Characterization of Pore Heterogeneity in Lacustrine Shale Based on MIP, LTNA, NMR, and Multifractal Characteristics: A Case Study of the Jurassic Dongyuemiao Member, China
Abstract
:1. Introduction
2. Geological Setting
3. Method and Process
3.1. TOC Content, Mineral Component, and Lithofacies Classification
3.2. Characterization Method of Microscopic Pore Structure
3.2.1. Mercury Intrusion Porosimetry (MIP)
3.2.2. Low-Temperature N2 Adsorption (LTNA)
3.2.3. Low-Field Nuclear Magnetic Resonance (NMR)
3.3. Multifractal Theory
4. Results
4.1. Lithofacies Type
4.2. Microscopic Pore Types and Morphology
4.3. Pore Size Distribution
4.3.1. MIP Characterization
4.3.2. LTNA Characterization
4.3.3. NMR Characterization
4.3.4. Full Pore Size Characterization of Shale
4.4. Fractal Dimension Based on NMR Results
5. Discussion
5.1. Controlling Factors of Heterogeneity in Pore Structure
5.2. Multifractal Parameters Reflecting Heterogeneity in Porosity and Permeability
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zou, C.; Dong, D.; Wang, S.; Li, J.; Li, X.; Wang, Y.; Li, D.; Cheng, K. Geological characteristics, formation mechanism and resource potential of shale gas in China. Pet. Explor. Dev. 2010, 37, 641–653. [Google Scholar] [CrossRef]
- Jiang, S.; Tang, X.; Cai, D.; Xue, G.; He, Z.; Long, S.; Peng, Y.; Gao, B.; Xu, Z.; Dahdah, N. Comparison of marine, transitional, and lacustrine shales: A case study from the Sichuan Basin in China. J. Pet. Sci. Eng. 2017, 150, 334–347. [Google Scholar] [CrossRef]
- Xu, Q.; Liu, B.; Ma, Y.; Song, X.; Wang, Y.; Chen, Z. Geological and geochemical characterization of lacustrine shale: A case study of the Jurassic Da’anzhai member shale in the central Sichuan Basin, southwest China. J. Nat. Gas Sci. Eng. 2017, 47, 124–139. [Google Scholar] [CrossRef]
- Yang, C.; Zhang, J.; Tang, X.; Ding, J.; Zhao, Q.; Dang, W.; Chen, H.; Su, Y.; Li, B.; Lu, D. Comparative study on micro-pore structure of marine, terrestrial, and transitional shales in key areas, China. Int. J. Coal Geol. 2017, 171, 76–92. [Google Scholar] [CrossRef]
- Fu, Y.; Jiang, Y.; Dong, D.; Hu, Q.; Lei, Z.; Peng, H.; Gu, Y.; Ma, S.; Wang, Z.; Yin, X.; et al. Microscopic pore-fracture configuration and gas-filled mechanism of shale reservoirs in the western Chongqing area, Sichuan Basin, China. Pet. Explor. Dev. 2021, 48, 916–927. [Google Scholar] [CrossRef]
- Fu, Y.; Jiang, Y.; Hu, Q.; Luo, T.; Li, Y.; Zhian, L.; Wang, Z.; Yin, X. Fracturing flowback fluids from shale gas wells in western chongqing: Geochemical analyses and relevance for exploration & development. J. Nat. Gas Sci. Eng. 2021, 88, 103821. [Google Scholar]
- He, J.; Deng, H.; Ma, R.; Wang, R.; Wang, Y.; Li, A. Reservoir Characteristics of the Lower Jurassic Lacustrine Shale in the Eastern Sichuan Basin and Its Effect on Gas Properties: An Integrated Approach. Energies 2020, 13, 4495. [Google Scholar] [CrossRef]
