The Study of Fractional Quadratic Integral Equations Involves General Fractional Integrals
Abstract
:1. Introduction
2. Auxiliary Facts and Results
- (i)
- and are Lipschitz continuous, with Lipschitz constants and , respectively;
- (ii)
- is compact and continuous;
- (iii)
- for all ;
- (iv)
- , where .
3. Existence of Solutions
- (H1)
- The functions , , are continuous;
- (H2)
- There exist two positive functions, and , with norms and , respectively, such that
- (H3)
- There exists a function and a nondecreasing, sub-homogeneous (that is, for all and ) function, , such that
- (H4)
- There exists a positive constant, R, such that
4. Uniqueness and Continuous Dependence of Solutions
- (H5)
- There exists non-negative continuous functions and such that
- (H6)
- The functions and are bounded with
5. Stability
- (i)
- if ;
- (ii)
- for all ;
- (iii)
- for all .
- (i)
- The sequence converges to a fixed point of T;
- (ii)
- is the unique fixed point of T in the set ;
- (iii)
- for all .
6. Existence of Maximal and Minimal Solutions
7. Examples
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Boyd, D.W. On nonlinear contractions. Proc. Am. Math. Soc. 1968, 20, 458–464. [Google Scholar] [CrossRef]
- Corduneanu, C. Integral Equations and Applications; Cambridge University Press: Cambridge, UK, 1991. [Google Scholar]
- Deimling, K. Nonlinear Functional Analysis; Springer: Berlin/Heidelberg, Germany, 1985. [Google Scholar]
- Dhage, B.C. A fixed point theorem in Banach algebras with applications to functional integral equations. Kyungpook Math. J. 2004, 44, 145–155. [Google Scholar]
- Salem, H.A.H. On the quadratic integral equations and their applications. Comput. Math. Appl. 2011, 62, 2931–2943. [Google Scholar] [CrossRef]
- Agarwal, R.P.; O’Regan, D.; Wong, P.J.Y. Positive Solutions of Differential, Difference and Integral Equations; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1999. [Google Scholar]
- Burton, T.A. Volterra Integral and Differential Equations; Academic Press: New York, NY, USA, 1983. [Google Scholar]
- Zabrejko, P.P.; Koshelev, A.I.; Krasnosel’skii, M.A.; Mikhlin, S.G.; Rakovschik, L.S.; Stetsenko, V.J. Integral Equations; Nordhoff: Leyden, The Netherlands, 1975. [Google Scholar]
- Almeida, R. A Caputo fractional derivative of a function with respect to another function. Commun. Nonlinear Sci. Numer. Simul. 2017, 44, 460–481. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier (North-Holland) Science Amsterdam: New York, NY, USA, 2006. [Google Scholar]
- Osler, T.J. Leibniz rule for fractional derivatives generalized and an application to infinite series. SIAM J. Appl. Math. 1970, 18, 658–674. [Google Scholar] [CrossRef]
- Samko, G.; Kilbas, A.A.; Marichev, O.A. Fractional Integral and Derivative: Theory and Applications; Gordon and Breach: Basel, Switzerland, 1993. [Google Scholar]
- Hu, H.; Wu, G.C.; Yang, G.; Huang, L.L. Continuous time random walk to a general fractional Fokker-Planck equation on fractal media. Eur. Phys. J. Spec. Top. 2021, 230, 3927–3933. [Google Scholar]
- Fan, Q.; Wu, G.C.; Fu, H. A note on function space and boundedness of the general fractional integral in continuous time random walk. J. Nonlinear Math. Phys. 2021, 29, 95–102. [Google Scholar] [CrossRef]
- Benhamouche, L.; Djebali, S.; Garcia-Falset, J. Asymptotic behavior of solutions for systems of quadratic integral equations of Fredholm type. Banach J. Math. Anal. 2020, 14, 313–335. [Google Scholar] [CrossRef]
