A Study of a Nonlocal Coupled Integral Boundary Value Problem for Nonlinear Hilfer–Hadamard-Type Fractional Langevin Equations
Abstract
:1. Introduction
2. Subsidiary Results
3. The Main Results
- Real constants , and exist such that
- For all , positive constants exist and such that
4. Examples
- (a)
- To illustrate Theorem 2, we take
- (b)
5. The Stability Analysis
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ding, Y.; Wang, Z.; Ye, H. Optimal control of a fractional-order HIV-immune system with memory. IEEE Trans. Control Syst. Technol. 2012, 20, 763–769. [Google Scholar]
- Xu, Y.; Li, W. Finite-time synchronization of fractional-order complex-valued coupled systems. Physica A 2020, 549, 123903. [Google Scholar]
- Wang, H.; Zheng, X. Well posedness and regularity of the variable-order time-fractional diffusion equations. J. Math. Anal. Appl. 2019, 475, 1778–1802. [Google Scholar] [CrossRef]
- Zheng, X.; Wang, H. An error estimate of a numerical approximation to a hidden-memory variable-order space-time fractional diffusion equation. SIAM J. Numer. Anal. 2020, 58, 2492–2514. [Google Scholar]
- Javidi, M.; Ahmad, B. Dynamic analysis of time fractional order phytoplankton–toxic phytoplankton–zooplankton system. Ecol. Model. 2015, 318, 8–18. [Google Scholar]
- Xu, Y.; Li, Y.; Li, W. Adaptive finite-time synchronization control for fractional-order complex-valued dynamical networks with multiple weights. Commun. Nonlinear Sci. Numer. Simul. 2020, 85, 105239. [Google Scholar]
- Hilfer, R. (Ed.) Applications of Fractional Calculus in Physics; World Scientific Publishing Co.: Hackensack, NJ, USA, 2000. [Google Scholar]
- Hilfer, R. Experimental evidence for fractional time evolution in glass forming materials. J. Chem. Phys. 2002, 284, 399–408. [Google Scholar]
- Hilfer, R.; Luchko, Y.; Tomovski, Z. Operational method for the solution of fractional differential equations with generalized Riemann-Liouville fractional derivatives. Fract. Calc. Appl. Anal. 2009, 12, 299–318. [Google Scholar]
- Ntouyas, S.K. A survey on existence results for boundary value problems of Hilfer fractional differential equations and inclusions. Foundations 2021, 1, 63–98. [Google Scholar] [CrossRef]
- Hadamard, J. Essai sur l’étude des fonctions données par leur développement de Taylor. J. Mat. Pure Appl. Ser. 1892, 8, 101–186. [Google Scholar]
- Ahmad, B.; Alsaedi, A.; Ntouyas, S.K.; Tariboon, J. Hadamard-Type Fractional Differential Equations, Inclusions and Inequalities; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Muthaiah, S.; Baleanu, D.; Thangaraj, N.G. Existence and Hyers-Ulam type stability results for nonlinear coupled system of Caputo-Hadamard type fractional differential equations. AIMS Math. 2021, 6, 168–194. [Google Scholar]
- Zhang, L.; Qin, N.; Ahmad, B. Explicit iterative solution of a Caputo-Hadamard-type fractional turbulent flow model. Math. Methods Appl. Sci. 2024, 47, 10548–10558. [Google Scholar] [CrossRef]
- Ahmad, B.; Aljoudi, S. Investigation of a coupled system of Hilfer–Hadamard fractional differential equations with nonlocal coupled Hadamard fractional integral boundary conditions. Fractal Fract. 2023, 7, 178. [Google Scholar] [CrossRef]
- Tshering, U.S.; Thailert, E.; Ntouyas, S.K. Existence and stability results for a coupled system of Hilfer-Hadamard sequential fractional differential equations with multi-point fractional integral boundary conditions. AIMS Math. 2024, 9, 25849–25878. [Google Scholar]
- Langevin, P. Sur la théorie du mouvement brownien. CR Acad. Sci. Paris 1908, 146, 530. [Google Scholar]
- Klages, R.; Radons, G.; Sokolov, M. (Eds.) Anomalous Transport: Foundations and Applications; Wiley VCH: Weinheim, Germany, 2008. [Google Scholar]
- Kubo, R.; Toda, M.; Hashitsume, N. Statistical Physics II: Nonequilibrium Statistical Mechanics; Springer Science Business Media: Berlin/Heidelberg, Germany, 1991; Volume 2. [Google Scholar]
- Kubo, R. The fluctuation-dissipation theorem. Rep. Prog. Phys. 1966, 29, 255–284. [Google Scholar]
- Eab, C.H.; Lim, S.C. Fractional generalized Langevin equation approach to single-file diffusion. Physica A 2010, 389, 2510–2521. [Google Scholar]
- Lim, S.C.; Li, M.; Teo, L.P. Langevin equation with two fractional orders. Phys. Lett. A 2008, 372, 6309–6320. [Google Scholar]
