ln ρ ) β θ i 1 d Q i ( ρ ) i = 1 a 1 Γ ( α ϱ i ) ν e ln ρ ν α ϱ i 1 d H i ( ρ ) i = 1 b Γ ( β ) Γ ( β σ i ) 1 e ( ln ρ ) β σ i 1 d K i ( ρ ) i = 1 c 1 Γ ( α η i ) ν e ln ρ ν α η i 1 d P i ( ρ ) h ( ν ) ν d ν + 1 e Γ ( β ) Γ ( β ϑ ) i = 1 b 1 Γ ( β σ i ) ν e ln ρ ν β σ i 1 d K i ( ρ ) + i = 1 d Γ ( β ) Γ ( β θ i ) 1 e ( ln ρ ) β θ i 1 d Q i ( ρ ) i = 1 b 1 Γ ( β σ i ) ν e ln ρ ν β σ i 1 d K i ( ρ ) + i = 1 b Γ ( β ) Γ ( β σ i ) 1 e ( ln ρ ) β σ i 1 d K i ( ρ ) 1 Γ ( β ϑ ) ln e ν β ϑ 1 i = 1 b Γ ( β ) Γ ( β σ i ) 1 e ( ln ρ ) β σ i 1 d K i ( ρ ) i = 1 d 1 Γ ( β θ i ) ν e ln ρ ν β θ i 1 d Q i ( ρ ) i = 1 d Γ ( β ) Γ ( β θ i ) 1 e ( ln ρ ) β θ i 1 d Q i ( ρ ) i = 1 b 1 Γ ( β σ i ) 1 e ( ln ρ ) β σ i 1 ln e ν β ϑ 1 d K i ( ρ ) + i = 1 b Γ ( β ) Γ ( β σ i ) 1 e ( ln ρ ) β σ i 1 d K i ( ρ ) i = 1 d 1 Γ ( β θ i ) 1 e ( ln ρ ) β θ i 1 ln e ν β ϑ 1 d Q i ( ρ ) k ( ν ) ν d ν .
The last two terms were added by us, which together give zero. Now, by grouping the terms, we obtain
u ( ξ ) = 1 e g 1 ( ξ , ν ) h ( ν ) ν d ν + ( ln ξ ) α 1 Δ × 1 e Γ ( β ) Γ ( β ϑ ) i = 1 a 1 Γ ( α ϱ i ) 1 e ( ln ρ ) α ϱ i 1 ln e ν α ς 1 d H i ( ρ ) 1 Γ ( α ϱ i ) ν e ln ρ ν α ϱ i 1 d H i ( ρ ) i = 1 d Γ ( β ) Γ ( β θ i ) 1 e ( ln ρ ) β θ i 1 d Q i ( ρ ) × i = 1 a 1 Γ ( α ϱ i ) 1 e ( ln ρ ) α ϱ i 1 ln e ν α ς 1 d H i ( ρ ) 1 Γ ( α ϱ i ) ν e ln ρ ν α ϱ i 1 d H i ( ρ ) + i = 1 b Γ ( β ) Γ ( β σ i ) 1 e ( ln ρ ) β σ i 1 d K i ( ρ ) × i = 1 c 1 Γ ( α η i ) 1 e ( ln ρ ) α η i 1 ln e ν α ς 1 d P i ( ρ ) 1 Γ ( α η i ) ν e ln ρ ν α η i 1 d P i ( ρ ) h ( ν ) ν d ν + 1 e Γ ( β ) Γ ( β ϑ ) i = 1 b 1 Γ ( β σ i ) 1 e ( ln ρ ) β σ i 1 ln e ν β ϑ 1 d K i ( ρ ) ν e ln ρ ν β σ i 1 d K i ( ρ ) i = 1 d Γ ( β ) Γ ( β θ i ) 1 e ( ln ρ ) β θ i 1 d Q i ( ρ ) × i = 1 b 1 Γ ( β σ i ) 1 e ( ln ρ ) β σ i 1 ln e ν β ϑ 1 d K i ( ρ ) ν e ln ρ ν β σ i 1 d K i ( ρ ) + i = 1 b Γ ( β ) Γ ( β σ i ) 1 e ( ln ρ ) β σ i 1 d K i ( ρ ) × i = 1 d 1 Γ ( β θ i ) 1 e ( ln ρ ) β θ i 1 ln e ν β ϑ 1 d Q i ( ρ ) ν e ln ρ ν β θ i 1 d Q i ( ρ ) k ( ν ) ν d ν = 1 e g 1 ( ξ , ν ) h ( ν ) ν d ν + ( ln ξ ) α 1 Δ × 1 e Ξ 4 i = 1 a 1 Γ ( α ϱ i ) 1 e ( ln ρ ) α ϱ i 1 ln e ν α ς 1 d H i ( ρ ) ν e ln ρ ν α ϱ i 1 d H i ( ρ ) + Ξ 2 i = 1 c 1 Γ ( α η i ) 1 e ( ln ρ ) α η i 1 ln e ν α ς 1 d P i ( ρ ) ν e ln ρ ν α η i 1 d P i ( ρ ) h ( ν ) ν d ν + 1 e Ξ 4 i = 1 b 1 Γ ( β σ i ) 1 e ( ln ρ ) β σ i 1 ln e ν β ϑ 1 d K i ( ρ ) ν e ln ρ ν β σ i 1 d K i ( ρ ) + Ξ 2 i = 1 d 1 Γ ( β θ i ) 1 e ( ln ρ ) β θ i 1 ln e ν β ϑ 1 d Q i ( ρ ) ν e ln ρ ν β θ i 1 d Q i ( ρ ) k ( ν ) ν d ν .
Therefore, we deduce
u ( ξ ) = 1 e g 1 ( ξ , ν ) h ( ν ) ν d ν + ( ln ξ ) α 1 Δ 1 e Ξ 4 i = 1 a 1 e g 1 i ( ρ , ν ) d H i ( ρ ) + Ξ 2 i = 1 c 1 e g 2 i ( ρ , ν ) d P i ( ρ ) h ( ν ) ν d ν + 1 e Ξ 4 i = 1 b 1 e g 3 i ( ρ , ν ) d K i ( ρ ) + Ξ 2 i = 1 d 1 e g 4 i ( ρ , ν ) d Q i ( ρ ) k ( ν ) ν d ν = 1 e G 1 ( ξ , ν ) h ( ν ) ν d ν + 1 e G 2 ( ξ , ν ) k ( ν ) ν d ν , ξ [ 1 , e ] ,
where the functions g 1 , g 1 i , i = 1 , , a , g 2 j , j = 1 , , c , g 3 k , k = 1 , , b , g 4 ι , ι = 1 , , d are given by (21) and the functions G 1 , G 2 are given by (20).
Without presenting the computations for the function v, we obtain for it the relation
v ( ξ ) = 1 e G 3 ( ξ , ν ) h ( ν ) ν d ν + 1 e G 4 ( ξ , ν ) k ( ν ) ν d ν , ξ [ 1 , e ] ,
where the functions G 3 , G 4 are given by (20). Therefore, we deduce the relations (19). □
Lemma 3. 
The functions g 1 , g 2 , g 1 i , i = 1 , , a , g 2 j , j = 1 , , c , g 3 k , k = 1 , , b , g 4 ι , ι = 1 , , d have the following properties:
(a)
g 1 ( ξ , ν ) g 1 ( e , ν ) , g 2 ( ξ , ν ) g 2 ( e , ν ) ;
(b)
g 1 ( ξ , ν ) ( ln ξ ) α 1 g 1 ( e , ν ) , g 2 ( ξ , ν ) ( ln ξ ) β 1 g 2 ( e , ν ) ;
(c)
g 1 ( ξ , ν ) ( ln ξ ) α 1 Γ ( α ) , g 2 ( ξ , ν ) ( ln ξ ) β 1 Γ ( β ) ;
(d)
g 1 i ( ξ , ν ) ( ln ξ ) α ϱ i 1 g 1 i ( e , ν ) , i = 1 , , a ;
(e)
g 1 i ( ξ , ν ) 1 Γ ( α ϱ i ) ( ln ξ ) α ϱ i 1 , i = 1 , , a ;
(f)
g 2 j ( ξ , ν ) ( ln ξ ) α η j 1 g 2 j ( e , ν ) , j = 1 , , c ;
(g)
g 2 j ( ξ , ν ) 1 Γ ( α η j ) ( ln ξ ) α η j 1 , j = 1 , , c ;
(h)
g 3 k ( ξ , ν ) ( ln ξ ) β σ k 1 g 3 k ( e , ν ) , k = 1 , , b ;
(i)
g 3 k ( ξ , ν ) 1 Γ ( β σ k ) ( ln ξ ) β σ k 1 , k = 1 , , b ;
(j)
g 4 ι ( ξ , ν ) ( ln ξ ) β θ ι 1 g 4 ι ( e , ν ) , ι = 1 , , d ;
(k)
g 4 ι ( ξ , ν ) 1 Γ ( β θ ι ) ( ln ξ ) β θ ι 1 , ι = 1 , , d ;
for all ( ξ , ν ) [ 1 , e ] × [ 1 , e ] ;
(l)
They are continuous and nonnegative on [ 1 , e ] × [ 1 , e ] and positive on ( 1 , e ) × ( 1 , e ) .
Proof. 
We show the inequalities ( a ) ( c ) for the function g 1 . For g 2 , we can use similar arguments.
(a)
First, we prove that g 1 is a nondecreasing function in the first variable. Indeed, for 1 ν ξ e , we find
g 1 ξ ( ξ , ν ) = 1 Γ ( α ) ( α 1 ) ( ln ξ ) α 2 1 ξ ln e ν α ς 1 ( α 1 ) ln ξ ν α 2 1 ξ = ( α 1 ) ξ Γ ( α ) ( ln ξ ) α 2 ln e ν α ς 1 ln ξ ν α 2 1 ξ Γ ( α 1 ) ( ln ξ ) α 2 ln e ν α 2 ln ξ ν α 2 = 1 ξ Γ ( α 1 ) ( ln ξ ln ξ ln ν ) α 2 ( ln ξ ln ν ) α 2 0 .
Then,
g 1 ( ξ , ν ) g 1 ( e , ν ) = 1 Γ ( α ) ln e ν α ς 1 ln e ν α 1 , ξ , ν [ 1 , e ] .
For 1 ξ ν e , we obtain
g 1 ξ ( ξ , ν ) = 1 Γ ( α 1 ) ( ln ξ ) α 2 1 ξ ln e ν α ς 1 0 .
So,
g 1 ( ξ , ν ) g 1 ( ν , ν ) = 1 Γ ( α ) ( ln ν ) α 1 ln e ν α ς 1 , ξ , ν [ 1 , e ] .
Hence, we deduce that g 1 ( ξ , ν ) g 1 ( e , ν ) for all ξ , ν [ 1 , e ] .
(b)
For 1 ν ξ e and ξ 1 , we have
