Hermite–Hadamard-Type Inequalities for h-Godunova–Levin Convex Fuzzy Interval-Valued Functions via Riemann–Liouville Fractional q-Integrals
Abstract
1. Introduction
2. Preliminaries
- We employ the notation to represent the set of all continuous interval-valued functions on . Again, the notation characterizes the set of continuous real-valued functions.
- (i)
- is normal.
- (ii)
- is fuzzy convex.
- (iii)
- is upper semi continuous on .
- (iv)
- is compactly supported.
- We denote by the space of fuzzy intervals.
- For the UD order relation is given by
- (i)
- (ii)
- Choosing , then q-gamma function is given as
- Moreover, it is defined level-wise by
3. The Main Results
- 1.
- If is a UD-h-Godunova–Levin convex FIVF, then is also a UD-h-Godunova–Levin convex FIVF for
- 2.
- If and are UD-h-Godunova–Levin convex FIVFs, then max is also a UD-h-Godunova–Levin convex FIVF.
- If , then UD-h-Godunova–Levin convex FIVFs become UD-s-Godunova–Levin convex FIVFs, that is,
- If , then UD-h-Godunova–Levin convex FIVFs become UD-P-Godunova–Levin convex FIVFs, that is,
- If , then UD-h-Godunova–Levin convex FIVFs become UD-Godunova–Levin convex FIVFs, that is,
- 1.
- If we replace by in Theorem 2, we obtain the results of in ([8], [Theorem 23]), i-e.,
- 2.
- If we let and replace by in Theorem 2, then we get ([45], [Theorem 5]).
- 3.
- If we replace by and in Theorem 2, then we get ([33], [Theorem 3.1]).
- 4.
- If we let and replace by in Theorem 2, then we get ([31], [Theorem 3.4]).
- 5.
- If we let and replace by in Theorem 2, then we get ([46], [Theorem 4.1]).
- 1.
- If we replace by and by , and letting in Theorem 3 and Theorem 4, we obtain the results of ([45], [Theorem 6 and Theorem 7]), respectively.
- 2.
- If we replace by and by in Theorem 3 and Theorem 4, we obtain the results of ([8], [Theorem 27 and Theorem 28]), respectively.
- 3.
- If we replace and by in Theorem 3 and Theorem 4, we obtain ([33], [Theorems 3.4 and Theorem 3.6]), respectively.
- 4.
- If we replace and by , and letting in Theorem 3 and Theorem 4, we obtain ([31], [Theorems 3.5 and Theorem 3.6]), respectively.
- 5.
- If we replace by and by , and letting and in Theorem 3 and Theorem 4, we obtain ([46], [Theorem 4.5 and Theorem 4.6]), respectively.
- 1.
- If we replace by in Theorem 5 and Theorem 6, then we have ([8], [Theorem 30 and Theorem 31]), respectively.
- 2.
- If we replace by , and letting in Theorem 5 and Theorem 6, then we have ([45], [Theorem 9 and Theorem 8]), respectively
- 3.
- If we replace by , and letting in Theorem 5 and Theorem 6, we have ([33], [Theorem 3.8 and Theorem 3.7]), respectively.
- 4.
- If we let and replace by in Theorem 5 and Theorem 6, we obtain ([44], [Theorems 3.14 and Theorem 3.15]), respectively.
