Quality Improvement of Polycarbonate Medical Device by Moldex3D and Taguchi DOE
Abstract
:1. Introduction
2. Materials and Methods
2.1. Medical Device Selection
2.2. Mold Design in Moldex3D
2.3. Materials Selection
2.4. Mesh Setup for the Model
2.5. Process Parameter Selection
2.6. Mathematical Assumptions
2.7. Optimization Techniques
3. Results
3.1. Warpage Displacement Measurement
3.2. Short Shot Reduction
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
No. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | |
Method | Experimental | R | × | × | R | × | × | × | × | × | × | × | R | × | × | R | × | |||||||||||||
Simulation | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | × | |||||||||||
Parameters | Mold Temp. | × | × | × | × | × | × | |||||||||||||||||||||||
Melt temp. | × | × | × | × | × | × | × | × | × | × | × | × | ||||||||||||||||||
Mold Design | × | × | × | × | ||||||||||||||||||||||||||
Gate number | × | |||||||||||||||||||||||||||||
Gate Location | × | |||||||||||||||||||||||||||||
Melt viscosity | × | |||||||||||||||||||||||||||||
Mold Materials | × | × | ||||||||||||||||||||||||||||
Packing Pressure | × | × | × | × | × | × | × | × | x | |||||||||||||||||||||
Packing Time | × | × | × | × | ||||||||||||||||||||||||||
Pressure Profile | × | |||||||||||||||||||||||||||||
Injection time | × | × | × | × | × | × | ||||||||||||||||||||||||
Injection Pressure | × | × | × | × | × | × | × | × | × | x | ||||||||||||||||||||
Injection Speed | × | × | × | × | × | × | ||||||||||||||||||||||||
Cycle time | × | |||||||||||||||||||||||||||||
Cooling time | × | × | × | × | ||||||||||||||||||||||||||
Back pressure | × | |||||||||||||||||||||||||||||
Screw speed | × | |||||||||||||||||||||||||||||
Barrel Temp. | × | |||||||||||||||||||||||||||||
Spot heating | × | |||||||||||||||||||||||||||||
Tensile Strength | × | |||||||||||||||||||||||||||||
Temperature at Flow Front | × | |||||||||||||||||||||||||||||
Time to reach ejection temperature | × | |||||||||||||||||||||||||||||
Coolant Temperature | × | × | ||||||||||||||||||||||||||||
Molding Cycle | × | |||||||||||||||||||||||||||||
Pressure Drop | × | |||||||||||||||||||||||||||||
Defects | Shrinkage | × | × | × | × | × | ||||||||||||||||||||||||
Warpage | × | × | × | × | × | × | × | × | × | |||||||||||||||||||||
Weld line | × | × | × | × | × | |||||||||||||||||||||||||
Air trap | × | × | ||||||||||||||||||||||||||||
Surface Defect | × | |||||||||||||||||||||||||||||
Sink Marks | × | × | × | |||||||||||||||||||||||||||
Incomplete Product | × | × | ||||||||||||||||||||||||||||
Flash | × | |||||||||||||||||||||||||||||
Short-Shot | × | × | x | |||||||||||||||||||||||||||
Air Bubble | × | |||||||||||||||||||||||||||||
Silver lines | × | |||||||||||||||||||||||||||||
Surface Gloss | × | |||||||||||||||||||||||||||||
Surface Waviness | × | |||||||||||||||||||||||||||||
Impact Strength | × | |||||||||||||||||||||||||||||
Surface Roughness | × | × | ||||||||||||||||||||||||||||
Material Rheology | × | |||||||||||||||||||||||||||||
Void | × | |||||||||||||||||||||||||||||
Optimization | x | x | x | x | x | x | x | x | x | x | x |
References
- Mohan, M.; Ansari, M.N.M.; Shanks, R.A. Review on the Effects of Process Parameters on Strength, Shrinkage, and Warpage of Injection Molding Plastic Component. Polym. Plast. Technol. Eng. 2017, 56, 1–12. [Google Scholar] [CrossRef]
- Liu, J.; Guo, F.; Gao, H.; Li, M.; Zhang, Y.; Zhou, H. Defect Detection of Injection Molding Products on Small Datasets Using Transfer Learning. J. Manuf. Process 2021, 70, 400–413. [Google Scholar] [CrossRef]
- Plastic Warpage in Injection Molding. Available online: https://www.vem-tooling.com/plastic-warpage/ (accessed on 30 January 2023).