g 1 ( ξ , ν ) = 1 Γ ( α ) ( ln ξ ) α 1 ln e ν α ς 1 ln ξ ln ν ln ξ α 1 = 1 Γ ( α ) ( ln ξ ) α 1 ( 1 ln ν ) α ς 1 1 ln ν ln ξ α 1 1 Γ ( α ) ( ln ξ ) α 1 ( 1 ln ν ) α ς 1 ( 1 ln ν ) α 1 = 1 Γ ( α ) ( ln ξ ) α 1 ln e ν α ς 1 1 ln e ν ς = ( ln ξ ) α 1 g 1 ( e , ν ) .
For ξ = ν = 1 , we obtain the inequality g 1 ( 1 , 1 ) = 0 0 = ( ln 1 ) α 1 g 1 ( e , 1 ) .
For 1 ξ ν e , we find
g 1 ( ξ , ν ) 1 Γ ( α ) ( ln ξ ) α 1 ln e ν α ς 1 1 ln e ν ς = ( ln ξ ) α 1 g 1 ( e , s ) .
So, we deduce g 1 ( ξ , ν ) ( ln ξ ) α 1 g 1 ( e , ν ) for all ξ , ν [ 1 , e ] .
(c)
For all ξ , ν [ 1 , e ] we have
g 1 ( ξ , ν ) 1 Γ ( α ) ( ln ξ ) α 1 ln e ν α ς 1 1 Γ ( α ) ( ln ξ ) α 1 .
Next, we prove the properties (d)–(e). The properties (f)–(k) follow similar arguments.
(d)
For 1 ν ξ e and ξ 1 , we obtain
g 1 i ( ξ , ν ) = 1 Γ ( α ϱ i ) ( ln ξ ) α ϱ i 1 ln e ν α ς 1 ( ln ξ ) α ϱ i 1 ln ξ ln ν ln ξ α ϱ i 1 1 Γ ( α ϱ i ) ( ln ξ ) α ϱ i 1 ( 1 ln ν ) α ς 1 ( 1 ln ν ) α ϱ i 1 = 1 Γ ( α ϱ i ) ( ln ξ ) α ϱ i 1 ln e ν α ς 1 1 ln e ν ς ϱ i = ( ln ξ ) α ϱ i 1 g 1 i ( e , ν ) 0 .
For ξ = ν = 1 , we have the inequality g 1 i ( 1 , 1 ) ( ln 1 ) α ϱ i 1 g 1 i ( e , 1 ) .
If 1 ξ ν e , we find
g 1 i ( ξ , ν ) 1 Γ ( α ϱ i ) ( ln ξ ) α ϱ i 1 ln e ν α ς 1 1 ln e ν ς ϱ i = ( ln ξ ) α ϱ i 1 g 1 i ( e , ν ) .
Hence, we deduce that g 1 i ( ξ , ν ) ( ln ξ ) α ϱ i 1 g 1 i ( e , ν ) for all ξ , ν [ 1 , e ] .
(e)
We have
g 1 i ( ξ , ν ) 1 Γ ( α ϱ i ) ( ln ξ ) α ϱ i 1 ln e ν α ς 1 1 Γ ( α ϱ i ) ( ln ξ ) α ϱ i 1 , ξ , ν [ 1 , e ] .
The last property (l) follows from the definitions of these functions and the properties (b), (d), (f), (h), and (j). □
Lemma 4. 
If Ξ 1 0 , Ξ 4 0 , Δ > 0 and the functions H i , i = 1 , , a , K j , j = 1 , , b , P k , k = 1 , , c , and Q ι , ι = 1 , , d are nondecreasing, then the Green functions G i , i = 1 , , 4 satisfy the following inequalities:
(a)
( ln ξ ) α 1 G 1 ( e , ν ) G 1 ( ξ , ν ) G 1 ( e , ν ) ,
(b)
( ln ξ ) α 1 G 2 ( e , ν ) = G 2 ( ξ , ν ) G 2 ( e , ν ) ,
(c)
( ln ξ ) β 1 G 3 ( e , ν ) = G 3 ( ξ , ν ) G 3 ( e , ν ) ,
(d)
( ln ξ ) β 1 G 4 ( e , ν ) G 4 ( ξ , ν ) G 4 ( e , ν ) ,
for all ξ , ν [ 1 , e ] .
Proof. 
By using the assumptions of this lemma, we see that Ξ 1 > 0 , Ξ 4 > 0 , Ξ 2 0 , and Ξ 3 0 .
(a)–(d) Based on Lemma 3, for all ξ , ν [ 1 , e ] , we obtain
G 1 ( ξ , ν ) g 1 ( e , ν ) + 1 Δ Ξ 4 i = 1 a 1 e g 1 i ( ρ , ν ) d H i ( ρ ) + Ξ 2 i = 1 c 1 e g 2 i ( ρ , ν ) d P i ( ρ ) = G 1 ( e , ν ) , G 1 ( ξ , ν ) ( ln ξ ) α 1 g 1 ( e , ν ) + ( ln ξ ) α 1 Δ Ξ 4 i = 1 a 1 e g 1 i ( ρ , ν ) d H i ( ρ ) + Ξ 2 i = 1 c 1 e g 2 i ( ρ , ν ) d P i ( ρ ) = ( ln ξ ) α 1 G 1 ( e , ν ) , G 2 ( ξ , ν ) 1 Δ Ξ 4 i = 1 b 1 e g 3 i ( ρ , ν ) d K i ( ρ ) + Ξ 2 i = 1 d 1 e g 4 i ( ρ , ν ) d Q i ( ρ ) = G 2 ( e , ν ) , G 2 ( ξ , ν ) = ( ln ξ ) α 1 G 2 ( e , ν ) , G 3 ( ξ , ν ) 1 Δ Ξ 3 i = 1 a 1 e g 1 i ( ρ , ν ) d H i ( ρ ) + Ξ 1 i = 1 c 1 e g 2 i ( ρ , ν ) d P i ( ρ ) = G 3 ( e , ν ) , G 3 ( ξ , ν ) = ( ln t ) β 1 G 3 ( e , ν ) , G 4 ( ξ , ν ) g 2 ( e , ν ) + 1 Δ Ξ 3 i = 1 b 1 e g 3 i ( ρ , ν ) d K i ( ρ ) + Ξ 1 i = 1 d 1 e g 4 i ( ρ , ν ) d Q i ( ρ ) = G 4 ( e , ν ) , G 4 ( ξ , ν ) ( ln ξ ) β 1 g 2 ( e , ν ) + ( ln ξ ) β 1 Δ Ξ 3 i = 1 b 1 e g 3 i ( ρ , ν ) d K i ( ρ ) + Ξ 1 i = 1 d 1 e g 4 i ( ρ , ν ) d Q i ( ρ ) = ( ln ξ ) β 1 G 4 ( e , ν ) .
Lemma 5. 
If Ξ 1 0 , Ξ 4 0 , Δ > 0 , the functions H i , i = 1 , , a , K j , j = 1 , , b , P k , k = 1 , , c , and Q ι , ι = 1 , , d are nondecreasing and h ( ξ ) 0 , k ( ξ ) 0 for all ξ [ 1 , e ] , then the solution ( u ( ξ ) , v ( ξ ) ) , ξ [ 1 , e ] , of Problem (8),(2) satisfies the inequalities u ( ξ ) 0 , v ( ξ ) 0 for all ξ [ 1 , e ] and u ( ξ ) ( ln ξ ) α 1 u ( ζ ) , v ( ξ ) ( ln ξ ) β 1 v ( ζ ) for all ξ , ζ [ 1 , e ] .
Proof. 
It is easy to verify that u ( ξ ) 0 and v ( ξ ) 0 for all ξ [ 1 , e ] . In addition, by using Lemma 4, we find
u ( ξ ) = 1 e G 1 ( ξ , ν ) h ( ν ) ν d ν + 1 e G 2 ( ξ , ν ) k ( ν ) ν d ν 1 e G 1 ( e , ν ) h ( ν ) ν d ν + 1 e G 2 ( e , ν ) k ( ν ) ν d ν , ξ [ 1 , e ] , u ( ξ ) 1 e ( ln ξ ) α 1 G 1 ( e , ν ) h ( ν ) ν d ν + 1 e ( ln ξ ) α 1 G 2 ( e , ν ) k ( ν ) ν d ν = ( ln ξ ) α 1 1 e G 1 ( e , ν ) h ( ν ) ν d ν + 1 e G 2 ( e , ν ) k ( ν ) ν d ν ( ln ξ ) α 1 u ( ζ ) , ξ , ζ [ 1 , e ] , v ( ξ ) = 1 e G 3 ( ξ , ν ) h ( ν ) ν d ν + 1 e G 4 ( ξ , ν ) k ( ν ) ν d ν 1 e G 3 ( e , ν ) h ( ν ) ν d ν + 1 e G 4 ( e , ν ) k ( ν ) ν d ν , ξ [ 1 , e ] , v ( ξ ) 1 e ( ln ξ ) β 1 G 3 ( e , ν ) h ( ν ) ν d ν + 1 e ( ln ξ ) β 1 G 4 ( e , ν ) k ( ν ) ν d ν = ( ln ξ ) β 1 1 e G 3 ( e , ν ) h ( ν ) ν d ν + 1 e G 4 ( e , ν ) k ( ν ) ν d ν ( ln ξ ) β 1 v ( ζ ) , ξ , ζ [ 1 , e ] .
Remark 1. 
Under assumptions of Lemma 5, we obtain u ( ξ ) ( ln ξ ) α 1 u and v ( ξ ) ( ln ξ ) β 1 v for all ξ [ 1 , e ] , where · is the supremum norm in the space C ( [ 1 , e ] ) . In addition, by Lemma 4, for ω ( 1 , e ) , we find
min ξ [ ω , e ] G 1 ( ξ , ν ) ( ln ω ) α 1 G 1 ( e , ν ) , ν [ 1 , e ] , min ξ [ ω , e ] G 2 ( ξ , ν ) = ( ln ω ) α 1 G 2 ( e , ν ) , ν [ 1 , e ] , min ξ [ ω , e ] G 3 ( ξ , ν ) = ( ln ω ) β 1 G 3 ( e , ν ) , ν [ 1 , e ] , min ξ [ ω , e ] G 4 ( ξ , ν ) ( ln ω ) β 1 G 4 ( e , ν ) , ν [ 1 , e ] ,
and so, by Lemma 5, we deduce
min ξ [ ω , e ] u ( ξ ) ( ln ω ) α 1 u , min ξ [ ω , e ] v ( ξ ) ( ln ω ) β 1 v .
Lemma 6. 
If z C ( [ 1 , e ] ) , then for κ > 0 , we have
| I 1 + κ H z ( ξ ) | z Γ ( κ + 1 ) , ξ [ 1 , e ] .
Proof. 
We obtain
| ( H I 1 + κ z ) ( ξ ) |   z Γ ( κ ) 1 ξ ln ξ ν κ 1 1 ν d ν = z ( ln ξ ) κ Γ ( κ + 1 ) z Γ ( κ + 1 ) , ξ [ 1 , e ] .