- Eule, S.; Friedrich, R.; Jenko, F.; Kleinhans, D. Langevin approach to fractional diffusion equations including inertial effects. J. Phys. Chem. B 2007, 111, 11474–11477. [Google Scholar]
- West, B.J.; Latka, M. Fractional Langevin model of gait variability. J. NeuroEng. Rehabil. 2005, 2, 24. [Google Scholar]
- Torres, C. Existence of solution for fractional Langevin equation: Variational approach. Electron. J. Qual. Theory Differ. Equ. 2014, 1–14. [Google Scholar] [CrossRef]
- Li, B.; Sun, S.; Sun, Y. Existence of solutions for fractional Langevin equation with infinite-point boundary conditions. J. Appl. Math. Comput. 2017, 53, 683–692. [Google Scholar] [CrossRef]
- Zhang, W.; Ni, J. Qualitative analysis of tripled system of fractional Langevin equations with cyclic anti-periodic boundary conditions. Fract. Calc. Appl. Anal. 2023, 26, 2392–2420. [Google Scholar] [CrossRef]
- Baghani, H.; Alzabut, J.; Nieto, J.J. A coupled system of Langevin differential equations of fractional order and associated to antiperiodic boundary conditions. Math. Methods Appl. Sci. 2024, 47, 10900–10910. [Google Scholar] [CrossRef]
- Alsaedi, A.; Saeed, H.A.; Hamed, A. Existence and stability of solutions for a nonlocal multi-point and multi-strip coupled boundary value problem of nonlinear fractional Langevin equations. Bull. Math. Sci. 2024, 2450014. [Google Scholar] [CrossRef]
- Ulam, S.M. A Collection of Mathematical Problems; Interscience Tracts in Pure and Applied Mathematics, No. 8; Interscience Publishers: New York, NY, USA; London, UK, 1960. [Google Scholar]
- Rassias, T.M. On the stability of the linear mapping in Banach spaces. Proc. Am. Math. Soc. 1978, 72, 297–300. [Google Scholar] [CrossRef]
- Jung, S.M. Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis; Hadronic Press: Palm Harbor, FL, USA, 2001. [Google Scholar]
- Lungu, N.; Ciplea, S.A. Ulam-Hyers stability of Black-Scholes equation. Stud. Univ. Babes-Bolyai Math. 2016, 61, 467–472. [Google Scholar]
- Chalishajar, D.; Kumar, A. Existence, uniqueness and Ulam’s stability of solutions for a coupled system of fractional differential equations with integral boundary conditions. Mathematics 2018, 6, 96. [Google Scholar] [CrossRef]
- Liu, K.; Wang, J.R.; Zhou, Y.; O’Regan, D. Hyers-Ulam stability and existence of solutions for fractional differential equations with Mittag-Leffler kernel. Chaos Solitons Fractals 2020, 132, 109534. [Google Scholar] [CrossRef]
- Baitiche, Z.; Derbazi, C.; Matar, M.M. Ulam stability for nonlinear-Langevin fractional differential equations involving two fractional orders in the ψ-Caputo sense. Appl. Anal. 2022, 101, 4866–4881. [Google Scholar] [CrossRef]
- Zhao, K. Existence and UH-stability of integral boundary problem for a class of nonlinear higher-order Hadamard fractional Langevin equation via Mittag-Leffler functions. Filomat 2023, 37, 1053–1063. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; North-Holland Mathematics Studies, 204; Elsevier Science B.V.: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives; Gordon and Breach Science: Yverdon, Switzerland, 1993. [Google Scholar]
- Granas, A.; Dugundji, J. Fixed Point Theory; Springer: New York, NY, USA, 2003. [Google Scholar]
- Rus, I.A. Ulam stabilities of ordinary differential equations in a Banach space. Carpath. J. Math. 2010, 26, 103–107. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmad, B.; Saeed, H.A.; Ntouyas, S.K. A Study of a Nonlocal Coupled Integral Boundary Value Problem for Nonlinear Hilfer–Hadamard-Type Fractional Langevin Equations. Fractal Fract. 2025, 9, 229. https://doi.org/10.3390/fractalfract9040229
Ahmad B, Saeed HA, Ntouyas SK. A Study of a Nonlocal Coupled Integral Boundary Value Problem for Nonlinear Hilfer–Hadamard-Type Fractional Langevin Equations. Fractal and Fractional. 2025; 9(4):229. https://doi.org/10.3390/fractalfract9040229
Chicago/Turabian StyleAhmad, Bashir, Hafed A. Saeed, and Sotiris K. Ntouyas. 2025. "A Study of a Nonlocal Coupled Integral Boundary Value Problem for Nonlinear Hilfer–Hadamard-Type Fractional Langevin Equations" Fractal and Fractional 9, no. 4: 229. https://doi.org/10.3390/fractalfract9040229
APA StyleAhmad, B., Saeed, H. A., & Ntouyas, S. K. (2025). A Study of a Nonlocal Coupled Integral Boundary Value Problem for Nonlinear Hilfer–Hadamard-Type Fractional Langevin Equations. Fractal and Fractional, 9(4), 229. https://doi.org/10.3390/fractalfract9040229