- Bociga, E.; Jaruga, T.; Lubczyñska, K.; Gnatowski, A. Warpage of Injection Moulded Parts as the Result of Mould Temperature Difference. Arch. Mater. Sci. Eng. 2010, 44, 28–34. [Google Scholar]
- Azaman, M.D.; Sapuan, S.M.; Sulaiman, S.; Zainudin, E.S.; Khalina, A. Shrinkages and Warpage in the Processability of Wood-Filled Polypropylene Composite Thin-Walled Parts Formed by Injection Molding. Mater. Des. (1980–2015) 2013, 52, 1018–1026. [Google Scholar] [CrossRef]
- Handbook of Molded Part Shrinkage and Warpage—Jerry Fischer—Google Books. Available online: https://books.google.com/books?hl=en&lr=&id=IMF-oSmA1BcC&oi=fnd&pg=PP1&dq=warpage+formation+in+amorphous+polymer+in+injetion+molding&ots=pWyAst44mC&sig=J2dY1L3QEs8p9D9q3mgkYWvBxio#v=onepage&q&f=false (accessed on 25 July 2023).
- Chen, C.P.; Chuang, M.T.; Hsiao, Y.H.; Yang, Y.K.; Tsai, C.H. Simulation and Experimental Study in Determining Injection Molding Process Parameters for Thin-Shell Plastic Parts via Design of Experiments Analysis. Expert. Syst. Appl. 2009, 36, 10752–10759. [Google Scholar] [CrossRef]
- Singh Solanki, B.; Sheorey, T.; Singh, H. Experimental and Numerical Investigation of Shrinkage and Sink Marks on Injection Molded Polymer Gears: A Case Study. Int. J. Interact. Des. Manuf. 2022, 16, 1653–1667. [Google Scholar] [CrossRef]
- Dhiya, F.; Dharma Bintara, R. Computational Study of Injection Molding Parameters to Minimize Shrinkage and Warpage Using the Taguchi Method. In Proceedings of the International Conference on Religion, Science and Education, Yogyakarta, Indonesia, 16–20 December 2022; Volume 1. [Google Scholar]
- Kuo, C.C.; Xu, Y.X. A Simple Method of Improving Warpage and Cooling Time of Injection Molded Parts Simultaneously. Int. J. Adv. Manuf. Technol. 2022, 122, 619–637. [Google Scholar] [CrossRef]
- Short Shot—Beaumont Technologies, Inc. Available online: https://www.beaumontinc.com/injection-molding-glossary/short-shot/ (accessed on 25 July 2023).
- Moayyedian, M.; Abhary, K.; Marian, R. The Analysis of Short Shot Possibility in Injection Molding Process. Int. J. Adv. Manuf. Technol. 2017, 91, 3977–3989. [Google Scholar] [CrossRef]
- Abohashima, H.S.; Aly, M.F.; Mohib, A.; Attia, H.A. Minimization of Defects Percentage in Injection Molding Process Using Design of Experiment and Taguchi Approach. Ind. Eng. Manag. 2015, 4, 179. [Google Scholar] [CrossRef]
- Kitayama, S.; Onuki, R.; Yamazaki, K. Warpage Reduction with Variable Pressure Profile in Plastic Injection Molding via Sequential Approximate Optimization. Int. J. Adv. Manuf. Technol. 2014, 72, 827–838. [Google Scholar] [CrossRef]
- PPE and Medical Devices, What’s the Difference?|Euronda Monoart. Available online: https://monoart.euronda.com/ppe-medical-devices-difference/ (accessed on 23 April 2024).
- Safety Goggles|3D CAD Model Library|GrabCAD. Available online: https://grabcad.com/library/safety-goggles-3 (accessed on 10 November 2023).