- Shu, Y.; Bao, H.; Zheng, Y.; Chen, M.; Lu, Y.; Liu, H.; Peng, W.; Zhou, L.; Ma, Y.; Wen, Y.; et al. Lithofacies Types, Assemblage Characteristics, and Sedimentary Evolution Model of Lacustrine Shale in Dongyuemiao Formation of Fuxing Area. Front. Earth Sci. 2021, 9, 772581. [Google Scholar] [CrossRef]
- Li, Q.; Wu, S.; Xia, D.; You, X.; Zhang, H.; Lu, H. Major and trace element geochemistry of the lacustrine organic-rich shales from the Upper Triassic Chang 7 Member in the southwestern Ordos Basin, China: Implications for paleoenvironment and organic matter accumulation. Mar. Pet. Geol. 2020, 111, 852–867. [Google Scholar] [CrossRef]
- Gu, Y.; Li, X.; Qi, L.; Li, S.; Jiang, Y.; Fu, Y.; Yang, X. Sedimentology and Geochemistry of the Lower Permian Shanxi Formation Shan 23 Submember Transitional Shale, Eastern Ordos Basin, North China. Front. Earth Sci. 2022, 10, 859845. [Google Scholar] [CrossRef]
- Gu, Y.; Cai, G.; Hu, D.; Wei, Z.; Liu, R.; Han, J.; Fan, Z.; Hao, J.; Jiang, Y. Geochemical and Geological Characterization of Upper Permian Linghao Formation Shale in Nanpanjiang Basin, SW China. Front. Earth Sci. 2022, 10, 883146. [Google Scholar] [CrossRef]
- Qiu, Z.; He, J. Depositional environment changes and organic matter accumulation of Pliensbachian-Toarcian lacustrine shales in the Sichuan basin, SW China. J. Asian Earth Sci. 2022, 232, 105035. [Google Scholar] [CrossRef]
- Li, P.; Liu, Z.; Nie, H.; Liang, X.; Li, Q.; Wang, P. Heterogeneity Characteristics of Lacustrine Shale Oil Reservoir Under the Control of Lithofacies: A Case Study of the Dongyuemiao Member of Jurassic Ziliujing Formation, Sichuan Basin. Front. Earth Sci. 2021, 9, 736544. [Google Scholar] [CrossRef]
- Qiu, Z.; Shi, Z.; Dong, D.; Lu, B.; Zhang, C.; Zhou, J.; Wang, H.; Xiong, B.; Pang, Z.; Guo, H. Geological characteristics of source rock and reservoir of tight oil and its accumulation mechanism: A case study of Permian Lucaogou Formation in Jimusar sag, Junggar Basin. Pet. Explor. Dev. 2016, 43, 928–939. [Google Scholar] [CrossRef]
- Wei, G.; Wang, W.; Feng, L.; Tan, X.; Yu, C.; Zhang, H.; Zhang, Z.; Wang, S. Geological Characteristics and Exploration Prospect of Black Shale in the Dongyuemiao Member of Lower Jurassic, the Eastern Sichuan Basin, China. Front. Earth Sci. 2021, 9, 765568. [Google Scholar] [CrossRef]
- Chen, D.; Zhang, J.; Wang, X.; Lan, B.; Li, Z.; Liu, T. Characteristics of Lacustrine Shale Reservoir and Its Effect on Methane Adsorption Capacity in Fuxin Basin. Energy Fuels 2018, 32, 11105–11117. [Google Scholar] [CrossRef]
- Loucks, R.G.; Reed, R.M.; Ruppel, S.C.; Hammes, U. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores. AAPG Bull. 2012, 96, 1071–1098. [Google Scholar] [CrossRef]
- Ross, D.J.K.; Marc Bustin, R. The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs. Mar. Pet. Geol. 2009, 26, 916–927. [Google Scholar] [CrossRef]
- Fu, H.; Wang, X.; Zhang, L.; Gao, R.; Li, Z.; Xu, T.; Zhu, X.; Xu, W.; Li, Q. Investigation of the factors that control the development of pore structure in lacustrine shale: A case study of block X in the Ordos Basin, China. J. Nat. Gas Sci. Eng. 2015, 26, 1422–1432. [Google Scholar] [CrossRef]