3. Existence of Positive Solutions

We present in this section the theorems devoted to the existence of at least one positive solution for our Problem (1),(2).
We give firstly the main assumptions:
(I1)
α ( n 1 , n ] , n N , n 3 ; β ( m 1 , m ] , m N , m 3 ; a , b , c , d N ; 0 ϱ i ς < α 1 , i = 1 , , a ; 0 η k ς , k = 1 , , c ; ς 1 ; 0 σ j ϑ < β 1 , j = 1 , , b ; 0 θ ι ϑ , ι = 1 , , d , ϑ 1 ; γ i , δ i > 0 , i = 1 , 2 ; H i , i = 1 , , a , K j , j = 1 , , b , P k , k = 1 , , c , Q ι , ι = 1 , , d , are nondecreasing functions; Ξ 1 0 , Ξ 4 0 , Δ > 0 , (given by (9)).
(I2)
The functions f , g : [ 1 , e ] × R + 4 R + are continuous.
By Lemma 2, Problem (1),(2) can be expressed equivalently as the system of integral equations given by
u ( ξ ) = 1 e G 1 ( ξ , ν ) f ν , u ( ν ) , v ( ν ) , H I 1 + γ 1 u ( ν ) , H I 1 + δ 1 v ( ν ) d ν ν + 1 e G 2 ( ξ , ν ) g ν , u ( ν ) , v ( ν ) , H I 1 + γ 2 u ( ν ) , H I 1 + δ 2 v ( ν ) d ν ν , ξ [ 1 , e ] , v ( ξ ) = 1 e G 3 ( ξ , ν ) f ν , u ( ν ) , v ( ν ) , H I 1 + γ 1 u ( ν ) , H I 1 + δ 1 v ( ν ) d ν ν + 1 e G 4 ( ξ , ν ) g ν , u ( ν ) , v ( ν ) , H I 1 + γ 2 u ( ν ) , H I 1 + δ 2 v ( ν ) d ν ν , ξ [ 1 , e ] .
We consider the Banach space X = C ( [ 1 , e ] ) with the supremum norm u = sup ρ [ 1 , e ] | u ( ρ ) | and the Banach space Z = X × X with the norm ( u , v ) Z = u + v . We also consider the cone S Z given by
S = { ( u , v ) Z , u ( ξ ) ( ln ξ ) α 1 u , v ( ξ ) ( ln ξ ) β 1 v , ξ [ 1 , e ] } .
We define now the operator L : S Z , L ( u , v ) = ( L 1 ( u , v ) , L 2 ( u , v ) ) , for ( u , v ) S , where L 1 , L 2 : S X are given by
L 1 ( u , v ) ( ξ ) = 1 e G 1 ( ξ , ν ) f ν , u ( ν ) , v ( ν ) , H I 1 + γ 1 u ( ν ) , H I 1 + δ 1 v ( ν ) d ν ν + 1 e G 2 ( ξ , ν ) g ν , u ( ν ) , v ( ν ) , H I 1 + γ 2 u ( ν ) , H I 1 + δ 2 v ( ν ) d ν ν , L 2 ( u , v ) ( ξ ) = 1 e G 3 ( ξ , ν ) f ν , u ( ν ) , v ( ν ) , H I 1 + γ 1 u ( ν ) , H I 1 + δ 1 v ( ν ) d ν ν + 1 e G 4 ( ξ , ν ) g ν , u ( ν ) , v ( ν ) , H I 1 + γ 2 u ( ν ) , H I 1 + δ 2 v ( ν ) d ν ν ,
for all ξ [ 1 , e ] and ( u , v ) S .
We see that ( u , v ) is a positive solution of system (23) (or, equivalently, to Problem (1),(2)) if and only if it serves as a fixed point of operator L . Thus, in what follows, we analyze the existence of fixed points of L .
Under assumptions ( I 1 ) , ( I 2 ) , by using standard methods, we deduce that operator L is completely continuous. In addition, by Lemma 5 and Remark 1, we find
L 1 ( u , v ) ( ξ ) ( ln ξ ) α 1 L 1 ( u , v ) , L 2 ( u , v ) ( ξ ) ( ln ξ ) β 1 L 2 ( u , v ) ,
for all ξ [ 1 , e ] and ( u , v ) S , that is, L ( S ) S .
For ω ( 1 , e ) , we introduce the constants
A 1 = 1 e G 1 ( e , ν ) d ν ν , A 2 = 1 e G 2 ( e , ν ) d ν ν , A 3 = 1 e G 3 ( e , ν ) d ν ν , A 4 = 1 e G 4 ( e , ν ) d ν ν , C 1 = A 1 + A 3 , C 2 = A 2 + A 4 , A ˜ 1 = ω e G 1 ( e , ν ) d ν ν , A ˜ 2 = ω e G 2 ( e , ν ) d ν ν , A ˜ 3 = ω e G 3 ( e , ν ) d ν ν , A ˜ 4 = ω e G 4 ( e , ν ) d ν ν , C ˜ 1 = ( ln ω ) α 1 A ˜ 1 + ( ln ω ) β 1 A ˜ 3 , C ˜ 2 = ( ln ω ) α 1 A ˜ 2 + ( ln ω ) β 1 A ˜ 4 .
We remark that A i 0 , A ˜ i 0 for i = 2,3 and A j > 0 , A ˜ j > 0 for j = 1 , 4 , C k > 0 , C ˜ k > 0 for k = 1 , 2 . We also denote by F u v ( ν ) = f ( ν , u ( ν ) , v ( ν ) , H I 1 + γ 1 u ( ν ) , H I 1 + δ 1 v ( ν ) ) and G u v ( ν ) = g ( ν , u ( ν ) , v ( ν ) , H I 1 + γ 2 u ( ν ) , H I 1 + δ 2 v ( ν ) ) for ν [ 1 , e ] .
Our first theorem related to the existence and uniqueness of positive solutions of Problem (1),(2) is based on the Banach contraction mapping principle.
Theorem 1. 
We assume that ( I 1 ) and ( I 2 ) hold. In addition, we suppose that there exist continuous functions X i , Y i : [ 1 , e ] R + , i = 1 . , 4 , such that
| f ( ξ , x 1 , x 2 , x 3 , x 4 ) f ( ξ , y 1 , y 2 , y 3 , y 4 ) | i = 1 4 X i ( ξ ) | x i y i | , | g ( ξ , x 1 , x 2 , x 3 , x 4 ) g ( ξ , y 1 , y 2 , y 3 , y 4 ) | i = 1 4 Y i ( ξ ) | x i y i | ,
for all ξ [ 1 , e ] and x i , y i R + , i = 1 , , 4 . If
Υ 0 = max { Υ 1 , Υ 2 } < 1 ,
where
Υ 1 = ( A 1 + A 3 ) x 1 * + x 3 * Γ ( γ 1 + 1 ) + ( A 2 + A 4 ) y 1 * + y 3 * Γ ( γ 2 + 1 ) , Υ 2 = ( A 1 + A 3 ) x 2 * + x 4 * Γ ( δ 1 + 1 ) + ( A 2 + A 4 ) y 2 * + y 4 * Γ ( δ 2 + 1 ) , x i * = sup ξ [ 1 , e ] X i ( ξ ) , y i * = sup ξ [ 1 , e ] Y i ( ξ ) , i = 1 , , 4 ,
then the boundary value problem (1),(2) has a unique positive solution ( u * ( ξ ) , v * ( ξ ) ) , ξ [ 1 , e ] . In addition, for any initial point ( u 0 , v 0 ) S , the sequence ( ( u n , v n ) ) n 0 , defined by ( u n , v n ) = L ( ( u n 1 , v n 1 ) ) for n 1 , converges to ( u * , v * ) as n . Moreover, the error estimate is given by the inequality
( u n , v n ) ( u * , v * ) Z     Υ 0 n 1 Υ 0 ( u 1 , v 1 ) ( u 0 , v 0 ) Z .
Proof. 
By using the inequalities (24), Lemma 4, and Lemma 6, for any ( u 1 , v 1 ) , ( u 2 , v 2 ) S , we obtain
| L 1 ( u 1 , v 1 ) ( ξ ) L 1 ( u 2 , v 2 ) ( ξ ) | = 1 e G 1 ( ξ , ν ) F u 1 v 1 ( ν ) d ν ν + 1 e G 2 ( ξ , ν ) G u 1 v 1 ( ν ) d ν ν 1 e G 1 ( ξ , ν ) F u 2 v 2 ( ν ) d ν ν 1 e G 2 ( ξ , ν ) G u 2 v 2 ( ν ) d ν ν 1 e G 1 ( ξ , ν ) | F u 1 v 1 ( ν ) F u 2 v 2 ( ν ) | d ν ν + 1 e G 2 ( ξ , ν ) | G u 1 v 1 ( ν ) G u 2 v 2 ( ν ) | d ν ν 1 e G 1 ( e , ν ) X 1 ( ν ) | u 1 ( ν ) u 2 ( ν ) | + X 2 ( ν ) | v 1 ( ν ) v 2 ( ν ) | + X 3 ( ν ) | H I 1 + γ 1 u 1 ( ν ) H I 1 + γ 1 u 2 ( ν ) | + X 4 ( ν ) | H I 1 + δ 1 v 1 ( ν ) H I 1 + δ 1 v 2 ( ν ) | d ν ν + 1 e G 2 ( e , ν ) Y 1 ( ν ) | u 1 ( ν ) u 2 ( ν ) | + Y 2 ( ν ) | v 1 ( ν ) v 2 ( ν ) | + Y 3 ( ν ) | H I 1 + γ 2 u 1 ( ν ) H I 1 + γ 2 u 2 ( ν ) | + Y 4 ( ν ) | H I 1 + δ 2 v 1 ( ν ) H I 1 + δ 2 v 2 ( ν ) | d ν ν 1 e G 1 ( e , ν ) X 1 ( ν ) u 1 u 2 + X 2 ( ν ) v 1 v 2 + X 3 ( ν ) 1 Γ ( γ 1 + 1 ) u 1 u 2 + X 4 ( ν ) 1 Γ ( δ 1 + 1 ) v 1 v 2 d ν ν + 1 e G 2 ( e , ν ) Y 1 ( ν ) u 1 u 2 + Y 2 ( ν ) v 1 v 2 + Y 3 ( ν ) 1 Γ ( γ 2 + 1 ) u 1 u 2 + Y 4 ( ν ) 1 Γ ( δ 2 + 1 ) v 1 v 2 d ν ν , ξ [ 1 , e ] .