- Moldex3D|Plastic Injection Molding Simulation Software. Available online: https://www.moldex3d.com/about/ (accessed on 10 November 2023).
- Polycarbonate—Springboard. Available online: https://springboardmfg.com/plastic-materials/thermoplastic-resins/polycarbonate/ (accessed on 10 September 2023).
- Polycarbonate|Designerdata. Available online: https://designerdata.nl/materials/plastics/thermo-plastics/polycarbonate?cookie=YES (accessed on 12 June 2024).
- Introduction To Robust Design (Taguchi Method). Available online: https://www.isixsigma.com/robust-design-taguchi-method/introduction-robust-design-taguchi-method/ (accessed on 27 September 2023).
- 14.1: Design of Experiments via Taguchi Methods—Orthogonal Arrays—Engineering LibreTexts. Available online: https://eng.libretexts.org/Bookshelves/Industrial_and_Systems_Engineering/Chemical_Process_Dynamics_and_Controls_(Woolf)/14%3A_Design_of_Experiments/14.01%3A_Design_of_Experiments_via_Taguchi_Methods_-_Orthogonal_Arrays (accessed on 27 September 2023).
- Taguchi Orthogonal Array (OA) Factorial Designs. Available online: https://help.reliasoft.com/weibull20/taguchi_orthogonal_array_(oa)_factorial_designs.htm (accessed on 29 October 2023).
Materials Properties | Value |
---|---|
Melting Temperature | 267 °C |
Density | 1210 kg/m3 |
Melt Flow Index | 6 g/10 min @(300 °C, 1.2 Kg) |
Thermal Expansion | 68 × 10−6/K |
Elongation | 95% |
Specific Heat | 1380 J/kg·K |
Geometry Attribute | Mesh Type |
---|---|
Part | 5 layers of BLM |
Runner | 5 layers of BLM |
Cooling Channel | 3 layers of BLM |
Mold Insert | Pure Tetra |
Geometry Attribute | No. of 3D Solid Mesh/Volume in mm3 |
---|---|
Part | 10.00 |
Runner | 48.51 |
Levels | Melt Temperature, (°C) | Packing Pressure (MPa) | Coolant Temperature (°C) | Injection Speed (mm/s) |
---|---|---|---|---|
1 | 280 | 10 | 90 | 40 |
2 | 300 | 40 | 100 | 60 |
3 | 320 | 70 | 110 | 80 |
Parameters | Type/Values |
---|---|
Mold Temperature (°C) | 100 |
Mold Materials | Aluminum 6061 |
Injection Pressure (MPa) | 150 |
Eject Temperature (°C) | 132 |
Coolant Material | Water |
Coolant Flowrate (cm3/s) | 120 |
Factor Levels | 2 | 3 | 4 | 5 |
---|---|---|---|---|
No. of Runs | ||||
4 | L4 (23) | |||
8 | L8 (27) | |||
9 | L9 (34) | |||
12 | L12 (211) | |||
16 | L16 (215) | L16 (45) | ||
25 | L25 (58) | |||
27 | L27 (313) L27 (322) | |||
32 | L32 (231) |
Case No. | Melt Temperature | Injection Speed | Packing Pressure | Coolant Temperature | Pattern |
---|---|---|---|---|---|
1 | 1 | 1 | 1 | 1 | ---- |
2 | 1 | 2 | 2 | 2 | -000 |
3 | 1 | 3 | 3 | 3 | -+++ |
4 | 2 | 1 | 2 | 3 | 0-0+ |
5 | 2 | 2 | 3 | 1 | 00+- |
6 | 2 | 3 | 1 | 2 | 0+-0 |
7 | 3 | 1 | 3 | 2 | +-+0 |
8 | 3 | 2 | 1 | 3 | +0-+ |
9 | 3 | 3 | 2 | 1 | ++0- |