4. Numerical Examples
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Desvillettes, L.; Phung, K.D. Exponential decay toward equilibrium vis log convexity for a degenerate reaction-diffusion system. J. Differ. Equ. 2022, 338, 227–255. [Google Scholar] [CrossRef]
- Razzaq, A.; Rasheed, T.; Shaokat, S. Generalized Hermite-Hadamard type inequalities for generalized F-convex function via local fractional integrals. Chaos Solitons Fractals 2023, 168, 113172. [Google Scholar] [CrossRef]
- Butt, S.I.; Agarwal, P.; Yousaf, S.; Guirao, J.L.G. Generalized fractal Jensen and Jensen-Mercer inequalities for harmonic convex function with applications. J. Inequal. Appl. 2022, 2022, 1. [Google Scholar] [CrossRef]
- Sun, W. Local fractional Ostrowski-type inequalities involving generalized h-convex functions and some applications for generalized moments. Fractals 2021, 29, 2150006. [Google Scholar] [CrossRef]
- Almutairi, O.; Kiliçman, A. Some integral inequalities for h-Godunova-Levin preinvexity. Symmetry 2019, 11, 1500. [Google Scholar] [CrossRef]
- Hadamard, J. Étude sur les propriétés des fonctions entiéres et en particulier d'une fonction considérée par Riemann. J. Math. Pures Appl. 1893, 58, 171–215. [Google Scholar]
- Steinerberger, S. The Hermite–Hadamard Inequality in Higher Dimensions. J. Geom. Anal. 2020, 30, 466–483. [Google Scholar] [CrossRef]
- Cheng, H.; Zhao, D.; Sarikaya, M.Z. Hermite-Hadamard type inequalities for h-convex function via fuzzy interval-valued fractional q-integral. Fractals 2024, 32, 2450042. [Google Scholar] [CrossRef]
- Wang, J.R.; Fečkan, M. Fractional Hermite–Hadamard Inequalities; De Gruyter: Berlin, Germany, 2018. [Google Scholar]
- Awan, M.U.; Ubaid Ullah, M.; Rasssisa, M.T.; Talib, S.; Noor, M.A.; Noor, K.I. Generalized Fractional Hermite–Hadamard–Noor Inequalities Via n-Polynomial Preinvex Functions. In Mathematical Analysis, Optimization, Approximation and Applications; Word Scientific Publising Company: Singapore, 2024; pp. 73–100. [Google Scholar]
- Du, T.; Long, Y.; Liao, J. Multiplicative fractional HH–type inequalities via multiplicative AB–fractional integral operators. J. Comput. Appl. Math. 2025, 474, 116970. [Google Scholar] [CrossRef]
- Lakhdari, A.; Budak, H.; Mlaiki, N.; Meftah, B.; Abdeljawad, T. New insights on fractal–fractional integral inequalities: Hermite–Hadamard and Milne estimates. Chaos Solitons Fractals 2025, 193, 116087. [Google Scholar] [CrossRef]
- Du, T.; Xu, L. Hermite–Hadamard and Pachpatte–type integral inequalities for generalized subadditive functions in the fractal sense. Miskolc Math. Notes 2024, 25, 645–658. [Google Scholar] [CrossRef]
- Phuong, N.D.; Etemad, S.; Rezapour, S. On two structures of the fractional q-sequential integro- differential boundary value problems. Math. Methods Appl. Sci. 2022, 45, 618–639. [Google Scholar] [CrossRef]
- Sudsutad, W.; Ahmad, B.; Ntouyas, S.K.; Tariboon, J. Impulsively hybrid fractional quantum Langevin equation with boundary conditions involving Caputo q-k-fractional derivatives. Chaos Solitons Fractals 2016, 91, 47–62. [Google Scholar] [CrossRef]
- Zada, A.; Alam, M.; Riaz, U. Analysis of q-fractional implicit boundary value problems having Stieltjes integral conditions. Math. Methods Appl. Sci. 2021, 44, 4381–4413. [Google Scholar] [CrossRef]
