Neural Network Method for Solving Time Fractional Diffusion Equations
Abstract
:1. Introduction
2. Preliminaries and Definitions
3. Neural Network for Solving Time Fractional Diffusion Equations
3.1. Neural Network Structure and Parameter
3.2. Fractional Differentiation of the Neural Network and the Construction of the Loss Function
3.3. Construction of the Loss Function for 2D and 3D Problem
4. Numerical Tests
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shiri, B.; Baleanu, D. All linear fractional derivatives with power functions’convolution kernel and interpolation properties. Chaos Solitons Fractals 2023, 170, 113399. [Google Scholar] [CrossRef]
- Shiri, B.; Kong, H.; Wu, G.C.; Luo, C. Adaptive Learning Neural Network Method for Solving Time–Fractional Diffusion Equations. Neural Comput. 2022, 4, 971–990. [Google Scholar] [CrossRef]
- Ma, C.H.; Shiri, B.; Wu, G.; Baleanu, D. New fractional signal smoothing equations with short memory and variable order. Optik 2020, 218, 164507. [Google Scholar] [CrossRef]
- Wu, Z.; Zhang, X.; Wang, J.; Zeng, X. Applications of Fractional Differentiation Matrices in Solving Caputo Fractional Differential Equations. Fractal Fract. 2023, 7, 374. [Google Scholar] [CrossRef]
- Kuzenov, V.V.; Ryzhkov, S.V.; Varaksin, A.Y. Development of a Method for Solving Elliptic Differential Equations Based on a Nonlinear Compact-Polynomial Scheme. J. Comput. Appl. Math. 2024, 451, 116098. [Google Scholar] [CrossRef]
- Wang, Y.; Cai, M. Finite Difference Schemes for Time-Space Fractional Diffusion Equations in One- and Two-Dimensions. Commun. Appl. Math. Comput. 2023, 5, 1674–1696. [Google Scholar] [CrossRef]
- Zhou, Z.; Gong, W. Finite element approximation of optimal control problems governed by time fractional diffusion equation. Comput. Math. Appl. 2016, 71, 301–318. [Google Scholar] [CrossRef]
- Zhang, Y.N.; Sun, Z.Z.; Liao, H.L. Finite difference methods for the time fractional diffusion equation on non-uniform meshes. J. Comput. Phys. 2014, 265, 195–210. [Google Scholar] [CrossRef]
- Lin, Y.; Xu, C. Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 2007, 225, 1533–1552. [Google Scholar] [CrossRef]
- Wang, Z.; Li, M. Super convergence analysis of anisotropic finite element method for the time fractional substantial diffusion equation with smooth and non-smooth solutions. Math. Methods Appl. Sci. 2023, 46, 5545–5560. [Google Scholar] [CrossRef]
- Kazem, S.; Dehghan, M. Semi-analytical solution for time-fractional diffusion equation based on finite difference method of lines (MOL). Eng. Comput. 2019, 35, 229–241. [Google Scholar] [CrossRef]
- Zhu, H.; Xu, C. A Highly Efficient Numerical Method for the Time-Fractional Diffusion Equation on Unbounded Domains. J. Sci. Comput. 2024, 99, 1.1–1.34. [Google Scholar] [CrossRef]
- Dehghan, M.; Manafian, J.; Saadatmandi, A. Solving nonlinear fractional partial differential equations using the homotopy analysis method. Numer. Methods Part. Differ. Equ. 2010, 26, 448–479. [Google Scholar] [CrossRef]
- Khan, Y.; Wu, Q.; Faraz, N.; Yildirim, A.; Madani, M. A new fractional analytical approach via a modified Riemann–Liouville derivative. Appl. Math. Lett. 2012, 25, 1340–1346. [Google Scholar] [CrossRef]
- Khan, Y.; Sayev, K.; Fardi, M.; Ghasemi, M. A novel computing multi-parametric homotopy approach for system of linear and nonlinear Fredholm integral equations. Appl. Math. Comput. 2014, 249, 229–236. [Google Scholar] [CrossRef]