- Jiang, F.; Chen, D.; Chen, J.; Li, Q.; Liu, Y.; Shao, X.; Hu, T.; Dai, J. Fractal Analysis of Shale Pore Structure of Continental Gas Shale Reservoir in the Ordos Basin, NW China. Energy Fuels 2016, 30, 4676–4689. [Google Scholar] [CrossRef]
- Jiang, Y.; Fu, Y.; Lei, Z.; Gu, Y.; Qi, L.; Cao, Z. Experimental NMR analysis oil and water imbibition during fracturing in Longmaxi Shale, SE Sichuan Basin. J. Jpn. Pet. Inst. 2019, 62, 1–10. [Google Scholar] [CrossRef]
- Wang, Z.; Jiang, Y.; Fu, Y.; Lei, Z.; Xu, C.; Yuan, J.; Wen, R.; Wang, Z.; Gu, Y.; Yin, X. Characterization of pore structure and heterogeneity of shale reservoir from Wufeng Formation-Sublayers Long—11 in Western Chongqing Based on Nuclear Magnetic Resonance. Earth Sci. 2022, 47, 490–504. [Google Scholar]
- Wang, Y.; Zhu, Y.; Wang, H.; Feng, G. Nanoscale pore morphology and distribution of lacustrine shale reservoirs: Examples from the Upper Triassic Yanchang Formation, Ordos Basin. J. Energy Chem. 2015, 24, 512–519. [Google Scholar] [CrossRef]
- Chalmers, G.R.; Marc Bustin, R.; Power, M. Characterization of gas shale pore systems by porosimetry, pycnometry, surface area, and field emission scanning electron microscopy transmission electron microscopy image analyses: Examples from the Barnett, Woodford, Haynesville, Marcellus, and Doig units. AAPG Bull. 2012, 96, 1099–1119. [Google Scholar]
- Fu, Y.; Jiang, Y.; Wang, Z.; Hu, Q.; Xie, J.; Ni, G.; Lei, Z.; Zhou, K.; Liu, X. Non-connected pores of the Longmaxi shale in southern Sichuan Basin of China. Mar. Pet. Geol. 2019, 110, 420–433. [Google Scholar] [CrossRef]
- Wang, G.; Chen, X.; Cheng, W. Multi-scale characterization of coal pore and fractures and its influence on permeability— taking 14 large coal bases in China as examples. J. Chongqing Univ. 2024, 47, 4. [Google Scholar]
- Han, W.; Zhou, G.; Gao, D.; Zhang, Z.; Wei, Z.; Wang, H.; Yang, H. Experimental analysis of the pore structure and fractal characteristics of different metamorphic coal based on mercury intrusion-nitrogen adsorption porosimetry. Powder Technol. 2020, 362, 386–398. [Google Scholar] [CrossRef]
- Cai, Y.; Li, Q.; Liu, D.; Zhou, Y.; Lv, D. Insights into matrix compressibility of coals by mercury intrusion porosimetry and N2 adsorption. Int. J. Coal Geol. 2018, 200, 199–212. [Google Scholar] [CrossRef]
- Longinos, S.N.; Hazlett, R. Cryogenic fracturing using liquid nitrogen on granite at elevated temperatures: A case study for enhanced geothermal systems in Kazakhstan. Sci. Rep. 2024, 14, 160. [Google Scholar] [CrossRef]
- Zhao, X.; Yang, Z.; Lin, W.; Xiong, S.; Luo, Y.; Wang, Z.; Chen, T.; Xia, D.; Wu, Z. Study on pore structures of tight sandstone reservoirs based on nitrogen adsorption, high-pressure mercury intrusion, and rate-controlled mercury intrusion. J. Energy Resour. Technol. 2019, 141, 112903. [Google Scholar] [CrossRef]
