Multifunctional Porous Concrete Urban Pavements for a More Sustainable and Resilient Future †
Abstract
:1. Introduction
2. Pavement Design
3. Statistical Analysis
4. Conclusions and Next Steps
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Rodrigues, J.; Hernandez, J.; Gómez-Ullate, E.; Fresno, D. Sistemas Urbanos de Drenaje Sostenible, Esc. Caminos, Canales y Puertos Santander; Universidad de Cantabria: Santander, Spain, 2011; pp. 1–25. [Google Scholar]
- Perales-Momparler, S.; Andrés-Doménech, I.; Escalante, E. Los Sistemas Urbanos de Drenaje Sostenible (SUDS) en la Hidrogeología Urbana, Grup. In Proceedings of the TRAGSA Madrid IX Simposio de Hidrogeología AIH, Elche, Spain, 29–31 January 2008; pp. 1–12. Available online: http://www.dina-mar.es/pdf/6-if-suds-2.pdf (accessed on 14 March 2018).
- Lian, C.; Zhuge, Y. Optimum mix design of enhanced permeable concrete—An experimental investigation. Constr. Build. Mater. 2010, 24, 2664–2671. [Google Scholar] [CrossRef]
- Lim, E.; Tan, K.; Fwa, T. Effect of Mix Proportion on Strength and Permeability of Pervious Concrete for Use in Pavement. J. East. Asia Soc. Transp. Stud. 2013, 10, 1565–1575. [Google Scholar]
- Rangelov, M.; Nassiri, S.; Haselbach, L.; Englund, K. Using carbon fiber composites for reinforcing pervious concrete. Constr. Build. Mater. 2016, 126, 875–885. [Google Scholar] [CrossRef]
- Brake, N.A.; Allahdadi, H.; Adam, F. Flexural strength and fracture size effects of pervious concrete. Constr. Build. Mater. 2016, 113, 536–543. [Google Scholar] [CrossRef]
- Jang, J.G.; Ahn, Y.B.; Souri, H.; Lee, H.K. A novel eco-friendly porous concrete fabricated with coal ash and geopolymeric binder: Heavy metal leaching characteristics and compressive strength. Constr. Build. Mater. 2015, 79, 173–181. [Google Scholar] [CrossRef]
- Giustozzi, F. Polymer-modified pervious concrete for durable and sustainable transportation infrastructures. Constr. Build. Mater. 2016, 111, 502–512. [Google Scholar] [CrossRef]
- Bonicelli, A.; Arguelles, G.M.; Pumarejo, L.G.F. Improving Pervious Concrete Pavements for Achieving More Sustainable Urban Roads. Procedia Eng. 2016, 161, 1568–1573. [Google Scholar] [CrossRef]
- Khankhaje, E.; Salim, M.R.; Mirza, J.; Hussin, M.W.; Rafieizonooz, M. Properties of sustainable lightweight pervious concrete containing oil palm kernel shell as coarse aggregate. Constr. Build. Mater. 2016, 126, 1054–1065. [Google Scholar] [CrossRef]
- Torres, A.; Hu, J.; Ramos, A. The effect of the cementitious paste thickness on the performance of pervious concrete. Constr. Build. Mater. 2015, 95, 850–859. [Google Scholar] [CrossRef]
- Zaetang, Y.; Wongsa, A.; Sata, V.; Chindaprasirt, P. Use of lightweight aggregates in pervious concrete. Constr. Build. Mater. 2013, 48, 585–591. [Google Scholar] [CrossRef]
- Lee, M.; Huang, Y.; Chang, T.; Pao, C. Experimental Study of Pervious Concrete Pavement. In Proceedings of the GeoHunan International Conference 2011, Hunan, China, 9–11 June 2011; pp. 93–99. [Google Scholar] [CrossRef]
- Tennis, P.D.; Leming, M.L.; Akers, D.J. Pervious Concrete Pavements. 2004. Available online: http://myscmap.sc.gov/marine/NERR/pdf/PerviousConcrete_pavements.pdf (accessed on 22 March 2018).