Case No. | Melt Temperature (°C) | Injection Speed (mm/s) | Packing Pressure (MPa) | Coolant Temperature (°C) | Warpage, mm | SN for Warpage |
---|---|---|---|---|---|---|
1 | 280 | 40 | 10 | 90 | 0.658 | 3.6355 |
2 | 280 | 60 | 40 | 100 | 0.649 | 3.7551 |
3 | 280 | 80 | 70 | 110 | 0.664 | 3.5566 |
4 | 300 | 40 | 40 | 110 | 0.646 | 3.7953 |
5 | 300 | 60 | 70 | 90 | 0.749 | 2.5104 |
6 | 300 | 80 | 10 | 100 | 0.559 | 5.0518 |
7 | 320 | 40 | 70 | 100 | 0.741 | 2.6036 |
8 | 320 | 60 | 10 | 110 | 0.630 | 4.0130 |
9 | 320 | 80 | 40 | 90 | 0.649 | 3.7550 |
Source | DF | Adj SS | Adj MS | F-Value | p-Value |
---|---|---|---|---|---|
Regression | 4 | 4.02310 | 1.00578 | 7.79 | 0.036 |
Melt temp | 1 | 0.05516 | 0.05516 | 0.43 | 0.549 |
Injection Speed | 1 | 0.90407 | 0.90407 | 7.01 | 0.057 |
Packing Pressure | 1 | 2.70654 | 2.70654 | 20.97 | 0.010 |
Coolant temp | 1 | 0.35733 | 0.35733 | 2.77 | 0.171 |
Error | 4 | 0.51620 | 0.12905 | ||
Total | 8 | 4.53931 |
Case No. | Melt Temperature (°C) | Injection Speed (mm/s) | Packing Pressure (MPa) | Coolant Temperature (°C) | Part Weight, gm | SN Ratio |
---|---|---|---|---|---|---|
1 | 280 | 40 | 10 | 90 | 37.558 | 31.494 |
2 | 280 | 60 | 40 | 100 | 37.412 | 31.460 |
3 | 280 | 80 | 70 | 110 | 37.330 | 31.441 |
4 | 300 | 40 | 40 | 110 | 37.261 | 31.425 |
5 | 300 | 60 | 70 | 90 | 37.205 | 31.412 |
6 | 300 | 80 | 10 | 100 | 37.114 | 31.391 |
7 | 320 | 40 | 70 | 100 | 37.301 | 31.434 |
8 | 320 | 60 | 10 | 110 | 36.701 | 31.294 |
9 | 320 | 80 | 40 | 90 | 36.736 | 31.302 |
Source | DF | Adj SS | Adj MS | F-Value | p-Value |
---|---|---|---|---|---|
Regression | 4 | 0.032706 | 0.008177 | 7.87 | 0.035 |
Melt temp | 1 | 0.022280 | 0.022280 | 21.45 | 0.010 |
Injection Speed | 1 | 0.008052 | 0.008052 | 7.75 | 0.050 |
Packing Pressure | 1 | 0.001989 | 0.001989 | 1.91 | 0.239 |
Coolant temp | 1 | 0.000386 | 0.000386 | 0.37 | 0.575 |
Error | 4 | 0.004156 | 0.001039 | ||
Total | 8 | 0.036862 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saha, U.; Mokhtar, W. Quality Improvement of Polycarbonate Medical Device by Moldex3D and Taguchi DOE. J. Manuf. Mater. Process. 2025, 9, 16. https://doi.org/10.3390/jmmp9010016
Saha U, Mokhtar W. Quality Improvement of Polycarbonate Medical Device by Moldex3D and Taguchi DOE. Journal of Manufacturing and Materials Processing. 2025; 9(1):16. https://doi.org/10.3390/jmmp9010016
Chicago/Turabian StyleSaha, Upoma, and Wael Mokhtar. 2025. "Quality Improvement of Polycarbonate Medical Device by Moldex3D and Taguchi DOE" Journal of Manufacturing and Materials Processing 9, no. 1: 16. https://doi.org/10.3390/jmmp9010016
APA StyleSaha, U., & Mokhtar, W. (2025). Quality Improvement of Polycarbonate Medical Device by Moldex3D and Taguchi DOE. Journal of Manufacturing and Materials Processing, 9(1), 16. https://doi.org/10.3390/jmmp9010016