So, we deduce
| L 1 ( u 1 , v 1 ) ( ξ ) L 1 ( u 2 , v 2 ) ( ξ ) | x 1 * + x 3 * Γ ( γ 1 + 1 ) u 1 u 2 1 e G 1 ( e , ν ) d ν ν + x 2 * + x 4 * Γ ( δ 1 + 1 ) v 1 v 2 1 e G 1 ( e , ν ) d ν ν + y 1 * + y 3 * Γ ( γ 2 + 1 ) u 1 u 2 1 e G 2 ( e , ν ) d ν ν + y 2 * + y 4 * Γ ( δ 2 + 1 ) v 1 v 2 1 e G 2 ( e , ν ) d ν ν = u 1 u 2 x 1 * + x 3 * Γ ( γ 1 + 1 ) A 1 + y 1 * + y 3 * Γ ( γ 2 + 1 ) A 2 + v 1 v 2 x 2 * + x 4 * Γ ( δ 1 + 1 ) A 1 + y 2 * + y 4 * Γ ( δ 2 + 1 ) A 2 , ξ [ 1 , e ] .
In a similar manner, we find
| L 2 ( u 1 , v 1 ) ( ξ ) L 2 ( u 2 , v 2 ) ( ξ ) | u 1 u 2 x 1 * + x 3 * Γ ( γ 1 + 1 ) A 3 + y 1 * + y 3 * Γ ( γ 2 + 1 ) A 4 + v 1 v 2 x 2 * + x 4 * Γ ( δ 1 + 1 ) A 3 + y 2 * + y 4 * Γ ( δ 2 + 1 ) A 4 , ξ [ 1 , e ] .
Hence, by (27) and (28), we deduce
L ( u 1 , v 1 ) L ( u 2 , v 2 ) Z u 1 u 2 x 1 * + x 3 * Γ ( γ 1 + 1 ) ( A 1 + A 3 ) + y 1 * + y 3 * Γ ( γ 2 + 1 ) ( A 2 + A 4 ) + v 1 v 2 x 2 * + x 4 * Γ ( δ 1 + 1 ) ( A 1 + A 3 ) + y 2 * + y 4 * Γ ( δ 2 + 1 ) ( A 2 + A 4 ) max { Υ 1 , Υ 2 } ( u 1 , v 1 ) ( u 2 , v 2 ) Z = Υ 0 ( u 1 , v 1 ) ( u 2 , v 2 ) Z .
Based on condition (25), it can be concluded that the operator L satisfies the contraction mapping property. Thus, by applying the Banach fixed-point theorem, it can be deduced that L possesses a single fixed point ( u * , v * ) S , which corresponds to the unique positive solution of Problem (1),(2). Moreover, for any ( u 0 , v 0 ) S , the sequence ( ( u n , v n ) ) n 0 , defined as ( u n , v n ) = L ( u n 1 , v n 1 ) for n 1 , converges to ( u * , v * ) as n . Finally, the error estimate (26) can be obtained from the proof of the Banach theorem. □
Next, we examine the existence of positive solutions for Problem (1),(2). In the following result, we employ the Schauder fixed-point theorem (see [23]).
Theorem 2. 
Assume that ( I 1 ) and ( I 2 ) hold. In addition, we suppose that there exist continuous functions U i , V i : [ 1 , e ] R + , i = 1 , , 5 , such that
f ( ξ , x 1 , x 2 , x 3 , x 4 ) i = 1 4 U i ( ξ ) x i + U 5 ( ξ ) , g ( ξ , x 1 , x 2 , x 3 , x 4 ) i = 1 4 V i ( ξ ) x i + V 5 ( ξ ) ,
for all ξ [ 1 , e ] and x i R + , i = 1 , , 4 . If
Λ 0 = max { Λ 1 , Λ 2 } < 1 ,
where
Λ 1 = ( A 1 + A 3 ) u 1 * + u 3 * Γ ( γ 1 + 1 ) + ( A 2 + A 4 ) v 1 * + v 3 * Γ ( γ 2 + 1 ) , Λ 2 = ( A 1 + A 3 ) u 2 * + u 4 * Γ ( δ 1 + 1 ) + ( A 2 + A 4 ) v 2 * + v 4 * Γ ( δ 2 + 1 ) , u i * = sup ξ [ 1 , e ] U i ( ξ ) , v i * = sup ξ [ 1 , e ] V i ( ξ ) , i = 1 , , 4 ,
then the boundary value problem (1),(2) has at least one positive solution ( u ( ξ ) , v ( ξ ) ) , ξ [ 1 , e ] .
Proof. 
We consider a positive number r 0 that satisfies the condition
r 0 ( A 1 + A 3 ) u 5 * + ( A 2 + A 4 ) v 5 * 1 Λ 0 ,
where u 5 * = sup ξ [ 1 , e ] U 5 ( ξ ) , v 5 * = sup ξ [ 1 , e ] V 5 ( ξ ) . We define the set Ω = { ( u , v ) S , ( u , v ) Z     r 0 } .
First, we prove L ( Ω ) Ω . For this, let ( u , v ) Ω , that is ( u , v ) Z r 0 , or u + v r 0 , which gives us u r 0 and v r 0 . Then, by using the inequalities (29), Lemma 4, and Lemma 6, we find
L 1 ( u , v ) ( ξ ) 1 e G 1 ( e , ν ) U 1 ( ν ) u ( ν ) + U 2 ( ν ) v ( ν ) + U 3 ( ν ) H I 1 + γ 1 u ( ν ) + U 4 ( ν ) H I 1 + δ 1 v ( ν ) + U 5 ( ν ) d ν ν + 1 e G 2 ( e , ν ) V 1 ( ν ) u ( ν ) + V 2 ( ν ) v ( ν ) + V 3 ( ν ) H I 1 + γ 2 u ( ν ) + V 4 ( ν ) H I 1 + δ 2 v ( ν ) + V 5 ( ν ) d ν ν u 1 * u + u 2 * v + u 3 * u Γ ( γ 1 + 1 ) + u 4 * v Γ ( δ 1 + 1 ) + u 5 * 1 e G 1 ( e , ν ) d ν ν + v 1 * u + v 2 * v + v 3 * u Γ ( γ 2 + 1 ) + v 4 * v Γ ( δ 2 + 1 ) + v 5 * 1 e G 2 ( e , ν ) d ν ν = A 1 u 1 * + u 3 * Γ ( γ 1 + 1 ) u + u 2 * + u 4 * Γ ( δ 1 + 1 ) v + u 5 * + A 2 v 1 * + v 3 * Γ ( γ 2 + 1 ) u + v 2 * + v 4 * Γ ( δ 2 + 1 ) v + v 5 * , ξ [ 1 , e ] , L 2 ( u , v ) ( ξ ) 1 e G 3 ( e , ν ) U 1 ( ν ) u ( ν ) + U 2 ( ν ) v ( ν ) + U 3 ( ν ) H I 1 + γ 1 u ( ν ) + U 4 ( ν ) H I 1 + δ 1 v ( ν ) + U 5 ( ν ) d ν ν + 1 e G 4 ( e , ν ) V 1 ( ν ) u ( ν ) + V 2 ( ν ) v ( ν ) + V 3 ( ν ) H I 1 + γ 2 u ( ν ) + V 4 ( ν ) H I 1 + δ 2 v ( ν ) + V 5 ( ν ) d ν ν u 1 * u + u 2 * v + u 3 * u Γ ( γ 1 + 1 ) + u 4 * v Γ ( δ 1 + 1 ) + u 5 * 1 e G 3 ( e , ν ) d ν ν + v 1 * u + v 2 * v + v 3 * u Γ ( γ 2 + 1 ) + v 4 * v Γ ( δ 2 + 1 ) + v 5 * 1 e G 4 ( e , ν ) d ν ν = A 3 u 1 * + u 3 * Γ ( γ 1 + 1 ) u + u 2 * + u 4 * Γ ( δ 1 + 1 ) v + u 5 * + A 4 v 1 * + v 3 * Γ ( γ 2 + 1 ) u + v 2 * + v 4 * Γ ( δ 2 + 1 ) v + v 5 * , ξ [ 1 , e ] .
Then, by (31), we deduce
L ( u , v ) Z ( A 1 + A 3 ) u 1 * + u 3 * Γ ( γ 1 + 1 ) u + u 2 * + u 4 * Γ ( δ 1 + 1 ) v + u 5 * + ( A 2 + A 4 ) v 1 * + v 3 * Γ ( γ 2 + 1 ) u + v 2 * + v 4 * Γ ( δ 2 + 1 ) v + v 5 * = ( A 1 + A 3 ) u 1 * + u 3 * Γ ( γ 1 + 1 ) + ( A 2 + A 4 ) v 1 * + v 3 * Γ ( γ 2 + 1 ) u + ( A 1 + A 3 ) u 2 * + u 4 * Γ ( δ 1 + 1 ) + ( A 2 + A 4 ) v 2 * + v 4 * Γ ( δ 2 + 1 ) v + ( A 1 + A 3 ) u 5 * + ( A 2 + A 4 ) v 5 * = Λ 1 u + Λ 2 v + ( A 1 + A 3 ) u 5 * + ( A 2 + A 4 ) v 5 * Λ 0 ( u , v ) Z + ( A 1 + A 3 ) u 5 * + ( A 2 + A 4 ) v 5 * Λ 0 r 0 + ( A 1 + A 3 ) u 5 * + ( A 2 + A 4 ) v 5 * r 0 .
So, L ( Ω ) Ω . Since the operator L is completely continuous, we can apply the Schauder fixed-point theorem to conclude the existence of a fixed point ( u , v ) S , with ( u , v ) Z r 0 . This fixed point serves as a positive solution to Problem (1),(2). □
The next theorem is based on the Guo–Krasnosel’skii fixed-point theorem (see [24]).
Theorem 3. 
Let ω ( 1 , e ) . We assume that ( I 1 ) and ( I 2 ) hold. In addition, we suppose that there exist two positive constants R 2 > R 1 > 0 and the constants λ 1 ( 0 , C 1 1 ] , λ 2 ( 0 , C 2 1 ] , λ 3 [ C ˜ 1 1 , ) , λ 4 [ C ˜ 2 1 , ) such that