- Shu, Z.; Shu, Y.; Chen, M. Lithofacies heterogeneity and reservoir pore development characteristics of continental shale: A case study of the Dongyuemiao shale of the Ziliujing Formation in the Sichuan Basin. Bull. Geol. Sci. Technol. 2024, 43, 1–15. [Google Scholar]
- Liu, Z.; Hu, Z.; Liu, G. Source reservoir features and favorable enrichment interval evaluation methods of high mature continental shale: A case study of the Jurassic Dongyuemiao Member in the Fuxing area, eastern Sichuan Basin. Nat. Gas Ind. 2022, 42, 11–24. [Google Scholar]
- Liu, H.; Li, X.; Wan, Y. Formation conditions and exploration and development potential of continental shale gas: A case of Dongyuemiao Member of the Jurassic in North Fuling area, eastern Sichuan Basin. Mar. Orig. Pet. Geol. 2020, 25, 148–154. [Google Scholar]
- Hu, D.; Wei, Z.; Wei, X. Breakthrough in the exploration of continental shale oil/gas of Jurassic Lianggaoshan Formation in the Fuxing area of the Sichuan Basin and its inspiration. Nat. Gas Ind. 2025, 45, 1–13. [Google Scholar]
- Wang, P.; Shen, B.; Liu, Z. Characteristics and main controlling factors of organic pore development in continental shales of the Lianggaoshan Formation in the Fuxing area, Sichuan Basin. Pet. Geol. Exp. 2024, 46, 499–509. [Google Scholar]
- Shu, Z.; Zuou, L.; Li, X. Geological characteristics of gas condensate reservoirs and their exploration and development prospect in the Jurassic continental shale of the Dongyuemiao Member of Ziliujing Formation, Fuxing area, eastern Sichuan Basin. Oil Gas Geol. 2021, 42, 212–223. [Google Scholar]
- Li, J.; Zheng, B. A New method for fractal characterization of microscopic pores and its application in shale reservoirs. Nat. Gas Geosci. 2015, 35, 52–59. [Google Scholar]
- Wang, M.; Xue, H.; Tian, S.; Wilkins, R.; Wang, Z. Fractal characteristics of Upper Cretaceous lacustrine shale from the Songliao Basin, NE China. Mar. Pet. Geol. 2015, 67, 144–153. [Google Scholar] [CrossRef]
- Liu, K.; Ostadhassan, M.; Kong, L. Fractal and multifractal characteristics of pore throats in the Bakken Shale. Transp. Porous Media 2019, 126, 579–598. [Google Scholar] [CrossRef]
- Zhao, P.; Wang, Z.; Sun, Z.; Cai, L.; Wang, L. Investigation on the pore structure and multifractal characteristics of tight oil reservoirs using NMR Measurements: Permian Lucaogou Formation in Jimusaer Sag, Junggar Basin. Mar. Pet. Geol. 2017, 86, 1067–1081. [Google Scholar] [CrossRef]
- Zheng, S.; Yao, Y.; Liu, D.; Cai, Y.; Liu, Y.; Li, X. Nuclear magnetic resonance T2 cutoffs of coals: A novel method by multifractal analysis theory. Fuel 2019, 241, 715–724. [Google Scholar] [CrossRef]
- Peng, J.; Hu, Z.; Feng, D.; Wang, Q. Sedimentology and sequence stratigraphy of lacustrine deep-water fine-grained sedimentary rocks: The Lower Jurassic Dongyuemiao Formation in the Sichuan Basin, Western China. Mar. Pet. Geol. 2022, 146, 105933. [Google Scholar] [CrossRef]
