In this study, we consider a fractional-order extension of the Jeffreys equation (also known as the dual-phase-lag equation) by introducing the Reimann–Liouville fractional integral, of order
, to the Jeffreys constitutive law, where for
it
[...] Read more.
In this study, we consider a fractional-order extension of the Jeffreys equation (also known as the dual-phase-lag equation) by introducing the Reimann–Liouville fractional integral, of order
, to the Jeffreys constitutive law, where for
it corresponds to the conventional Jeffreys equation. The kinetical behaviors of the fractional equation such as non-negativity of the propagator, mean-squared displacement, and the temporal amplitude are investigated. The fractional Langevin equation, or the fractional damped oscillator, is a special case of the considered integrodifferential equation governing the temporal amplitude. When
and
, the fractional differential equation governing the temporal amplitude has the mathematical structure of the classical linear damped oscillator with different coefficients. The existence of a real solution for the new temporal amplitude is proven by deriving this solution using the complex integration method. Two forms of conditional closed-form solutions for the temporal amplitude are derived in terms of the Mittag–Leffler function. It is found that the proposed generalized fractional damped oscillator equation results in underdamped oscillations in the case of
, under certain constraints derived from the non-fractional case. Although the nonfractional case has the form of classical linear damped oscillator, it is not necessary for its solution to have the three common types of oscillations (overdamped, underdamped, and critical damped), unless a certain condition is met on the coefficients. The obtained results could be helpful for analyzing thermal wave behavior in fractals, heterogeneous materials, or porous media since the fractional-order derivatives are related to the porosity of media.
Full article