- Hendi, F.A.; Shammakh, W.; Al-badrani, H. Existence result and approximate solutions for quadratic integro-differential equations of fractional order. J. King Saud Univ. Sci. 2019, 31, 314–321. [Google Scholar] [CrossRef]
- Mirzaee, F.; Alipour, S. Approximate solution of nonlinear quadratic integral equations of fractional order via piecewise linear functions. J. Comput. Appl. Math. 2018, 331, 217–227. [Google Scholar] [CrossRef]
- Abood, B.N.; Redhwan, S.S.; Bazighifan, O.; Nonlaopon, K. Investigating a generalized fractional quadratic integral equation. Fractal Fract. 2022, 6, 251. [Google Scholar] [CrossRef]
- Abdel-Aty, M.A.; Abdou, M.A. Analytical and numerical discussion for the quadratic integral equations. Filomat 2023, 37, 8095–8111. [Google Scholar] [CrossRef]
- Banaś, J.; Rzepka, B. Nondecreasing solutions of a quadratic singular Volterra integral equation. Math. Comput. Model. 2009, 49, 488–496. [Google Scholar] [CrossRef]
- Darwish, M.A. On monotonic solutions of a singular quadratic integral equation with supremum. Dyn. Syst. Appl. 2008, 17, 539–550. [Google Scholar]
- El-Sayed, A.M.A.; Hashem, H.H.G. Monotonic positive solution of a nonlinear quadratic functional integral equation. Appl. Math. Comput. 2010, 216, 2576–2580. [Google Scholar] [CrossRef]
- Argyros, I.K. Quadratic equations and applications to Chandrasekhar’s and related equations. Bull. Aust. Math. Soc. 1985, 32, 275–292. [Google Scholar] [CrossRef]
- Argyros, I.K. On a class of quadratic integral equations with perturbation. Funct. Approximatio Comment. Math. 1992, 20, 51–63. [Google Scholar]
- El-Sayed, A.M.A.; Hashem, H.H.G. Carath’eodory type theorem for a nonlinear quadratic integral equation. Math. Sci. Res. J. 2008, 12, 88–95. [Google Scholar]
- El-Sayed, A.M.A.; Hashem, H.H.G. Integrable and continuous solutions of a non-linear quadratic integral equation. Electron. J. Qual. Theory Differ. Equ. 2008, 25, 1–10. [Google Scholar]
- Talaei, Y.; Micula, S.; Hosseinzadeh, H.; Noeiaghdam, S. A novel algorithm to solve nonlinear fractional quadratic integral equations. AIMS Math. 2022, 7, 13237–13257. [Google Scholar] [CrossRef]
- Mohamed Abdalla, D. On quadratic integral equation of fractional orders. J. Math. Anal. Appl. 2005, 311, 112–119. [Google Scholar]
- Banaś, J.; Caballero, J.; Rocha, J.; Sadarangani, K. Monotonic solutions of a class of quadratic integral equations of Volterra type. Comput. Math. Appl. 2005, 49, 943–952. [Google Scholar] [CrossRef]
- Darwish, M.A. On solvability of some quadratic functional-integral equation in Banach algebras. Commun. Appl. Anal. 2007, 11, 441–450. [Google Scholar]
- Darwish, M.A.; Ntouyas, S.K. On a quadratic fractional Hammerstein-Volterra integral equations with linear modification of the argument. Onlinear Anal. TMA 2011, 74, 3510–3517. [Google Scholar] [CrossRef]
- Abdalla, D.M.; Kishin, S. On a quadratic integral equation with supremum involving Erdélyi-Kober fractional order. Math. Nachr. 2015, 228, 566–576. [Google Scholar]
- Bahyrycz, A.; Brzdek, J.; Jablońska, E.; Malejki, R. Ulam’s stability of a generalization of the Frechet functional equation. J. Math. Anal. Appl. 2016, 442, 537–553. [Google Scholar] [CrossRef]
- Alsulami, H.H.; Gülyaz, S.; Karapinar, E.; Erhan, I.M. An Ulam stability result on quasi-b-metric-like spaces. Open Math. 2016, 14, 1087–1103. [Google Scholar] [CrossRef]
- Qarawani, N.M. Hyers-Ulam-Rassias stability for the heat equation. Applied Maths. 2013, 4, 1001–1008. [Google Scholar] [CrossRef]
- Castro, L.P.; Guerra, R.C. Hyers-Ulam-Rassias stability of Volterra integral equations within weighted spaces. Lib. Math. (N.S.) 2013, 33, 21–35. [Google Scholar] [CrossRef]
