Positive Solutions to a System of Coupled Hadamard Fractional Boundary Value Problems
Abstract
:1. Introduction
2. Preliminary Results
- (a)
- , ;
- (b)
- , ;
- (c)
- , ;
- (d)
- , ;
- (e)
- , ;
- (f)
- , ;
- (g)
- ;
- (h)
- , ;
- (i)
- , ;
- (j)
- , ;
- (k)
- , ;
- (l)
- They are continuous and nonnegative on and positive on .
- (a)
- First, we prove that is a nondecreasing function in the first variable. Indeed, for , we find
- (b)
- For and , we have
- (c)
- For all we have
- (d)
- For and , we obtain
- (e)
- We have
- (a)
- ,
- (b)
- ,
- (c)
- ,
- (d)
- ,
3. Existence of Positive Solutions
- (I1)
- , , ; , , ; ; , ; , ; ; , ; , , ; ; , , , , are nondecreasing functions; , , , (given by (9)).
- (I2)
- The functions are continuous.
4. Examples
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Luca, R.; Tudorache, A. On a system of Hadamard fractional differential equations with nonlocal boundary conditions on an infinite interval. Fractal Fract. 2023, 7, 458. [Google Scholar] [CrossRef]
- Tudorache, A.; Luca, R. Positive solutions for a system of Hadamard fractional boundary value problems on an infinite interval. Axioms 2023, 12, 793. [Google Scholar] [CrossRef]
- Tudorache, A.; Luca, R. Systems of Hilfer-Hadamard fractional differential equations with nonlocal coupled boundary conditions. Fractal Fract. 2023, 7, 816. [Google Scholar] [CrossRef]
- Malki, Z.; Berhoun, F.; Ouahab, A. System of boundary random fractional differential equations via Hadamard derivative. Annal. Univ. Paedagog. Cracoviensis Studia Math. 2021, 20, 17–41. [Google Scholar] [CrossRef]
- Bohner, M.; Domoshnitsky, A.; Padhi, S.; Srivastava, S.N. Existence of solutions by coincidence degree theory for Hadamard fractional differential equations at resonance. Turk. J. Math. 2024, 48, 296–306. [Google Scholar] [CrossRef]
- Garra, R.; Mainardi, F.; Spada, G. A generalization of the Lomnitz logarithmic creep law via Hadamard fractional calculus. Chaos Solitons Fractals 2017, 102, 333–338. [Google Scholar] [CrossRef]
- Garra, R.; Orsingher, E.; Polito, F. A note on Hadamard fractional differential equations with varying coefficients and their applications in probability. Mathematics 2018, 6, 4. [Google Scholar] [CrossRef]
- Ahmad, B.; Alsaedi, A.; Ntouyas, S.K.; Tariboon, J. Hadamard-Type Fractional Differential Equations, Inclusions and Inequalities; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Adjabi, Y.; Samei, M.E.; Matar, M.M.; Alzabut, J. Langevin differential equation in frame of ordinary and Hadamard fractional derivatives under three point boundary conditions. AIMS Math. 2021, 6, 2796–2843. [Google Scholar] [CrossRef]
- Ardjouni, A. Existence and uniqueness of positive solutions for nonlinear Caputo-Hadamard fractional differential equations. Proyecciones J. Math. 2021, 40, 139–152. [Google Scholar] [CrossRef]
- Fan, E.; Li, C.; Li, Z. Numerical approaches to Caputo-Hadamard fractional derivatives with applications to long-term integration of fractional differential systems. Commun. Nonlinear Sci. Numer. Simul. 2022, 106, 106096. [Google Scholar] [CrossRef]
- Graef, J.R.; Grace, S.R.; Tunc, E. Asymptotic behavior of solutions of nonlinear fractional differential equations with Caputo-type Hadamard derivatives. Fract. Calc. Appl. Anal. 2017, 20, 71–87. [Google Scholar] [CrossRef]
- Hammad, H.A.; Aydi, H.; Kattan, D.A. Integro-differential equations implicated with Caputo-Hadamard derivatives under nonlocal boundary constraints. Phys. Scr. 2024, 99, 025207. [Google Scholar] [CrossRef]
- Hristova, S.; Benkerrouche, A.; Souid, M.S.; Hakem, A. Boundary value problems of Hadamard fractional differential equations of variable order. Symmetry 2021, 13, 896. [Google Scholar] [CrossRef]
- Jiang, J.; O’Regan, D.; Xu, J.; Fu, Z. Positive solutions for a system of nonlinear Hadamard fractional differential equations involving coupled integral boundary conditions. J. Ineq. Appl. 2019, 2019, 204. [Google Scholar] [CrossRef]
- Kilbas, A.A. Hadamard-type fractional calculus. J. Korean Math. Soc. 2001, 38, 1191–1204. [Google Scholar]
- Li, C. On the nonlinear Hadamard-type integro-differential equation. Fixed Point Theory Algorithm Sci. Eng. 2021, 2021, 7. [Google Scholar] [CrossRef]
- Li, C.; Li, Z. Stability and logarithmic decay of the solution to Hadamard-type fractional differential equation. J. Nonlinear Sci. 2021, 31, 1–60. [Google Scholar] [CrossRef]
- Liu, W.; Liu, L. Properties of Hadamard fractional integral and its application. Fractal Fract. 2022, 6, 670. [Google Scholar] [CrossRef]
- Ma, Q.; Ma, C.H.; Wang, J. A Lyapunov-type inequality for a fractional differential equation with Hadamard derivative. J. Math. Ineq. 2017, 11, 135–141. [Google Scholar] [CrossRef]
- Nain, A.K.; Vats, R.K.; Kumar, A. Caputo-Hadamard fractional differential equation with impulsive boundary conditions. J. Math. Model. 2021, 9, 93–106. [Google Scholar]
- Zhu, H.; Ru, Y.; Wang, F. Analysis of solutions for the fractional differential equation with Hadamard-type. Open Math. 2023, 21, 20230131. [Google Scholar] [CrossRef]
- Granas, A.; Dugundji, J. Fixed Point Theory; Springer: New York, NY, USA, 2003. [Google Scholar]
- Guo, D.; Lakshmikantham, V. Nonlinear Problems in Abstract Cones; Academic Press: New York, NY, USA, 1988. [Google Scholar]
- Leggett, R.; Williams, L. Multiple positive fixed points of nonlinear operators on ordered Banach spaces. Indiana Univ. Math. J. 1979, 28, 673–688. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tudorache, A.; Luca, R. Positive Solutions to a System of Coupled Hadamard Fractional Boundary Value Problems. Fractal Fract. 2024, 8, 543. https://doi.org/10.3390/fractalfract8090543
Tudorache A, Luca R. Positive Solutions to a System of Coupled Hadamard Fractional Boundary Value Problems. Fractal and Fractional. 2024; 8(9):543. https://doi.org/10.3390/fractalfract8090543
Chicago/Turabian StyleTudorache, Alexandru, and Rodica Luca. 2024. "Positive Solutions to a System of Coupled Hadamard Fractional Boundary Value Problems" Fractal and Fractional 8, no. 9: 543. https://doi.org/10.3390/fractalfract8090543
APA StyleTudorache, A., & Luca, R. (2024). Positive Solutions to a System of Coupled Hadamard Fractional Boundary Value Problems. Fractal and Fractional, 8(9), 543. https://doi.org/10.3390/fractalfract8090543