- Zhang, T.; Tang, Y. A difference method for solving the q-fractional differential equations. Appl. Math. Lett. 2019, 98, 292–299. [Google Scholar] [CrossRef]
- Xu, P.; Ihsan Butt, S.; Ain, Q.U.; Budak, H. New Estimates for Hermite–Hadamard Inequality in Quantum Calculus via (α,m) Convexity. Symmetry 2022, 14, 1394. [Google Scholar] [CrossRef]
- Al–Salam, W.A. Some fractional q-integrals and q-derivatives. Proc. Edinburgh Math. Soc. 1966, 15, 135–140. [Google Scholar] [CrossRef]
- Tariboon, J.; Ntouyas, S.K.; Agarwal, P. New concepts of fractional quantum calculus and applications to impulsive fractional q-difference equations. Adv. Differ. Equ. 2015, 2015, 18. [Google Scholar] [CrossRef]
- Younus, A.; Asif, M.; Farhad, K. Interval-valued fractional q-calculus and applications. Inf. Sci. 2021, 569, 241–263. [Google Scholar] [CrossRef]
- Ali, M.A.; Budak, H.; Murtaza, G.; Chu, Y.M. Post-quantum Hermite–Hadamard type inequalities for interval–valued convex functions. J. Inequalities Appl. 2021, 2021, 84. [Google Scholar] [CrossRef]
- Costa, T.M.; Flores-Franulič, A.; Chalco-Cano, Y.; Aguirre-Cipe, I. Ostrowski-type inequalities for fuzzy-valued functions and its applications in quadrature theory. Inf. Sci. 2020, 529, 101–115. [Google Scholar] [CrossRef]
- Guo, Y.; Ye, G.; Liu, W.; Zhao, D.; Treantă, S. On symmetric gH-derivative: Applications to dual interval-valued optimization problems. Chaos Solitons Fractals 2022, 158, 112068. [Google Scholar] [CrossRef]
- Guo, Y.; Ye, G.; Liu, W.; Zhao, D.; Treantă, S. Solving nonsmooth interval optimization problems based on interval-valued symmetric invexity. Chaos Solitons Fractals 2023, 174, 113834. [Google Scholar] [CrossRef]
- Sun, L.; Zhu, L.; Li, W.; Zhang, C.; Balezentis, T. Interval-valued functional clustering based on the Wasserstein distance with application to stock data. Inf. Sci. 2022, 606, 910–926. [Google Scholar] [CrossRef]
- Tariboon, J.; Ali, M.A.; Budak, H.; Ntouyas, S.K. Hermite-Hadamard inclusions for co-ordinated interval-valued functions via post-quantum calculus. Symmetry 2021, 13, 1216. [Google Scholar] [CrossRef]
- Zhao, D.; An, T.; Ye, G.; Liu, W. Chebyshev type inequalities for interval-valued functions. Fuzzy Sets Syst. 2020, 396, 82–101. [Google Scholar] [CrossRef]
- Zhao, D.; An, T.; Ye, G.; Liu, W. Some generalizations of opial type inequalities for interval-valued functions. Fuzzy Sets Syst. 2022, 436, 128–151. [Google Scholar] [CrossRef]
- Zhou, T.; Yuan, Z.; Du, T. On the fractional integral inclusions having exponential kernals for interval-valued convex functions. Math. Sci. 2023, 17, 107–120. [Google Scholar] [CrossRef]
- Budak, H.; Tunc, T.; Sarikaya, M. Fractional Hermite-Hadamard-type inequalities for interval-valued functions. Proc. Am. Math. Soc. 2020, 148, 705–718. [Google Scholar] [CrossRef]
- Du, T.; Zhou, T. On the fractional double integral inclusion relations having exponential kernels via interval-valued co-ordinate convex mappings. Chaos Solitons Fractals 2022, 156, 111846. [Google Scholar] [CrossRef]
- Khan, M.B.; Santos-García, G.; Noor, M.A.; Soliman, M.S. Some new concepts related to fuzzy fractional calculus for up and down convex fuzzy-number valued functions and inequalities. Chaos Solitons Fractals 2022, 164, 112692. [Google Scholar] [CrossRef]