- Castro, L.P.; Ramos, A. Hyers-Ulam-Rassias stability for a class of nonlinear Volterra integral equations. Banach J. Math. Anal. 2009, 3, 36–43. [Google Scholar] [CrossRef]
- Castro, L.P.; Ramos, A. Hyers-Ulam and Hyers-Ulam-Rassias stability of Volterra integral equations with a delay, In Integral Methods in Science and Engineering; Perez, E., Ed.; Birkhäuser: Boston, MA, USA, 2010; pp. 85–94. [Google Scholar]
- Sevgin, S.; Sevli, H. Stability of a nonlinear Volterra integro-differential equation via a fixed point approach. J. Nonlinear Sci. Appl. 2016, 9, 200–207. [Google Scholar] [CrossRef]
- Banaś, J.; Rzepka, B. Monotonic solutions of a quadratic integral equation of fractional order. J. Math. Anal. Appl. 2007, 332, 1371–1379. [Google Scholar] [CrossRef]
- El-Sayed, A.M.A.; Gaafar, F.M.; Hashem, H.H.G. On the maximal and minimal solutions of arbitrary-orders nonlinear functional integral and differential equations. Math. Sci. Res. J. 2004, 8, 336–348. [Google Scholar]
- Curtain, R.F.; Pritchard, A.J. Functional Analysis in Modern Applied Mathematics; Series Mathematics in Science and Engineering; Academic Press: New York, NY, USA, 1997. [Google Scholar]
- El-Sayed, A.M.A.; Mohamed, M.S.; Mohamed, F.F.S. Existence of positive continuous solution of a quadratic integral equation of fractional orders. J. Fract. Calc. Appl. 2011, 1, 1–7. [Google Scholar]
- El-Sayed, A.M.A.; Hashem, H.H.G.; Ziada, E.A.A. Picard and Adomian decomposition methods for a quadratic integral equation of fractional order. Comput. Appl. Math. 2014, 33, 95–109. [Google Scholar] [CrossRef]
- El-Sayed, A.M.A.; Hashem, H.H.G.; Ziada, E.A.A. Picard and Adomian methods for quadratic integral equation. Comput. Appl. Math. 2010, 29, 447–463. [Google Scholar] [CrossRef]
- Hu, H.; Wu, G.C.; Yang, G.; Huang, L.L. Fractional calculus with exponential memory. Chaos 2021, 31, 031103. [Google Scholar]
- Wang, J.; Lv, L.; Zhou, Y. New concepts and results in stability of fractional differential equations. Commun. Nonlinear Sci. Numer. Simul. 2012, 17, 2530–2538. [Google Scholar] [CrossRef]
- Miahi, M.; Mirzaee, F.; Khodaei, H. On convex-valued G-m-monomials with applications in stability theory. Rev. Real Acad. Cienc. Exactas Fís. Nat. Ser. A RACSAM 2021, 115, 76. [Google Scholar] [CrossRef]
- Diaz, J.B.; Margolis, B. A fixed point theorem of the alternative, for contractions on a generalizes complete metric space. Bull. Am. Math. Soc. 1968, 74, 305–309. [Google Scholar] [CrossRef]
- Lakshmikantham, V.; Leela, S. Differential and Integral Inequalities; Academic Press: New York, NY, USA, 1969. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, M.; Wang, H.; Xu, Z.; Zhang, L. The Study of Fractional Quadratic Integral Equations Involves General Fractional Integrals. Fractal Fract. 2025, 9, 249. https://doi.org/10.3390/fractalfract9040249
Zhou M, Wang H, Xu Z, Zhang L. The Study of Fractional Quadratic Integral Equations Involves General Fractional Integrals. Fractal and Fractional. 2025; 9(4):249. https://doi.org/10.3390/fractalfract9040249
Chicago/Turabian StyleZhou, Mi, Hengtai Wang, Zhenghua Xu, and Lu Zhang. 2025. "The Study of Fractional Quadratic Integral Equations Involves General Fractional Integrals" Fractal and Fractional 9, no. 4: 249. https://doi.org/10.3390/fractalfract9040249
APA StyleZhou, M., Wang, H., Xu, Z., & Zhang, L. (2025). The Study of Fractional Quadratic Integral Equations Involves General Fractional Integrals. Fractal and Fractional, 9(4), 249. https://doi.org/10.3390/fractalfract9040249