( I 3 ) f ( ξ , u , v , x , y ) λ 3 R 1 2 , ξ [ ω , e ] , u , v 0 , u + v R 1 , x 0 , R 1 Γ ( γ 1 + 1 ) , y 0 , R 1 Γ ( δ 1 + 1 ) ; g ( ξ , u , v , x , y ) λ 4 R 1 2 , ξ [ ω , e ] , u , v 0 , u + v R 1 , x 0 , R 1 Γ ( γ 2 + 1 ) , y 0 , R 1 Γ ( δ 2 + 1 ) ;
( I 4 ) f ( ξ , u , v , x , y ) λ 1 R 2 2 , ξ [ 1 , e ] , u , v 0 , u + v R 2 , x 0 , R 2 Γ ( γ 1 + 1 ) , y 0 , R 2 Γ ( δ 1 + 1 ) ; g ( ξ , u , v , x , y ) λ 2 R 2 2 , ξ [ 1 , e ] , u , v 0 , u + v R 2 , x 0 , R 2 Γ ( γ 2 + 1 ) , y 0 , R 2 Γ ( δ 2 + 1 ) .
Then, Problem (1),(2) has at least one positive solution ( u ( ξ ) , v ( ξ ) ) , ξ [ 1 , e ] such that ( u , v ) S and R 1 ( u , v ) Z R 2 .
Proof. 
We define the set Ω 1 = { ( u , v ) Z , ( u , v ) Z < R 1 } . Then, for ( u , v ) S Ω 1 , we have u + v = R 1 , so u ( ξ ) + v ( ξ ) R 1 for all ξ [ 1 , e ] . Because u R 1 and v R 1 , by Lemma 6, we find | I 1 + γ i H u ( ν ) | R 1 Γ ( γ i + 1 ) and | I 1 + δ i H v ( ν ) | R 1 Γ ( δ i + 1 ) for all ν [ 1 , e ] and i = 1 , 2 . Then, by Lemma 4 and assumption ( I 3 ) , we deduce
L 1 ( u , v ) = sup ξ [ 1 , e ] | L 1 ( u , v ) ( ξ ) | = sup ξ [ 1 , e ] 1 e G 1 ( ξ , ν ) F u v ( ν ) d ν ν + 1 e G 2 ( ξ , ν ) G u v ( ν ) d ν ν inf ξ [ ω , e ] 1 e G 1 ( ξ , ν ) F u v ( ν ) d ν ν + 1 e G 2 ( ξ , ν ) G u v ( ν ) d ν ν inf ξ [ ω , e ] 1 e G 1 ( ξ , ν ) F u v ( ν ) d ν ν + inf ξ [ ω , e ] 1 e G 2 ( ξ , ν ) G u v ( ν ) d ν ν 1 e inf ξ [ ω , e ] G 1 ( ξ , ν ) F u v ( ν ) d ν ν + 1 e inf ξ [ ω , e ] G 2 ( ξ , ν ) G u v ( ν ) d ν ν ω e ( ln ω ) α 1 G 1 ( e , ν ) F u v ( ν ) d ν ν + ω e ( ln ω ) α 1 G 2 ( e , ν ) G u v ( ν ) d ν ν λ 3 R 1 2 ( ln ω ) α 1 ω e G 1 ( e , ν ) d ν ν + λ 4 R 1 2 ( ln ω ) α 1 ω e G 2 ( e , ν ) d ν ν = λ 3 R 1 A ˜ 1 2 ( ln ω ) α 1 + λ 4 R 1 A ˜ 2 2 ( ln ω ) α 1 = λ 3 A ˜ 1 + λ 4 A ˜ 2 2 ( ln ω ) α 1 R 1 ,
and
L 2 ( u , v ) = sup ξ [ 1 , e ] | L 2 ( u , v ) ( ξ ) | = sup ξ [ 1 , e ] 1 e G 3 ( ξ , ν ) F u v ( ν ) d ν ν + 1 e G 4 ( ξ , ν ) G u v ( ν ) d ν ν inf ξ [ ω , e ] 1 e G 3 ( ξ , ν ) F u v ( ν ) d ν ν + 1 e G 4 ( ξ , ν ) G u v ( ν ) d ν ν inf ξ [ ω , e ] 1 e G 3 ( ξ , ν ) F u v ( ν ) d ν ν + inf ξ [ ω , e ] 1 e G 4 ( ξ , ν ) G u v ( ν ) d ν ν 1 e inf ξ [ ω , e ] G 3 ( ξ , ν ) F u v ( ν ) d ν ν + 1 e inf ξ [ ω , e ] G 4 ( ξ , ν ) G u v ( ν ) d ν ν ω e ( ln ω ) β 1 G 3 ( e , ν ) F u v ( ν ) d ν ν + ω e ( ln ω ) β 1 G 4 ( e , ν ) G u v ( ν ) d ν ν λ 3 R 1 2 ( ln ω ) β 1 ω e G 3 ( e , ν ) d ν ν + λ 4 R 1 2 ( ln ω ) β 1 ω e G 4 ( e , ν ) d ν ν = λ 3 R 1 A ˜ 3 2 ( ln ω ) β 1 + λ 4 R 1 A ˜ 4 2 ( ln ω ) β 1 = λ 3 A ˜ 3 + λ 4 A ˜ 4 2 ( ln ω ) β 1 R 1 .
Then, by (32) and (33), we conclude
L ( u , v ) Z = L 1 ( u , v ) + L 2 ( u , v ) λ 3 A ˜ 1 + λ 4 A ˜ 2 2 ( ln ω ) α 1 + λ 3 A ˜ 3 + λ 4 A ˜ 4 2 ( ln ω ) β 1 R 1 = λ 3 ( A ˜ 1 ( ln ω ) α 1 + A ˜ 3 ( ln ω ) β 1 ) 2 + λ 4 ( A ˜ 2 ( ln ω ) α 1 + A ˜ 4 ( ln ω ) β 1 ) 2 R 1 = λ 3 C ˜ 1 2 + λ 4 C ˜ 2 2 R 1 1 2 + 1 2 R 1 = R 1 ,
and therefore,
L ( u , v ) Z ( u , v ) Z , ( u , v ) S Ω 1 .
We introduce now the set Ω 2 = { ( u , v ) S , ( u , v ) Z < R 2 } . Then, for ( u , v ) S Ω 2 , we find u + v = R 2 , so u ( ξ ) + v ( ξ ) R 2 for all ξ [ 1 , e ] . Therefore, by Lemma 4 and assumption ( I 4 ) , we obtain
L 1 ( u , v ) = sup ξ [ 1 , e ] | L 1 ( u , v ) ( ξ ) | sup ξ [ 1 , e ] 1 e G 1 ( ξ , ν ) F u v ( ν ) d ν ν + sup ξ [ 1 , e ] 1 e G 2 ( ξ , ν ) G u v ( ν ) d ν ν 1 e sup ξ [ 1 , e ] G 1 ( ξ , ν ) F u v ( ν ) d ν ν + 1 e sup ξ [ 1 , e ] G 2 ( ξ , ν ) G u v ( ν ) d ν ν 1 e G 1 ( e , ν ) F u v ( ν ) d ν ν + 1 e G 2 ( e , ν ) G u v ( ν ) d ν ν λ 1 R 2 2 1 e G 1 ( e , ν ) d ν ν + λ 2 R 2 2 1 e G 2 ( e , ν ) d ν ν = λ 1 R 2 2 A 1 + λ 2 R 2 2 A 2 = λ 1 A 1 2 + λ 2 A 2 2 R 2 ,
and
L 2 ( u , v ) = sup ξ [ 1 , e ] | L 2 ( u , v ) ( ξ ) | sup ξ [ 1 , e ] 1 e G 3 ( ξ , ν ) F u v ( ν ) d ν ν + sup ξ [ 1 , e ] 1 e G 4 ( ξ , ν ) G u v ( ν ) d ν ν 1 e sup ξ [ 1 , e ] G 3 ( ξ , ν ) F u v ( ν ) d ν ν + 1 e sup ξ [ 1 , e ] G 4 ( ξ , ν ) G u v ( ν ) d ν ν 1 e G 3 ( e , ν ) F u v ( ν ) d ν ν + 1 e G 4 ( e , ν ) G u v ( ν ) d ν ν λ 1 R 2 2 1 e G 3 ( e , ν ) d ν ν + λ 2 R 2 2 1 e G 4 ( e , ν ) d ν ν = λ 1 R 2 2 A 3 + λ 2 R 2 2 A 4 = λ 1 A 3 2 + λ 2 A 4 2 R 2 .
Then, by (35) and (36), we conclude
L ( u , v ) Z = L 1 ( u , v ) + L 2 ( u , v ) λ 1 A 1 + λ 2 A 2 2 R 2 + λ 1 A 3 + λ 2 A 4 2 R 2 = λ 1 ( A 1 + A 3 ) 2 + λ 2 ( A 2 + A 4 ) 2 R 2 = λ 1 C 1 2 + λ 2 C 2 2 R 2 1 2 + 1 2 R 2 = R 2 ,
that is,
L ( u , v ) Z ( u , v ) Z , ( u , v ) S Ω 2 .
The operator L is completely continuous. Therefore, by (34) and (37) and the Guo–Krasnosel’skii fixed-point theorem, we deduce that operator L has a fixed point ( u , v ) S ( Ω ¯ 2 Ω 1 ) , which is a positive solution of Problem (1),(2). This solution satisfies the inequalities R 1 ( u , v ) Z R 2 , u ( ξ ) ( ln ξ ) α 1 u , v ( ξ ) ( ln ξ ) β 1 v for all ξ [ 1 , e ] ; because u + v R 1 , we find u > 0 or v > 0 , that is, u ( ξ ) > 0 for all ξ ( 1 , e ] or v ( ξ ) > 0 for all ξ ( 1 , e ] . □
In the last result, we employ the Leggett–Williams fixed-point theorem (see Theorem 3.3 in [25]), and we prove that Problem (1),(2) has at least three positive solutions.
Theorem 4. 
Let ω ( 1 , e ) . We assume that ( I 1 ) and ( I 2 ) hold. In addition, we suppose that there exist positive constants 0 < R 1 < R 2 < R 3 and the constants λ 1 ( 0 , C 1 1 ] , λ 2 ( 0 , C 2 1 ] , λ 3 [ C ˜ 1 1 , ) , λ 4 [ C ˜ 2 1 , ) , λ 5 ( 0 , C 1 1 ] , λ 6 ( 0 , C 2 1 ] such that
( I 5 ) f ( ξ , u , v , x , y ) < λ 1 R 1 2 , ξ [ 1 , e ] , u , v 0 , u + v R 1 , x 0 , R 1 Γ ( γ 1 + 1 ) , y 0 , R 1 Γ ( δ 1 + 1 ) ; g ( ξ , u , v , x , y ) < λ 2 R 1 2 , ξ [ 1 , e ] , u , v 0 , u + v R 1 , x 0 , R 1 Γ ( γ 2 + 1 ) , y 0 , R 1 Γ ( δ 2 + 1 ) ;