- Zhou, Y.; Jiang, C.; Hu, D.; Wei, Z.; Wei, X.; Wang, D.; Hao, J.; Jiang, Y.; Gu, Y. Controlling Factors of Organic-Rich Lacustrine Shale in the Jurassic Dongyuemiao Member of Sichuan Basin, SW China. Geofluids 2023, 152, 3380389. [Google Scholar] [CrossRef]
- Liang, C.; Jiang, Z.; Cao, Y.; Wu, J.; Wang, Y.; Hao, F. Sedimentary characteristics and origin of lacustrine organic-rich shales in the salinized Eocene Dongying Depression. Geol. Soc. Am. 2018, 130, 154–174. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, S.; Wang, Y.; Tan, M. Lithofacies types and reservoirs of Paleogene fine-grained sedimentary rocks Dongying Sag, Bohai Bay Basin, China. Pet. Explor. Dev. 2016, 43, 218–229. [Google Scholar] [CrossRef]
- Allix, P.; Burnhama, F.; Fowler, T.; Herron, M.; Symington, B. Coaxing oil from shale. Oilfield Rev. 2010, 22, 4–15. [Google Scholar]
- Wang, G.; Cheng, G.; Carr, T. Marcellus shale lithofacies prediction by multiclass neural network classification in the Appalachian Basin. Math. Geosci. 2012, 44, 975–1004. [Google Scholar] [CrossRef]
- Shi, J.; Jin, Z.; Liu, Q.; Huang, Z. Lithofacies classification and origin of the Eocene lacustrine fine-grained sedimentary rocks in the Jiyang Depression, Bohai Bay Basin, Eastern China. J. Asian Earth Sci. 2020, 194, 104002. [Google Scholar] [CrossRef]
- Wang, S.; Javadpour, F.; Feng, Q. Confinement correction to mercury intrusion capillary pressure of shale nanopores. Sci. Rep. 2016, 6, 20160. [Google Scholar] [CrossRef]
- De, B. The Structure and Properties of Porous Materials. In Proceedings of the Tenth Symposium of the Colston Research Society, Bristol, UK, 24–27 March 1958; Butterworths: London, UK, 1958; Volume 389, pp. 68–94. [Google Scholar]
- Hu, Y.; Guo, Y.; Zhang, J. A method to determine nuclear magnetic resonance cutoff value of tight sandstone reservoir based on multifractal analysis. Energy Sci. Eng. 2020, 8, 1135–1148. [Google Scholar] [CrossRef]
- Ge, X.; Fan, Y.; Li, J. Pore structure characterization and classification using multifractal theory: An application in Santanghu Basin of Western China. J. Pet. Sci. Eng. 2015, 127, 297–304. [Google Scholar] [CrossRef]
- Chhabra, A.; Jensen, R. Direct determination of the f(α) singularity spectrum. Phys. Rev. Lett. 1989, 62, 1327–1330. [Google Scholar] [CrossRef]
- Posadas, A.N.D.; Giménez, D.; Bittelli, M.; Vaz, C.M.P.; Flury, M. Multifractal Characterization of Particle-Size Distributions. Soil Sci. Soc. Am. J. 2001, 65, 1361. [Google Scholar] [CrossRef]
- Lopes, R.; Betrouni, N. Fractal and multifractal analysis: A review. Med. Image Anal. 2009, 13, 634–649. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Rezaee, R. Fractal analysis of the pore structure for clay bound water and potential gas storage in shales based on NMR and N2 gas adsorption. J. Pet. Sci. Eng. 2019, 177, 756–765. [Google Scholar] [CrossRef]
