Existence, Uniqueness, and Stability of Solutions for Nabla Fractional Difference Equations
Abstract
:1. Introduction
2. Preliminaries
3. Green’s Function
4. Existence and Uniqueness Results
5. Stability Analysis
6. Examples
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kilbas, A.; Srivastava, H.; Trujillo, J. Theory and Applications of Fractional Differential Equations. In North-Holland Mathematics Studies; Elsevier Science B.V.: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Podlubny, I. Fractional differential equations. An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. In Mathematics in Science and Engineering, 198; Academic Press, Inc.: San Diego, CA, USA, 1999. [Google Scholar]
- Ferreira, R.A.C. Discrete fractional calculus and fractional difference equations. In SpringerBriefs in Mathematics; Springer: Cham, Switzerland, 2022. [Google Scholar]
- Goodrich, C.; Peterson, A.C. Discrete Fractional Calculus; Springer: Cham, Switzerland, 2015. [Google Scholar]
- Gray, H.L.; Zhang, N.F. On a new definition of the fractional difference. Math. Comp. 1988, 50, 513–529. [Google Scholar] [CrossRef]
- Miller, K.S.; Ross, B. Fractional difference calculus. In Univalent Functions, Fractional Calculus, and Their Applications; Ellis Horwood: Chichester, UK, 1989. [Google Scholar]
- Atıcı, F.M.; Eloe, P.W. Discrete fractional calculus with the nabla operator. Electron. J. Qual. Theory Differ. Equ. 2009, 2009, 12. [Google Scholar]
- Agarwal, R.P.; Baleanu, D.; Rezapour, S.; Salehi, S. The existence of solutions for some fractional finite difference equations via sum boundary conditions. Adv. Differ. Equ. 2014, 2014, 282. [Google Scholar] [CrossRef]
- Ahrendt, K.; Kissler, C. Green’s function for higher-order boundary value problems involving a nabla Caputo fractional operator. J. Differ. Equ. Appl. 2019, 25, 788–800. [Google Scholar] [CrossRef]
- Atıcı, F.M.; Eloe, P.W. Two-point boundary value problems for finite fractional difference equations. J. Differ. Equ. Appl. 2011, 17, 445–456. [Google Scholar] [CrossRef]
- Cabada, A.; Dimitrov, N.D.; Jonnalagadda, J.M. Non-trivial solutions of non-autonomous nabla fractional difference boundary value problems. Symmetry 2021, 13, 1101. [Google Scholar] [CrossRef]
- Chen, C.; Bohner, M.; Jia, B. Existence and uniqueness of solutions for nonlinear Caputo fractional difference equations. Turkish J. Math. 2020, 44, 857–869. [Google Scholar] [CrossRef]
- Chen, F.; Zhou, Y. Existence and Ulam stability of solutions for discrete fractional boundary value problem. Discret. Dyn. Nat. Soc. 2013, 2013, 459161. [Google Scholar] [CrossRef]
- Gholami, Y.; Ghanbari, K. Coupled systems of fractional ∇-difference boundary value problems. Differ. Equ. Appl. 2016, 8, 459–470. [Google Scholar] [CrossRef]
- Goodrich, C.S. Solutions to a discrete right-focal fractional boundary value problem. Int. J. Differ. Equ. 2010, 5, 195–216. [Google Scholar]
- Goodrich, C.S. Some new existence results for fractional difference equations. Int. J. Dyn. Syst. Differ. Equ. 2011, 3, 145–162. [Google Scholar] [CrossRef]
- Henderson, J.; Neugebauer, J.T. Existence of local solutions for fractional difference equations with left focal boundary conditions. Fract. Calc. Appl. Anal. 2021, 24, 324–331. [Google Scholar] [CrossRef]
- Ikram, A. Lyapunov inequalities for nabla Caputo boundary value problems. J. Differ. Equ. Appl. 2019, 25, 757–775. [Google Scholar] [CrossRef]
- Jonnalagadda, J.M. Existence theory for nabla fractional three-point boundary value problems via continuation methods for contractive maps. Topol. Methods Nonlinear Anal. 2023, 23, 869–888. [Google Scholar] [CrossRef]
- Jonnalagadda, J.M. On a nabla fractional boundary value problem with general boundary conditions. AIMS Math. 2020, 5, 204–215. [Google Scholar] [CrossRef]