( I 6 ) f ( ξ , u , v , x , y ) > λ 3 R 2 2 , ξ [ ω , e ] , u , v 0 , R 2 u + v R 3 , x 0 , R 3 Γ ( γ 1 + 1 ) , y 0 , R 3 Γ ( δ 1 + 1 ) ; g ( ξ , u , v , x , y ) > λ 4 R 2 2 , ξ [ ω , e ] , u , v 0 , R 2 u + v R 3 , x 0 , R 3 Γ ( γ 2 + 1 ) , y 0 , R 3 Γ ( δ 2 + 1 ) ;
( I 7 ) f ( ξ , u , v , x , y ) λ 5 R 3 2 , ξ [ 1 , e ] , u , v 0 , u + v R 3 , x 0 , R 3 Γ ( γ 1 + 1 ) , y 0 , R 3 Γ ( δ 1 + 1 ) ; g ( ξ , u , v , x , y ) λ 6 R 3 2 , ξ [ 1 , e ] , u , v 0 , u + v R 3 , x 0 , R 3 Γ ( γ 2 + 1 ) , y 0 , R 3 Γ ( δ 2 + 1 ) .
Then, Problem (1),(2) has at least three positive solutions ( u i ( ξ ) , v i ( ξ ) ) , ξ [ 1 , e ] , i = 1 , , 3 , such that ( u i , v i ) S , i = 1 , , 3 , ( u 1 , v 1 ) Z   <   R 1 , ( u 3 , v 3 ) Z   >   R 1 , inf ξ [ ω , e ] ( u 2 ( ξ ) + v 2 ( ξ ) ) > R 2 , and inf ξ [ ω , e ] ( u 3 ( ξ ) + v 3 ( ξ ) ) < R 2 .
Proof. 
We show firstly that L : S ¯ R 3 S ¯ R 3 , where S ¯ R 3 is the closure of the set S R 3 = { ( u , v ) S , ( u , v ) Z < R 3 } . Indeed, for any ( u , v ) S ¯ R 3 , we have ( u , v ) Z R 3 , and then, u + v R 3 or 0 u ( ξ ) + v ( ξ ) R 3 for all ξ [ 1 , e ] . By using ( I 7 ) and Lemma 4, we deduce
L 1 ( u , v ) = sup ξ [ 1 , e ] | L 1 ( u , v ) ( ξ ) | 1 e G 1 ( e , ν ) F u v ( ν ) d ν ν + 1 e G 2 ( e , ν ) G u v ( ν ) d ν ν λ 5 R 3 2 1 e G 1 ( e , ν ) d ν ν + λ 6 R 3 2 1 e G 2 ( e , ν ) d ν ν = λ 5 R 3 2 A 1 + λ 6 R 3 2 A 2 = λ 5 A 1 2 + λ 6 A 2 2 R 3 ,
and
L 2 ( u , v ) = sup ξ [ 1 , e ] | L 2 ( u , v ) ( ξ ) | 1 e G 3 ( e , ν ) F u v ( ν ) d ν ν + 1 e G 4 ( e , ν ) G u v ( ν ) d ν ν λ 5 R 3 2 1 e G 3 ( e , ν ) d ν ν + λ 6 R 3 2 1 e G 4 ( e , ν ) d ν ν = λ 5 R 3 2 A 3 + λ 6 R 3 2 A 4 = λ 5 A 3 2 + λ 6 A 4 2 R 3 .
Then, by (38) and (39), we find
L ( u , v ) Z λ 5 ( A 1 + A 3 ) 2 + λ 6 ( A 2 + A 4 ) 2 R 3 A 1 + A 3 2 C 1 + A 2 + A 4 2 C 2 R 3 = 1 2 + 1 2 R 3 = R 3 , ( u , v ) S ¯ R 3 .
Therefore, L ( S ¯ R 3 ) S ¯ R 3 .
We consider now R ˜ 3 ( R 2 , R 3 ) , and we define the concave nonnegative continuous functional Φ on S by Φ ( u , v ) = inf ξ [ ω , e ] ( u ( ξ ) + v ( ξ ) ) , ( u , v ) S . We note that Φ ( u , v ) ( u , v ) for all ( u , v ) S ¯ R 3 .
Next, we verify the conditions ( 1 ) ( 3 ) of Theorem 3.3 from [25], with E = Z , K = S , A = L , d = R 1 , a = R 2 , c = R 3 , b = R ˜ 3 , α = Φ , K c = S ¯ R 3 , and S ( α , a , b ) = S ( Φ , R 2 , R ˜ 3 ) .
Firstly, we verify condition ( 1 ) . We define the element ( u 0 ( ξ ) , v 0 ( ξ ) ) = ( R 2 + R ˜ 3 4 , R 2 + R ˜ 3 4 ) , ξ [ 1 , e ] . Because u 0 ( ξ ) 0 , v 0 ( ξ ) 0 for all ξ [ 1 , e ] , ( u 0 , v 0 ) Z = R 2 + R ˜ 3 2 < R ˜ 3 , and Φ ( u 0 , v 0 ) = R 2 + R ˜ 3 2 > R 2 , we conclude that ( u 0 , v 0 ) { ( u , v ) ; ( u , v ) S ( Φ , R 2 , R ˜ 3 ) , Φ ( u , v ) > R 2 } . Now, let ( u , v ) S ( Φ , R 2 , R ˜ 3 ) , that is, ( u , v ) S , Φ ( u , v ) R 2 and ( u , v ) Z R ˜ 3 . Then, u ( ξ ) + v ( ξ ) R ˜ 3 for all ξ [ 1 , e ] and inf ξ [ ω , e ] ( u ( ξ ) + v ( ξ ) ) R 2 . Therefore, by ( I 6 ) , Lemma 4 and Remark 1, we deduce
Φ ( L ( u , v ) ) = inf ξ [ ω , e ] ( L 1 ( u , v ) ( ξ ) + L 2 ( u , v ) ( ξ ) ) inf ξ [ ω , e ] L 1 ( u , v ) ( ξ ) + inf ξ [ ω , e ] L 2 ( u , v ) ( ξ ) inf ξ [ ω , e ] 1 e G 1 ( ξ , ν ) F u v ( ν ) d ν ν + inf ξ [ ω , e ] 1 e G 2 ( ξ , ν ) G u v ( ν ) d ν ν + inf ξ [ ω , e ] 1 e G 3 ( ξ , ν ) F u v ( ν ) d ν ν + inf ξ [ ω , e ] 1 e G 4 ( ξ , ν ) G u v ( ν ) d ν ν 1 e inf ξ [ ω , e ] G 1 ( ξ , ν ) F u v ( ν ) d ν ν + 1 e inf ξ [ ω , e ] G 2 ( ξ , ν ) G u v ( ν ) d ν ν + 1 e inf ξ [ ω , e ] G 3 ( ξ , ν ) F u v ( ν ) d ν ν + 1 e inf ξ [ ω , e ] G 4 ( ξ , ν ) G u v ( ν ) d ν ν ω e ( ln ω ) α 1 G 1 ( e , ν ) F u v ( ν ) d ν ν + ω e ( ln ω ) α 1 G 2 ( e , ν ) G u v ( ν ) d ν ν + ω e ( ln ω ) β 1 G 3 ( e , ν ) F u v ( ν ) d ν ν + ω e ( ln ω ) β 1 G 4 ( e , ν ) G u v ( ν ) d ν ν > λ 3 R 2 2 ( ln ω ) α 1 ω e G 1 ( e , ν ) d ν ν + λ 4 R 2 2 ( ln ω ) α 1 ω e G 2 ( e , ν ) d ν ν + λ 3 R 2 2 ( ln ω ) β 1 ω e G 3 ( e , ν ) d ν ν + λ 4 R 2 2 ( ln ω ) β 1 ω e G 4 ( e , ν ) d ν ν = λ 3 R 2 2 ( ln ω ) α 1 A ˜ 1 + λ 4 R 2 2 ( ln ω ) α 1 A ˜ 2 + λ 3 R 2 2 ( ln ω ) β 1 A ˜ 3 + λ 4 R 2 2 ( ln ω ) β 1 A ˜ 4 R 2 ( ln ω ) α 1 A ˜ 1 2 C ˜ 1 + R 2 ( ln ω ) α 1 A ˜ 2 2 C ˜ 2 + R 2 ( ln ω ) β 1 A ˜ 3 2 C ˜ 1 + R 2 ( ln ω ) β 1 A ˜ 4 2 C ˜ 2 = A ˜ 1 ( ln ω ) α 1 + A ˜ 3 ( ln ω ) β 1 2 C ˜ 1 + A ˜ 2 ( ln ω ) α 1 + A ˜ 4 ( ln ω ) β 1 2 C ˜ 2 R 2 = C ˜ 1 2 C ˜ 1 + C ˜ 2 2 C ˜ 2 R 2 = R 2 .
Therefore, Φ ( L ( u , v ) ) > R 2 , and we have condition ( 1 ) of Theorem 3.3 from [25].
We verify now condition ( 2 ) . For ( u , v ) S ¯ R 1 , we prove that L ( u , v ) Z < R 1 . For this, let ( u , v ) S ¯ R 1 . Using ( I 5 ) and similar arguments than those used in the proof of Equations (38) and (39), we find
L 1 ( u , v ) < λ 1 A 1 2 + λ 2 A 2 2 R 1 , L 2 ( u , v ) < λ 1 A 3 2 + λ 2 A 4 2 R 1 ,
and then,
L ( u , v ) Z < A 1 + A 3 2 C 1 + A 2 + A 4 2 C 2 R 1 = R 1 .
So, we have condition ( 2 ) of Theorem 3.3 from [25].
Finally, we verify condition ( 3 ) , that is, Φ ( L ( u , v ) ) > R 2 for all ( u , v ) S ( Φ , R 2 , R 3 ) and L ( u , v ) Z > R ˜ 3 . For this, let ( u , v ) S ( Φ , R 2 , R 3 ) and L ( u , v ) Z > R ˜ 3 . By using similar arguments as those from ( 1 ) , we obtain that Φ ( L ( u , v ) ) > R 2 ; that is, condition ( 3 ) of Theorem 3.3 from [25] is also satisfied.
The operator L is completely continuous. Then, by using the Leggett–Williams fixed-point theorem, we conclude that Problem (1),(2) has at least three positive solutions ( u i ( ξ ) , v i ( ξ ) ) , ξ [ 1 , e ] , with ( u i , v i ) S , i = 1 , , 3 , and ( u 1 , v 1 ) Z < R 1 , ( u 3 , v 3 ) Z > R 1 , Φ ( u 2 , v 2 ) = inf ξ [ ω , e ] ( u 2 ( ξ ) + v 2 ( ξ ) ) > R 2 , and Φ ( u 3 , v 3 ) = inf ξ [ ω , e ] ( u 3 ( ξ ) + v 3 ( ξ ) ) < R 2 . □