- Wang, W.; Song, Y.; Huang, J. Study on fractal characteristics of pore throat structure of tight sandstone by high pressure mercury injection wxperiment. Bullet Geol. Sci. Technol. 2021, 40, 22–30. [Google Scholar]
- He, Y.; Mao, Z.; Xiao, L. An improved method of using NMR T2 distribution to ecaluate pore size distribution. Chin. J. Geophys. 2005, 45, 373–378. [Google Scholar]
- Wang, F.; Zai, Y. Fractal and multifractal characteristics of shale nanopores. Results Physics. 2021, 25, 104277. [Google Scholar] [CrossRef]
- Li, Y.; Liu, D.; Feng, X.; Zhao, F.; Chen, Y.; Wang, Y.; Liu, R.; Du, W.; Fan, Q.; Song, Y.; et al. Heterogeneity characteristics and its controlling factors of marine shale reservoirs from the Wufeng-Longmaxi in the Northern Guizhou area. Geol. China 2024, 51, 780–798. [Google Scholar]
- Ramandi, H.; Mostaghimi, P.; Armstrong, R. Porosity and Permeability Characterization of Coal: A Micro-Computed Tomography Study. Int. J. Coal Geol. 2016, 154–155, 57–68. [Google Scholar] [CrossRef]
Sample | Lithofacies | TOC (%) (δ = ±5%) | Clay (%) (δ = ±10%) | Quartz (%) (δ = ±15%) |
---|---|---|---|---|
WellC, 2651.71 m | SLMS | 1.77 | 38.9 | 19.2 |
WellB, 2498.7 m | SLMS | 1.25 | 50.9 | 23.6 |
WellA, 2951.72 m | SLMS | 1.06 | 25.4 | 14.3 |
WellB, 2515.98 m | SLMS | 1.69 | 50.9 | 29.6 |
WellA, 2937.66 m | CLCS | 1.53 | 68.2 | 24.2 |
WellA, 2940.08 m | CLCS | 1.85 | 65.3 | 25.2 |
WellB, 2947.4 m | CLCS | 4.03 | 68.6 | 26.3 |
WellB, 2507.62 m | CLCS | 1.94 | 56.8 | 28.3 |
WellC, 2655.22 m | CLCS | 1.63 | 64.9 | 29.9 |
WellB, 2493.09 m | CS | 1.53 | 67.5 | 25 |
WellB, 2494.22 m | CS | 4.03 | 66.8 | 25.1 |
WellB, 2509.7 m | CS | 1.89 | 63.3 | 28.4 |
WellB, 2513.74 m | CS | 1.79 | 56.7 | 30.6 |
WellB, 2503.37 m | SLCS | 1.2 | 63.9 | 26.7 |
WellA, 2944.06 m | SLCS | 1.42 | 64.4 | 24.6 |
Sample | Lithofacies | Total MIP Intrusion Volume (mL/g) (δ = ±1%) | Nitrogen Adsorption Quantity (cm3/g STP) | Micropore (mm3/g) | Mesopore (mm3/g) | Macropore (mm3/g) | Total Pore Volume (mm3/g) |
---|---|---|---|---|---|---|---|
WellC, 2651.71 m | SLMS | 0.0024 | 9.15 | 0.86 | 5.27 | 5.82 | 11.95 |
WellB, 2498.7 m | SLMS | 0.0069 | 6.47 | 0.06 | 1.67 | 4.6 | 6.33 |
WellA, 2951.72 m | SLMS | 0.0077 | 8.35 | 0.15 | 2.63 | 6.22 | 9 |
WellB, 2515.98 m | SLMS | 0.0051 | 4.3 | 0.22 | 6.16 | 5.93 | 12.31 |
WellA, 2937.66 m | CLCS | 0.0087 | 9.25 | 1.29 | 4.12 | 6.49 | 11.9 |
WellA, 2940.08 m | CLCS | 0.0066 | 7.83 | 1.3 | 4.21 | 4.65 | 10.16 |
WellB, 2947.4 m | CLCS | 0.0046 | 5.36 | 0.52 | 4.11 | 5.66 | 10.29 |
WellB, 2507.62 m | CLCS | 0.0065 | 5.92 | 0.21 | 5.31 | 4.83 | 10.35 |
WellC, 2655.22 m | CLCS | 0.0073 | 4.86 | 0.16 | 4.49 | 5.14 | 9.79 |
WellB, 2493.09 m | CS | 0.007 | 5.26 | 0.09 | 3.52 | 5.35 | 8.96 |
WellB, 2494.22 m | CS | 0.011 | 5.9 | 0.42 | 5.25 | 8.27 | 13.94 |
WellB, 2509.7 m | CS | 0.0056 | 5.38 | 0.19 | 4.82 | 3.87 | 8.88 |
WellB, 2513.74 m | CS | 0.0063 | 6.35 | 0.13 | 4.52 | 4.98 | 9.63 |
WellB, 2503.37 m | SLCS | 0.005 | 5.18 | 0.67 | 5.94 | 6.68 | 13.29 |
WellA, 2944.06 m | SLCS | 0.0092 | 9.25 | 0.12 | 4.08 | 3.71 | 7.91 |