- Khan, M.B.; Othman, H.A.; Santos-García, G.; Saeed, T.; Soliman, M.S. On fuzzy fractional integral operators having exponential kernels and related certain inequalities for exponential trigonometric convex fuzzy-number valued mappings. Chaos Solitons Fractals 2023, 169, 113274. [Google Scholar] [CrossRef]
- Zhang, D.; Guo, C.; Chen, D.; Wang, G. Jensen’s inequalities for set-valued and fuzzy set-valued functions. Fuzzy Sets Syst. 2021, 404, 178–204. [Google Scholar] [CrossRef]
- Aumann, R.J. Integrals of set-valued functions. J. Math. Anal. Appl. 1965, 12, 1–12. [Google Scholar] [CrossRef]
- Kaleva, O. Fuzzy differential equations. Fuzzy Sets Syst. 1987, 24, 301–317. [Google Scholar] [CrossRef]
- Diamond, P.; Kloeden, P.E. Metric Spaces of Fuzzy Sets: Theory and Applications; World Scientific: Singapore, 1994; 178p. [Google Scholar]
- Costa, T.M. Jensen’s inequality type integral for fuzzy-interval-valued functions. Fuzzy Sets Syst. 2017, 327, 31–47. [Google Scholar] [CrossRef]
- Costa, T.M.; Román-Flores, H. Some integral inequalities for fuzzy-interval-valued functions. Inf. Sci. 2017, 420, 110–125. [Google Scholar] [CrossRef]
- Allahviranloo, T.; Salahshour, S.; Abbasbandy, S. Explicit solutions of fractional differential equations with uncertainty. Soft Comput. 2012, 16, 296–302. [Google Scholar] [CrossRef]
- Zhang, X.; Shabbir, K.; Afzal, W.; Xiao, H.; Lin, D. Hermite-Hadamard and Jensen-Type Inequalities via Riemann Integral Operator for a Generalized Class of Godunova-Levin Functions. J. Math. 2022, 12, 3830324. [Google Scholar] [CrossRef]
- Sudsutad, W.; Ntouyas, S.K.; Tariboon, J. Integral inequalities via fractional quantum calculus. J. Inequalities Appl. 2016, 2016, 81. [Google Scholar] [CrossRef]
- Cheng, H.; Zhao, D.; Zhao, G. Fractional quantum Hermite-Hadamard type inequalities for interval-valued functions. Fractals 2023, 31, 2350104. [Google Scholar] [CrossRef]
- Khan, M.B.; Zaini, H.G.; Santos-García, G.; Noor, M.A.; Soliman, M.S. New class up and down λ-convex fuzzy-number valued mappings and related fuzzy fractional inequalities. Fractal Fract. 2022, 6, 679. [Google Scholar] [CrossRef]
- Zhao, D.; An, T.; Ye, G.; Liu, W. New Jensen and Hermite-Hadamard type inequalities for h-convex interval-valued functions. J. Inequalities Appl. 2018, 2018, 302. [Google Scholar] [CrossRef]





Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akram, M.W.; Iqbal, S.; Fahad, A.; Wang, Y. Hermite–Hadamard-Type Inequalities for h-Godunova–Levin Convex Fuzzy Interval-Valued Functions via Riemann–Liouville Fractional q-Integrals. Fractal Fract. 2025, 9, 578. https://doi.org/10.3390/fractalfract9090578
Akram MW, Iqbal S, Fahad A, Wang Y. Hermite–Hadamard-Type Inequalities for h-Godunova–Levin Convex Fuzzy Interval-Valued Functions via Riemann–Liouville Fractional q-Integrals. Fractal and Fractional. 2025; 9(9):578. https://doi.org/10.3390/fractalfract9090578
Chicago/Turabian StyleAkram, Muhammad Waseem, Sajid Iqbal, Asfand Fahad, and Yuanheng Wang. 2025. "Hermite–Hadamard-Type Inequalities for h-Godunova–Levin Convex Fuzzy Interval-Valued Functions via Riemann–Liouville Fractional q-Integrals" Fractal and Fractional 9, no. 9: 578. https://doi.org/10.3390/fractalfract9090578
APA StyleAkram, M. W., Iqbal, S., Fahad, A., & Wang, Y. (2025). Hermite–Hadamard-Type Inequalities for h-Godunova–Levin Convex Fuzzy Interval-Valued Functions via Riemann–Liouville Fractional q-Integrals. Fractal and Fractional, 9(9), 578. https://doi.org/10.3390/fractalfract9090578