- Ngohpok, C.; Sata, V.; Satiennam, T.; Klungboonkrong, P.; Chindaprasirt, P. Mechanical properties, thermal conductivity, and sound absorption of pervious concrete containing recycled concrete and bottom ash aggregates. KSCE J. Civ. Eng. 2018, 22, 1369–1376. [Google Scholar] [CrossRef]
- Martin, W.D.; Kaye, N.B.; Putman, B.J. Impact of vertical porosity distribution on the permeability of pervious concrete. Constr. Build. Mater. 2014, 59, 78–84. [Google Scholar] [CrossRef]
- Álvarez, A.; Martin, A.; Estakhri, C. Internal Structure of compacted permeable friction course mixtures. Constr. Build. Mater. 2010, 24, 1027–1035. [Google Scholar] [CrossRef]
- Chandrappa, A.K.; Biligiri, K.P. Pervious concrete as a sustainable pavement material-research findings and future prospects: A state-of-the-art review. Constr. Build. Mater. 2016, 111, 262–274. [Google Scholar] [CrossRef]
- Hasan, M.R.; Zain, M.F.M.; Hamid, R.; Kaish, A.B.M.A.; Nahar, S. A Comprehensive Study on Sustainable Photocatalytic Pervious Concrete for Storm Water Pollution Mitigation: A Review. Mater. Today Proc. 2017, 4, 9773–9776. [Google Scholar] [CrossRef]
- Ballari, M.M.; Hunger, M.; Hüsken, G.; Brouwers, H.J.H. Modelling and experimental study of the NOx photocatalytic degradation employing concrete pavement with titanium dioxide. Catal. Today 2010, 151, 71–76. [Google Scholar] [CrossRef]
- Karlessi, T.; Santamouris, M.; Apostolakis, K.; Synnefa, A.; Livada, I. Development and testing of thermochromic coatings for buildings and urban structures. Sol. Energy 2009, 83, 538–551. [Google Scholar] [CrossRef]
- Kondo, Y.; Ogasawara, T.; Kanamori, H. Field Measurements and Heat Budget Analysis on Sensible Heat Flux from Pavement. J. Environ. Eng. AIJ 2008, 73, 791–797. [Google Scholar] [CrossRef]
- American Concrete Institute ACI Committee 522. 522R-06: Pervious Concrete; American Concrete Institute: Farmington Hills, MI, USA, 2006; p. 25. [Google Scholar]
- Jafari, K.; Toufigh, V. Interface between Tire and Pavement. J. Mater. Civ. Eng. 2009, 29, 1–10. [Google Scholar] [CrossRef]
- Eriskin, E.; Karahancer, S.; Terzi, S.; Saltan, M. Examination of the Effect of Superhydrophobic Coated Pavement under Wet Conditions. Procedia Eng. 2017, 187, 532–537. [Google Scholar] [CrossRef]
- Kim, Y.J.; Gaddafi, A.; Yoshitake, I. Permeable concrete mixed with various admixtures. Mater. Des. 2016, 100, 110–119. [Google Scholar] [CrossRef]
- Jato-espino, D.; Rodriguez-hernandez, J.; Andrés-valeri, V.C.; Ballester-muñoz, F. A fuzzy stochastic multi-criteria model for the selection of urban pervious pavements. Expert Syst. Appl. 2014, 41, 6807–6817. [Google Scholar] [CrossRef]
- Bobylev, N. Comparative analysis of environmental impacts of selected underground construction technologies using the analytic network process. Autom. Constr. 2011, 20, 1030–1040. [Google Scholar] [CrossRef]
- Ozbek, A.S.A.; Weerheijm, J.; Schlangen, E.; van Breugel, K. Dynamic behavior of porous concretes under drop weight impact testing. Cem. Concr. Compos. 2013, 39, 1–11. [Google Scholar] [CrossRef]
- Bonicelli, A.; Giustozzi, F.; Crispino, M. Experimental study on the effects of fine sand addition on differentially compacted pervious concrete. Constr. Build. Mater. 2015, 91, 102–110. [Google Scholar] [CrossRef]
w/c | s/c | AV | |
---|---|---|---|
Literature reviewed parameters | Min: 0.20 | Min: 0.00 | Min: 13.00% |
Max: 0.42 | Max: 0.43 | Max: 42.00% | |
Design ratios used | 0.30 | 0.00 | 20.00% |
0.35 | 0.50 | ||
0.40 | 1.00 |
Cementitious Material (kg/m3) | Water (kg/m3) | Coarse Aggregate (kg/m3) | Sand (kg/m3) | |
---|---|---|---|---|
Min | 150.00 | 50.00 | 565.00 | 0.00 |
Max | 560.00 | 181.00 | 2035.20 | 146.00 |
Mixture | w/c | s/c | AG (mm) | AV Design | IT (Mpa) | Infiltration (cm/s) |
---|---|---|---|---|---|---|
3-1-1 | 0.40 | 1.00 | 8–12 | 20.00% | 0.91 | 1.92 |
1-2-2M | 0.35 | 0.50 | 4–8 | 20.00% | 1.74 | 0.74 |
1-2-3M2 | 0.30 | 0.50 | 4–8 | 20.00% | 1.89 | 0.3 |
1-2-1M2 | 0.40 | 0.50 | 4–8 | 20.00% | 1.83 | 0.46 |
R3-3 | 0.40 | 0.00 | 8–12 | 20.00% | 1.14 | 1.32 |
w/c | s/c | AG (mm) | AV Design | IT (Mpa) | Infiltration (cm/s) |
---|---|---|---|---|---|
0.40 | 0.50 | 4–8 | 20.00% | 1.47 | 0.93 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elizondo-Martínez, E.-J.; Andrés-Valeri, V.-C.; Juli-Gándara, L.; Rodríguez-Hernández, J. Multifunctional Porous Concrete Urban Pavements for a More Sustainable and Resilient Future. Proceedings 2018, 2, 1453. https://doi.org/10.3390/proceedings2231453
Elizondo-Martínez E-J, Andrés-Valeri V-C, Juli-Gándara L, Rodríguez-Hernández J. Multifunctional Porous Concrete Urban Pavements for a More Sustainable and Resilient Future. Proceedings. 2018; 2(23):1453. https://doi.org/10.3390/proceedings2231453
Chicago/Turabian StyleElizondo-Martínez, Eduardo-Javier, Valerio-Carlos Andrés-Valeri, Luis Juli-Gándara, and Jorge Rodríguez-Hernández. 2018. "Multifunctional Porous Concrete Urban Pavements for a More Sustainable and Resilient Future" Proceedings 2, no. 23: 1453. https://doi.org/10.3390/proceedings2231453
APA StyleElizondo-Martínez, E. -J., Andrés-Valeri, V. -C., Juli-Gándara, L., & Rodríguez-Hernández, J. (2018). Multifunctional Porous Concrete Urban Pavements for a More Sustainable and Resilient Future. Proceedings, 2(23), 1453. https://doi.org/10.3390/proceedings2231453