4. Examples

Let α = 9 4 , n = 3 , β = 11 3 , m = 4 , γ 1 = 15 26 , δ 1 = 31 7 , γ 2 = 42 5 , δ 2 = 29 72 , ς = 8 7 , ϑ = 12 5 , a = b = c = d = 1 , ϱ 1 = 4 9 , σ 1 = 0 , η 1 = 2 3 , θ 1 = 19 12 .
We also consider the functions
H 1 ( ν ) = 1 , ν [ 1 , 3 2 ) , 7 6 , ν [ 3 2 , 2 ) , 25 49 ( ν 1 ) 7 / 5 + 193 294 , ν [ 2 , e ] , K 1 ( ν ) = 2 , ν [ 1 , 2 ) , 7 3 , ν [ 2 , 5 2 ) , 3 4 ( ν 2 ) 4 / 3 3 8 2 3 + 7 3 , ν [ 5 2 , e ] , P 1 ( ν ) = 12 5 ( ν 1 3 ) 5 / 4 , ν [ 1 , 6 5 ) , 52 25 ( 13 15 ) 1 / 4 , ν [ 6 5 , 15 7 ) , 52 25 ( 13 15 ) 1 / 4 + 1 2 , ν [ 15 7 , e ] , Q 1 ( ν ) = 8 9 ( ν 1 4 ) 9 / 11 , ν [ 1 , 4 3 ) , 8 9 ( 13 12 ) 9 / 11 , ν [ 4 3 , e ] .
We consider the system of Hadamard fractional differential equations
D 1 + 9 / 4 H u ( ξ ) + f ( ξ , u ( ξ ) , v ( ξ ) , H I 1 + 15 / 26 u ( ξ ) , H I 1 + 31 / 7 v ( ξ ) ) = 0 , ξ [ 1 , e ] , D 1 + 11 / 3 H v ( ξ ) + g ( ξ , u ( ξ ) , v ( ξ ) , H I 1 + 42 / 5 u ( ξ ) , H I 1 + 29 / 72 v ( ξ ) ) = 0 , ξ [ 1 , e ] ,
subject to the boundary conditions
u ( 1 ) = u ( 1 ) = 0 , D 1 + 8 / 7 H u ( e ) = 1 6 D 1 + 4 / 9 H u 3 2 + 5 7 2 e ( ν 1 ) 2 / 5 D 1 + 4 / 9 H u ( ν ) d ν + 1 3 v ( 2 ) + 5 / 2 e ( ν 2 ) 1 / 3 v ( ν ) d ν , v ( 1 ) = v ( 1 ) = v ( 1 ) = 0 , D 1 + 12 / 5 H v ( e ) = 3 1 6 / 5 ν 1 3 1 / 4 D 1 + 2 / 3 H u ( ν ) d ν + 1 2 D 1 + 2 / 3 H u 15 7 + 8 11 1 4 / 3 ν 1 4 2 / 11 D 1 + 19 / 12 H v ( ν ) d ν .
We obtain Ξ 1 0.47514774 , Ξ 2 0.29121878 , Ξ 3 0.71367096 , Ξ 4 4.31936708 , and Δ 1.8445031 > 0 . So, assumption ( I 1 ) is satisfied. We also find
g 1 ( ξ , ν ) = 1 Γ ( 9 / 4 ) ( ln ξ ) 5 / 4 ln e ν 3 / 28 ln ξ ν 5 / 4 , 1 ν ξ e , ( ln ξ ) 5 / 4 ln e ν 3 / 28 , 1 ξ ν e ,
g 2 ( ξ , ν ) = 1 Γ ( 11 / 3 ) ( ln ξ ) 8 / 3 ln e ν 4 / 15 ln ξ ν 8 / 3 , 1 ν ξ e , ( ln ξ ) 8 / 3 ln e ν 4 / 15 , 1 ξ ν e ,
g 11 ( ξ , ν ) = 1 Γ ( 65 / 36 ) ( ln ξ ) 29 / 36 ln e ν 3 / 28 ln ξ ν 29 / 36 , 1 ν ξ e , ( ln ξ ) 29 / 36 ln e ν 3 / 28 , 1 ξ ν e ,
g 21 ( ξ , ν ) = 1 Γ ( 19 / 12 ) ( ln ξ ) 7 / 12 ln e ν 3 / 28 ln ξ ν 7 / 12 , 1 ν ξ e , ( ln ξ ) 7 / 12 ln e ν 3 / 28 , 1 ξ ν e ,
g 31 ( ξ , ν ) = 1 Γ ( 11 / 3 ) ( ln ξ ) 8 / 3 ln e ν 4 / 15 ln ξ ν 8 / 3 , 1 ν ξ e , ( ln ξ ) 8 / 3 ln e ν 4 / 15 , 1 ξ ν e ,
g 41 ( ξ , ν ) = 1 Γ ( 25 / 12 ) ( ln ξ ) 13 / 12 ln e ν 4 / 15 ln ξ ν 13 / 12 , 1 ν ξ e , ( ln ξ ) 13 / 12 ln e ν 4 / 15 , 1 ξ ν e ,
and
G 1 ( ξ , ν ) = g 1 ( ξ , ν ) + ( ln ξ ) 5 / 4 Δ Ξ 4 1 6 g 11 3 2 , ν + 5 7 2 e ( ρ 1 ) 2 / 5 g 11 ( ρ , ν ) d ρ + Ξ 2 3 1 6 / 5 ρ 1 3 1 / 4 g 21 ( ρ , ν ) d ρ + 1 2 g 21 15 7 , ν , G 2 ( ξ , ν ) = ( ln ξ ) 5 / 4 Δ Ξ 4 1 3 g 31 ( 2 , ν ) + 5 / 2 e ( ρ 2 ) 1 / 3 g 31 ( ρ , ν ) d ρ + Ξ 2 8 11 1 4 / 3 ρ 1 4 2 / 11 g 41 ( ρ , ν ) d ρ , G 3 ( ξ , ν ) = ( ln ξ ) 8 / 3 Δ Ξ 3 1 6 g 11 3 2 , ν + 5 7 2 e ( ρ 1 ) 2 / 5 g 11 ( ρ , ν ) d ρ + Ξ 1 3 1 6 / 5 ρ 1 3 1 / 4 g 21 ( ρ , ν ) d ρ + 1 2 g 21 15 7 , ν , G 4 ( ξ , ν ) = g 2 ( ξ , ν ) + ( ln ξ ) 8 / 3 Δ Ξ 3 1 3 g 31 ( 2 , ν ) + 5 / 2 e ( ρ 2 ) 1 / 3 g 31 ( ρ , ν ) d ρ + Ξ 1 8 11 1 4 / 3 ρ 1 4 2 / 11 g 41 ( ρ , ν ) d ρ ,
for all ξ , ν [ 1 , e ] .
We take ω = 2 . After some complex computations in Mathematica program, which include computations of some double integrals, we deduce A 1 = 1 e G 1 ( e , ν ) d ν ν 1.12980524 , A 2 = 1 e G 2 ( e , ν ) d ν ν 0.26094395 , A 3 = 1 e G 3 ( e , ν ) d ν ν 0.18146763 , A 4 = 1 e G 4 ( e , ν ) d ν ν 0.14998244 , A ˜ 1 = 2 e G 1 ( e , ν ) d ν ν 0.52665008 , A ˜ 2 = 2 e G 2 ( e , ν ) d ν ν 0.03066644 , A ˜ 3 = 2 e G 3 ( e , ν ) d ν ν 0.09036931 , A ˜ 4 = 2 e G 4 ( e , ν ) d ν ν 0.04949263 , C 1 1.31127287 , C 2 0.41092639 , C ˜ 1 0.36709016 , C ˜ 2 0.03801933 .
Example 1. 
We consider the functions
f ( ξ , u , v , x , y ) = ξ 1 / 2 e 3 ξ + 2 4 sin 2 ( u + 1 ) + 2 ( ξ + 3 ) 2 e 5 ξ + 2 5 v 2 + 4 + 2 ln ξ ξ + 7 x + ( ξ 3 / 4 + 1 ) y 9 ( y 2 + 1 ) + ξ 17 / 4 ξ 2 + 3 , g ( ξ , u , v , x , y ) = 3 ( ξ + 1 ) 7 ξ arctan u + e 3 ξ 4 ( ξ + 2 ) 5 cos 2 v + ξ 1 / 3 1 2 ( ξ + 6 ) x 2 + 1 + e ξ y 8 ( 1 + y ) + ( ξ 1 ) 19 / 5 ξ 2 + 4 ,
for all ξ [ 1 , e ] and u , v , x , y 0 . We obtain the following inequalities
| f ( ξ , x 1 , x 2 , x 3 , x 4 ) f ( ξ , y 1 , y 2 , y 3 , y 4 ) | i = 1 4 X i ( ξ ) | x i y i | , | g ( ξ , x 1 , x 2 , x 3 , x 4 ) g ( ξ , y 1 , y 2 , y 3 , y 4 ) | i = 1 4 Y i ( ξ ) | x i y i | ,
for all ξ [ 1 , e ] and x i , y i R + , i = 1 , , 4 , where
X 1 ( ξ ) = ξ 1 / 2 e 3 ξ + 2 2 , X 2 ( ξ ) = 2 ( ξ + 3 ) 2 e 5 ξ + 2 5 , X 3 ( ξ ) = 2 ln ξ ξ + 7 , X 4 ( ξ ) = ξ 3 / 4 + 1 9 , Y 1 ( ξ ) = 3 ( ξ + 1 ) 7 ξ , Y 2 ( ξ ) = e 3 ξ 2 ( ξ + 2 ) 5 , Y 3 ( ξ ) = ξ 1 / 3 1 2 ( ξ + 6 ) , Y 4 ( ξ ) = e ξ 8 , ξ [ 1 , e ] .
The functions X i , Y i , i = 1 , , 4 , are continuous and satisfy the condition (24). In addition, we find x 1 * 0.18393972 , x 2 * 0.31863724 , x 3 * 0.20579769 , x 4 * 0.34633334 , y 1 * 0.85714286 , y 2 * 0.74414061 , y 3 * 0.02268867 , y 4 * 0.04598493 , Υ 1 0.89624512 , Υ 2 0.75463775 , Υ 0 = Υ 1 < 1 . So, assumption (25) is verified. Then, by Theorem 1, we conclude that Problem (40),(41) with the nonlinearities (42) has a unique positive solution ( u * ( ξ ) , v * ( ξ ) ) , ξ [ 1 , e ] .
Example 2. 
We consider the functions
f ( ξ , u , v , x , y ) = ( 2 ξ + 3 ) 1 / 4 e 5 ξ + 2 u 7 + ( ξ 1 ) 3 v 4 ( ξ + 6 ) ( v 2 + 2 ) + ( ξ + 2 ) x 9 ( 1 + 2 x ) + e ξ y 5 + ( ξ + 1 ) 15 / 4 ξ 2 + 7 , g ( ξ , u , v , x , y ) = ξ 3 / 5 u 4 ( ξ + 1 ) ( 1 + 2 u 2 ) + ( ξ + 2 ) e ξ + 3 v 6 ( ξ 2 + 5 ) + 2 ξ x ξ 3 + 4 + y ( ξ + 1 ) 3 ( 1 + 4 y ) + ξ 8 / 3 2 ξ + 5 ,
for all ξ [ 1 , e ] and u , v , x , y 0 . We obtain the inequalities
f ( ξ , x 1 , x 2 , x 3 , x 4 ) i = 1 4 U i ( ξ ) x i + U 5 ( ξ ) , g ( ξ , x 1 , x 2 , x 3 , x 4 ) i = 1 4 V i ( ξ ) x i + V 5 ( ξ ) ,
for all ξ [ 1 , e ] , x i R + , i = 1 , , 4 , where
U 1 ( ξ ) = ( 2 ξ + 3 ) 1 / 4 e 5 ξ + 2 7 , U 2 ( ξ ) = ( ξ 1 ) 3 8 ( ξ + 6 ) , U 3 ( ξ ) = ξ + 2 9 , U 4 ( ξ ) = e ξ 5 , U 5 ( ξ ) = ( ξ + 1 ) 15 / 4 ξ 2 + 7 , V 1 ( ξ ) = ξ 3 / 5 4 ( ξ + 1 ) , V 2 ( ξ ) = ( ξ + 2 ) e ξ + 3 6 ( ξ 2 + 5 ) , V 3 ( ξ ) = 2 ξ ξ 3 + 4 , V 4 ( ξ ) = 1 ( ξ + 1 ) 3 , V 5 ( ξ ) = ξ 8 / 3 2 ξ + 5 , ξ [ 1 , e ] .
The functions U i , V i , i = 1 , , 5 , are continuous and satisfy the condition (29). In addition, we find u 1 * 0.01063558 , u 2 * 0.07273816 , u 3 * 0.52425354 , u 4 * 3.03085245 , u 5 * 9.56646165 , v 1 * 0.12754245 , v 2 * 0.61575467 , v 3 * 0.41997368 , v 4 * = 0.125 , v 5 * 1.37898992 , Λ 1 0.83778721 , Λ 2 0.491456 , Λ 0 = Λ 1 < 1 . So, Assumption (30) is satisfied. Then, by Theorem 2, we deduce that Problem (40),(41) with the functions (43) has at least one positive solution ( u ( ξ ) , v ( ξ ) ) , ξ [ 1 , e ] .
Example 3. 
We consider the functions
f ( ξ , u , v , x , y ) = ( u + v ) 3 21 + 1 30 sin 2 x + 1 18 arctan y + 2 ( ξ 2 + 3 ) 19 ( ξ + 5 ) , g ( ξ , u , v , x , y ) = 1 4 e 2 ( u + v ) + x 3 + y 3 8 + 3 ( ξ + 2 ) 5 ( ξ 2 + 6 ) ,
for all ξ [ 1 , e ] , u , v , x , y R + . The assumption ( I 2 ) is satisfied. We choose R 1 = 1 50 , R 2 = 1 , λ 1 = 1 2 < C 1 1 0.76261778 , λ 2 = 2 < C 2 1 2.43352586 , λ 3 = 3 > C ˜ 1 1 2.72412644 , and λ 4 = 30 > C ˜ 2 1 26.30241043 .
Then, we obtain
f ( ξ , u , v , x , y ) min ξ [ 2 , e ] 2 ( ξ 2 + 3 ) 19 ( ξ + 5 ) 0.10526316 λ 3 R 1 2 0.03 , ξ [ 2 , e ] , u , v 0 , u + v 1 50 ; x 0 , 1 50 Γ ( 41 / 26 ) , y 0 , 1 50 Γ ( 38 / 7 ) , g ( ξ , u , v , x , y ) 1 4 e 1 / 25 + min ξ [ 2 , e ] 3 ( ξ + 2 ) 5 ( ξ 2 + 6 ) 0.45163639 λ 4 R 1 2 = 0.3 , ξ [ 2 , e ] , u , v 0 , u + v 1 50 , x 0 , 1 50 Γ ( 47 / 5 ) , y 0 , 1 50 Γ ( 101 / 72 ) .
So, assumption ( I 3 ) is satisfied. In addition, we find
f ( ξ , u , v , x , y ) 1 21 + 1 30 + 1 18 arctan 1 Γ ( 38 / 7 ) + max ξ [ 1 , e ] 2 ( ξ 2 + 3 ) 19 ( ξ + 5 ) 0.22383002 λ 1 R 2 2 = 0.25 , ξ [ 1 , e ] , u , v 0 , u + v 1 , x 0 , 1 Γ ( 41 / 26 ) , y 0 , 1 Γ ( 38 / 7 ) , g ( ξ , u , v , x , y ) 1 4 + 1 3 Γ ( 47 / 5 ) + 1 8 1 Γ ( 101 / 72 ) 3 + max ξ [ 1 , e ] 3 ( ξ + 2 ) 5 ( ξ 2 + 6 ) 0.68716505 λ 2 R 2 2 = 1 , ξ [ 1 , e ] , u , v 0 , u + v 1 , x 0 , 1 Γ ( 47 / 5 ) , y 0 , 1 Γ ( 101 / 72 ) .
So, assumption ( I 4 ) is also satisfied. By Theorem 3, we conclude that Problem (40),(41) with the nonlinearities (44) has at least one positive solution ( u ( ξ ) , v ( ξ ) ) , ξ [ 1 , e ] , such that 1 50 u + v 1 and u ( ξ ) ( ln ξ ) 5 / 4 u , v ( ξ ) ( ln ξ ) 8 / 3 v for all ξ [ 1 , e ] .