Sample | Lithofacies | Dmin | Dmax | D0 | D1 | D2 | D0-Dmax | Dmin-D0 | ΔD | max | min | 0 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
WellB, 2503.37 m | SLCS | 1.78 | 0.82 | 1 | 0.91 | 0.86 | 0.18 | 0.78 | 0.96 | 2.1 | 0.78 | 1 | 1.3 |
WellA, 2944.06 m | SLCS | 1.73 | 0.84 | 1 | 0.92 | 0.87 | 0.16 | 0.73 | 0.89 | 1.89 | 0.75 | 1 | 1.14 |
WellC, 2651.71 m | SLMS | 1.36 | 0.8 | 1 | 0.89 | 0.84 | 0.2 | 0.36 | 0.56 | 1.64 | 0.89 | 1 | 0.75 |
WellB, 2498.7 m | SLMS | 1.62 | 0.81 | 1 | 0.91 | 0.86 | 0.19 | 0.62 | 0.81 | 1.83 | 0.77 | 1 | 1.06 |
WellA, 2951.72 m | SLMS | 2.05 | 0.8 | 1 | 0.9 | 0.85 | 0.2 | 1.05 | 1.25 | 1.88 | 0.78 | 1 | 1.1 |
WellB, 2515.98 m | SLMS | 1.33 | 0.75 | 1 | 0.85 | 0.79 | 0.25 | 0.33 | 0.58 | 1.43 | 0.78 | 1 | 0.65 |
WellA, 2937.66 m | CLCS | 1.87 | 0.85 | 1 | 0.91 | 0.88 | 0.15 | 0.87 | 1.02 | 2.15 | 0.77 | 1 | 1.38 |
WellA, 2940.08 m | CLCS | 1.74 | 0.78 | 1 | 0.93 | 0.84 | 0.22 | 0.74 | 0.96 | 1.91 | 0.75 | 1 | 1.16 |
WellB, 2947.4 m | CLCS | 1.8 | 0.83 | 1 | 0.91 | 0.85 | 0.17 | 0.8 | 0.97 | 1.8 | 0.77 | 1 | 1.03 |
WellB, 2507.62 m | CLCS | 1.7 | 0.81 | 1 | 0.92 | 0.85 | 0.19 | 0.7 | 0.89 | 2.1 | 0.78 | 1 | 1.32 |
WellC, 2655.22 m | CLCS | 1.87 | 0.86 | 1 | 0.95 | 0.89 | 0.14 | 0.87 | 1.01 | 2.06 | 0.78 | 1 | 1.28 |
WellB, 2493.09 m | CS | 1.65 | 0.83 | 1 | 0.93 | 0.87 | 0.17 | 0.65 | 0.82 | 2.34 | 0.78 | 1 | 1.56 |
WellB, 2494.22 m | CS | 2 | 0.93 | 1 | 0.96 | 0.95 | 0.07 | 1 | 1.07 | 2.36 | 0.75 | 1 | 1.41 |
WellB, 2509.7 m | CS | 1.56 | 0.83 | 1 | 0.9 | 0.85 | 0.17 | 0.56 | 0.73 | 1.89 | 0.79 | 1 | 1.1 |
WellB, 2513.74 m | CS | 1.63 | 0.82 | 1 | 0.87 | 0.84 | 0.18 | 0.63 | 0.81 | 1.49 | 0.76 | 1 | 0.73 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, X.; Gu, Y.; Jiang, Y.; Wang, Z.; Fu, Y. Characterization of Pore Heterogeneity in Lacustrine Shale Based on MIP, LTNA, NMR, and Multifractal Characteristics: A Case Study of the Jurassic Dongyuemiao Member, China. Fractal Fract. 2025, 9, 265. https://doi.org/10.3390/fractalfract9040265
Wu X, Gu Y, Jiang Y, Wang Z, Fu Y. Characterization of Pore Heterogeneity in Lacustrine Shale Based on MIP, LTNA, NMR, and Multifractal Characteristics: A Case Study of the Jurassic Dongyuemiao Member, China. Fractal and Fractional. 2025; 9(4):265. https://doi.org/10.3390/fractalfract9040265
Chicago/Turabian StyleWu, Xu, Yifan Gu, Yuqiang Jiang, Zhanlei Wang, and Yonghong Fu. 2025. "Characterization of Pore Heterogeneity in Lacustrine Shale Based on MIP, LTNA, NMR, and Multifractal Characteristics: A Case Study of the Jurassic Dongyuemiao Member, China" Fractal and Fractional 9, no. 4: 265. https://doi.org/10.3390/fractalfract9040265
APA StyleWu, X., Gu, Y., Jiang, Y., Wang, Z., & Fu, Y. (2025). Characterization of Pore Heterogeneity in Lacustrine Shale Based on MIP, LTNA, NMR, and Multifractal Characteristics: A Case Study of the Jurassic Dongyuemiao Member, China. Fractal and Fractional, 9(4), 265. https://doi.org/10.3390/fractalfract9040265