- Jonnalagadda, J.M. On two-point Riemann–Liouville type nabla fractional boundary value problems. Adv. Dyn. Syst. Appl. 2018, 13, 141–166. [Google Scholar]
- Li, Q.; Liu, Y.; Zhou, L. Fractional boundary value problem with nabla difference equation. J. Appl. Anal. Comput. 2021, 11, 911–919. [Google Scholar] [CrossRef]
- Liu, X.; Jia, B.; Gensler, S.; Erbe, L.; Peterson, A. Convergence of approximate solutions to nonlinear Caputo nabla fractional difference equations with boundary conditions. Electron. J. Differ. Equ. 2020, 2020, 1–19. [Google Scholar] [CrossRef]
- Lv, W. Existence of solutions for discrete fractional boundary value problems with a p-Laplacian operator. Adv. Differ. Equ. 2012, 2012, 163. [Google Scholar] [CrossRef]
- Rafeeq, A.S.; Thabet, S.T.M.; Mohammed, M.O.; Kedim, I.; Vivas-Cortez, M. On Caputo-Hadamard fractional pantograph problem of two different orders with Dirichlet boundary conditions. Alex. Eng. J. 2024, 86, 386–398. [Google Scholar] [CrossRef]
- Thabet, S.T.M.; Vivas-Cortez, M.; Kedim, I.; Samei, M.E.; Ayari, M.I. Solvability of a ρ-Hilfer Fractional Snap Dynamic System on Unbounded Domains. Fractal Fract. 2023, 7, 607. [Google Scholar] [CrossRef]
- Wang, J.; Lv, L.; Zhou, Y. Ulam stability and data dependence for fractional differential equations with Caputo derivative. Electron. J. Qual. Theory Differ. Equ. 2011, 2011, 1–10. [Google Scholar] [CrossRef]
- Boutiara, A.; Etemad, S.; Thabet, S.T.M.; Ntouyas, S.K.; Rezapour, S.; Tariboon, J. A Mathematical Theoretical Study of a Coupled Fully Hybrid (k,Φ)-Fractional Order System of BVPs in Generalized Banach Spaces. Symmetry 2023, 15, 1041. [Google Scholar] [CrossRef]
- Chen, C.; Bohner, M.; Jia, B. Ulam–Hyers stability of Caputo fractional difference equations. Math. Methods Appl. Sci. 2019, 49, 7461–7470. [Google Scholar] [CrossRef]
- Haider, S.S.; Rehman, M.U. Ulam–Hyers-Rassias stability and existence of solutions to nonlinear fractional difference equations with multipoint summation boundary condition. Acta Math. Sci. Ser. B 2020, 40, 589–602. [Google Scholar] [CrossRef]
- Jonnalagadda, J.M. Existence and stability of solutions for nabla fractional difference systems with anti-periodic boundary conditions. Kragujev. J. Math. 2023, 47, 739–754. [Google Scholar] [CrossRef]
- Jonnalagadda, J.M. Hyers–Ulam stability of fractional nabla difference equations. Int. J. Anal. 2016, 2016, 7265307. [Google Scholar] [CrossRef]
- Costabile, F.A.; Napoli, A. A multipoint Birkhoff type boundary value problem. J. Numer. Math. 2015, 23, 1–11. [Google Scholar] [CrossRef]
- Smart, D.R. Fixed point theorems. In Cambridge Tracts in Mathematics, No. 66; Cambridge University Press: London, UK; New York, NY, USA, 1974. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dimitrov, N.D.; Jonnalagadda, J.M. Existence, Uniqueness, and Stability of Solutions for Nabla Fractional Difference Equations. Fractal Fract. 2024, 8, 591. https://doi.org/10.3390/fractalfract8100591
Dimitrov ND, Jonnalagadda JM. Existence, Uniqueness, and Stability of Solutions for Nabla Fractional Difference Equations. Fractal and Fractional. 2024; 8(10):591. https://doi.org/10.3390/fractalfract8100591
Chicago/Turabian StyleDimitrov, Nikolay D., and Jagan Mohan Jonnalagadda. 2024. "Existence, Uniqueness, and Stability of Solutions for Nabla Fractional Difference Equations" Fractal and Fractional 8, no. 10: 591. https://doi.org/10.3390/fractalfract8100591
APA StyleDimitrov, N. D., & Jonnalagadda, J. M. (2024). Existence, Uniqueness, and Stability of Solutions for Nabla Fractional Difference Equations. Fractal and Fractional, 8(10), 591. https://doi.org/10.3390/fractalfract8100591