5. Conclusions

Our paper investigates the positive solutions of the system of Hadamard fractional differential equations (1), focusing on their existence, uniqueness, and multiplicity. These equations include fractional integral terms and are subject to boundary conditions (2) that involve various Hadamard fractional derivatives and Riemann–Stieltjes integrals. These coupled boundary conditions are general and involve the dependence of the fractional derivatives of u and v at the point e on different derivatives of both functions u and v. In our main findings, we employed several fixed-point theorems, such as the Banach contraction mapping principle, the Schauder fixed-point theorem, the Guo–Krasnosel’skii fixed-point theorem, and the Leggett–Williams fixed-point theorem.

Author Contributions

Conceptualization, R.L.; formal analysis, A.T. and R.L.; methodology, A.T. and R.L. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Data Availability Statement

No new data were created or analyzed in this study. Data sharing is not applicable to this article.

Acknowledgments

The authors thank the referees for their valuable comments and suggestions.

Conflicts of Interest

The authors declare no conflicts of interest.

References

  1. Luca, R.; Tudorache, A. On a system of Hadamard fractional differential equations with nonlocal boundary conditions on an infinite interval. Fractal Fract. 2023, 7, 458. [Google Scholar] [CrossRef]
  2. Tudorache, A.; Luca, R. Positive solutions for a system of Hadamard fractional boundary value problems on an infinite interval. Axioms 2023, 12, 793. [Google Scholar] [CrossRef]
  3. Tudorache, A.; Luca, R. Systems of Hilfer-Hadamard fractional differential equations with nonlocal coupled boundary conditions. Fractal Fract. 2023, 7, 816. [Google Scholar] [CrossRef]
  4. Malki, Z.; Berhoun, F.; Ouahab, A. System of boundary random fractional differential equations via Hadamard derivative. Annal. Univ. Paedagog. Cracoviensis Studia Math. 2021, 20, 17–41. [Google Scholar] [CrossRef]
  5. Bohner, M.; Domoshnitsky, A.; Padhi, S.; Srivastava, S.N. Existence of solutions by coincidence degree theory for Hadamard fractional differential equations at resonance. Turk. J. Math. 2024, 48, 296–306. [Google Scholar] [CrossRef]
  6. Garra, R.; Mainardi, F.; Spada, G. A generalization of the Lomnitz logarithmic creep law via Hadamard fractional calculus. Chaos Solitons Fractals 2017, 102, 333–338. [Google Scholar] [CrossRef]
  7. Garra, R.; Orsingher, E.; Polito, F. A note on Hadamard fractional differential equations with varying coefficients and their applications in probability. Mathematics 2018, 6, 4. [Google Scholar] [CrossRef]
  8. Ahmad, B.; Alsaedi, A.; Ntouyas, S.K.; Tariboon, J. Hadamard-Type Fractional Differential Equations, Inclusions and Inequalities; Springer: Cham, Switzerland, 2017. [Google Scholar]
  9. Adjabi, Y.; Samei, M.E.; Matar, M.M.; Alzabut, J. Langevin differential equation in frame of ordinary and Hadamard fractional derivatives under three point boundary conditions. AIMS Math. 2021, 6, 2796–2843. [Google Scholar] [CrossRef]
  10. Ardjouni, A. Existence and uniqueness of positive solutions for nonlinear Caputo-Hadamard fractional differential equations. Proyecciones J. Math. 2021, 40, 139–152. [Google Scholar] [CrossRef]
  11. Fan, E.; Li, C.; Li, Z. Numerical approaches to Caputo-Hadamard fractional derivatives with applications to long-term integration of fractional differential systems. Commun. Nonlinear Sci. Numer. Simul. 2022, 106, 106096. [Google Scholar] [CrossRef]
  12. Graef, J.R.; Grace, S.R.; Tunc, E. Asymptotic behavior of solutions of nonlinear fractional differential equations with Caputo-type Hadamard derivatives. Fract. Calc. Appl. Anal. 2017, 20, 71–87. [Google Scholar] [CrossRef]
  13. Hammad, H.A.; Aydi, H.; Kattan, D.A. Integro-differential equations implicated with Caputo-Hadamard derivatives under nonlocal boundary constraints. Phys. Scr. 2024, 99, 025207. [Google Scholar] [CrossRef]
  14. Hristova, S.; Benkerrouche, A.; Souid, M.S.; Hakem, A. Boundary value problems of Hadamard fractional differential equations of variable order. Symmetry 2021, 13, 896. [Google Scholar] [CrossRef]
  15. Jiang, J.; O’Regan, D.; Xu, J.; Fu, Z. Positive solutions for a system of nonlinear Hadamard fractional differential equations involving coupled integral boundary conditions. J. Ineq. Appl. 2019, 2019, 204. [Google Scholar] [CrossRef]
  16. Kilbas, A.A. Hadamard-type fractional calculus. J. Korean Math. Soc. 2001, 38, 1191–1204. [Google Scholar]
  17. Li, C. On the nonlinear Hadamard-type integro-differential equation. Fixed Point Theory Algorithm Sci. Eng. 2021, 2021, 7. [Google Scholar] [CrossRef]
  18. Li, C.; Li, Z. Stability and logarithmic decay of the solution to Hadamard-type fractional differential equation. J. Nonlinear Sci. 2021, 31, 1–60. [Google Scholar] [CrossRef]
  19. Liu, W.; Liu, L. Properties of Hadamard fractional integral and its application. Fractal Fract. 2022, 6, 670. [Google Scholar] [CrossRef]
  20. Ma, Q.; Ma, C.H.; Wang, J. A Lyapunov-type inequality for a fractional differential equation with Hadamard derivative. J. Math. Ineq. 2017, 11, 135–141. [Google Scholar] [CrossRef]
  21. Nain, A.K.; Vats, R.K.; Kumar, A. Caputo-Hadamard fractional differential equation with impulsive boundary conditions. J. Math. Model. 2021, 9, 93–106. [Google Scholar]
  22. Zhu, H.; Ru, Y.; Wang, F. Analysis of solutions for the fractional differential equation with Hadamard-type. Open Math. 2023, 21, 20230131. [Google Scholar] [CrossRef]
  23. Granas, A.; Dugundji, J. Fixed Point Theory; Springer: New York, NY, USA, 2003. [Google Scholar]
  24. Guo, D.; Lakshmikantham, V. Nonlinear Problems in Abstract Cones; Academic Press: New York, NY, USA, 1988. [Google Scholar]
  25. Leggett, R.; Williams, L. Multiple positive fixed points of nonlinear operators on ordered Banach spaces. Indiana Univ. Math. J. 1979, 28, 673–688. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Tudorache, A.; Luca, R. Positive Solutions to a System of Coupled Hadamard Fractional Boundary Value Problems. Fractal Fract. 2024, 8, 543. https://doi.org/10.3390/fractalfract8090543

AMA Style

Tudorache A, Luca R. Positive Solutions to a System of Coupled Hadamard Fractional Boundary Value Problems. Fractal and Fractional. 2024; 8(9):543. https://doi.org/10.3390/fractalfract8090543

Chicago/Turabian Style

Tudorache, Alexandru, and Rodica Luca. 2024. "Positive Solutions to a System of Coupled Hadamard Fractional Boundary Value Problems" Fractal and Fractional 8, no. 9: 543. https://doi.org/10.3390/fractalfract8090543

Article Metrics

Back to TopTop