- Jleli, M.; Kumar, S.; Kumar, R.; Samet, B. Analytical approach for time fractional wave equations in the sense of Yang-Abdel-Aty-Cattani via the homotopy perturbation transform method. Alex. Eng. J. 2020, 59, 2859–2863. [Google Scholar] [CrossRef]
- Singh, S.; Singh, S.; Aggarwal, A. A new spline technique for the time fractional diffusion-wave equation. MethodsX 2023, 10, 102007. [Google Scholar] [CrossRef]
- Heath, M.T. Scientific Computing: An Introductory Survey, 2nd ed.; McGraw-Hill: New York, NY, USA, 2002. [Google Scholar]
- Garrappa, R.; Popolizio, M. Computing the Matrix Mittag-Leffler Function with Applications to Fractional Calculus. J. Sci. Comput. 2018, 77, 129–153. [Google Scholar] [CrossRef]
- Abbasb, Y.S.; Kazem, S.; Alhuthali, M.S.; Alsulami, H.H. Application of the operational matrix of fractional-order Legendre functions for solving the time-fractional convection-diffusion equation. Appl. Math. Comput. 2015, 266, 31–40. [Google Scholar] [CrossRef]
- Gao, F.; Chi, C. Solving FDE by trigonometric neural network and its applications in simulating fractional HIV model and fractional Schrodinger equation. Math. Methods Appl. Sci. 2025, 46, 3132–3142. [Google Scholar] [CrossRef]
- Gao, F.; Dong, Y.; Chi, C. Solving Fractional Differential Equations by Using Triangle Neural Network. J. Funct. Spaces 2021, 2021, 5589905. [Google Scholar] [CrossRef]
- Capelas de Oliveira, E. Mittag-Leffler Functions. In Solved Exercises in Fractional Calculus; Studies in Systems, Decision and Control; Springer: Cham, Switzerland, 2019; Volume 240. [Google Scholar]
- Pang, G.; Chen, W.; Sze, K.Y. Gauss-Jacobi-type quadrature rules for fractional directional integrals. Comput. Math. Appl. 2013, 66, 597–607. [Google Scholar] [CrossRef]
- Hale, N.; Townsend, A. Fast and accurate computation of Gauss-Legendre and Gauss-Jacobi quadrature nodes and weights. Siam J. Sci. Comput. 2013, 35, A652–A674. [Google Scholar] [CrossRef]
- Fang, X.; Qiao, L.; Zhang, F.; Sun, F. Explore deep network for a class of fractional partial differential equations. Chaos Solitons Fractals 2023, 172, 113528. [Google Scholar] [CrossRef]
- Pakdaman, M.; Ahmadian, A.; Effati, S.; Salahshour, S.; Baleanu, D. Solving differential equations of fractional order using an optimization technique based on training artificial neural network. Appl. Math. Comput. 2017, 293, 81–95. [Google Scholar] [CrossRef]
0.049819936 | 0.114838185 | 0.177263321 | 0.235542195 | 0.288301916 | |
0.33430462 | 0.372471717 | 0.40190849 | 0.421924921 | 0.432051824 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, F.; Chi, C. Neural Network Method for Solving Time Fractional Diffusion Equations. Fractal Fract. 2025, 9, 338. https://doi.org/10.3390/fractalfract9060338
Gao F, Chi C. Neural Network Method for Solving Time Fractional Diffusion Equations. Fractal and Fractional. 2025; 9(6):338. https://doi.org/10.3390/fractalfract9060338
Chicago/Turabian StyleGao, Feng, and Chunmei Chi. 2025. "Neural Network Method for Solving Time Fractional Diffusion Equations" Fractal and Fractional 9, no. 6: 338. https://doi.org/10.3390/fractalfract9060338
APA StyleGao, F., & Chi, C. (2025). Neural Network Method for Solving Time Fractional Diffusion Equations. Fractal and Fractional, 9(6), 338. https://doi.org/10.3390/fractalfract9060338