Polymerization Shrinkage, Hygroscopic Expansion, Elastic Modulus and Degree of Conversion of Different Composites for Dental Application
Abstract
:1. Introduction
2. Materials and Methods
2.1. Polymerization Shrinkage Measurement
2.2. Hygroscopic Expansion
2.3. Elastic Modulus and Poisson Ratio
2.4. Degree of Conversion
3. Results
4. Discussion
5. Conclusions
- The polymerization shrinkage is dependent upon the type of composite and can be different between materials with similar Elastic moduli.
- The termocycling aging has a significant influence on the water sorption in the evaluated materials.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Piconi, C.; Sprio, S. Oxide bioceramic composites in orthopedics and dentistry. J. Compos. Sci. 2021, 5, 206. [Google Scholar] [CrossRef]
- Boaro, L.C.C.; Gonçalves, F.; Guimarães, T.C.; Ferracane, J.L.; Versluis, A.; Braga, R.R. Polymerization stress, shrinkage and elastic modulus of current low-shrinkage restorative composites. Dent. Mater. 2010, 26, 1144–1150. [Google Scholar] [CrossRef] [PubMed]
- Irie, M.; Maruo, Y.; Nishigawa, G.; Matsumoto, T. Flexural Property of a Composite Biomaterial in Three Applications. J. Compos. Sci. 2021, 5, 282. [Google Scholar] [CrossRef]
- Matuda, A.G.N.; Silveira, M.P.M.; de Andrade, G.S.; de Piva, A.M.O.D.; Tribst, J.P.M.; Borges, A.L.S.; Testarelli, L.; Mosca, G.; Ausiello, P. Computer aided design modelling and finite element analysis of premolar proximal cavities restored with resin composites. Materials 2021, 14, 2366. [Google Scholar] [CrossRef]
- Francesco, P.; Gabriele, C.; Fiorillo, L.; Giuseppe, M.; Antonella, S.; Giancarlo, B.; Mirta, P.; Mendes Tribst, J.P.; Lo Giudice, R. The use of bulk fill resin-based composite in the sealing of cavity with margins in radicular cementum. Eur. J. Dent. 2021. [Google Scholar] [CrossRef] [PubMed]
- Ajaj, R.A.; Farsi, N.J.; Alzain, L.; Nuwaylati, N.; Ghurab, R.; Nassar, H.M. Dental bulk-fill resin composites polymerization efficiency: A systematic review and meta-analysis. J. Compos. Sci. 2021, 5, 149. [Google Scholar] [CrossRef]
- Gordan, V.V.; Garvan, C.W.; Blaser, P.K.; Mondragon, E.; Mjor, I.A. A long-term evaluation of alternative treatments to replacement of resin-based composite restorations: Results of a seven-year study. J. Am. Dent. Assoc. 2009, 140, 1476–1484. [Google Scholar] [CrossRef]
- Lundin, S.A.; Rasmusson, C.G. Clinical evaluation of a resin composite and bonding agent in Class I and II restorations: 2-year results. Quintessence Int. 2004, 35, 758–762. [Google Scholar]
- Davidson, C.L.; de Gee, A.J.; Feilzer, A. The competition between the composite-dentin bond strength and the polymerization contraction stress. J. Dent. Res. 1984, 63, 1396–1399. [Google Scholar] [CrossRef]
- Torres, C.R.; Jurema, A.L.; Souza, M.Y.; Di Nicoló, R.; Borges, A.B. Bulk-fill versus layering pure ormocer posterior restorations: A randomized split-mouth clinical trial. Am. J. Dent. 2021, 34, 143–149. [Google Scholar] [PubMed]
- Serin, B.A.; Yazicioglu, I.; Deveci, C.; Dogan, M.C. Clinical evaluation of a self-adhering flowable composite as occlusal restorative material in primary molars: One-year results. Eur. Oral Res. 2019, 53, 119–124. [Google Scholar] [CrossRef]
- Shahmoradi, M.; Wan, B.; Zhang, Z.; Swain, M.; Li, Q. Mechanical failure of posterior teeth due to caries and occlusal wear—A modelling study. J. Mech. Behav. Biomed. Mater. 2021, 125, 104942. [Google Scholar] [CrossRef] [PubMed]
- Costa, A.R.; Naves, L.Z.; Garcia-Godoy, F.; Tsuzuki, F.M.; Correr, A.B.; Correr-Sobrinho, L.; Puppin-Rontani, R.M. CHX stabilizes the resin/demineralized dentin interface. Braz. Dent. J. 2021, 32, 106–115. [Google Scholar] [CrossRef]
- Correia, A.M.O.; Andrade, M.R.; Tribst, J.P.M.; Borges, A.L.S.; Caneppele, T.M.F. Influence of bulk-fill restoration on polymerization shrinkage stress and marginal gap formation in Class V restorations. Oper. Dent. 2020, 45, E207–E216. [Google Scholar] [CrossRef] [PubMed]
- Dávila-Sánchez, A.; Gutierrez, M.F.; Bermudez, J.P.; Méndez-Bauer, L.; Pulido, C.; Kiratzc, F.; Alegria-Acevedo, L.F.; Farago, P.V.; Loguercio, A.D.; Sauro, S.; et al. Effects of dentine pretreatment solutions containing flavonoids on the resin polymer-dentine interface created using a modern universal adhesive. Polymers 2021, 13, 1145. [Google Scholar] [CrossRef] [PubMed]
- Behl, S.; Rajan, G.; Farrar, P.; Prentice, L.; Prusty, B.G. Evaluation of depth-wise post-gel polymerisation shrinkage behaviour of flowable dental composites. J. Mech. Behav. Biomed. Mater. 2021, 124, 104860. [Google Scholar] [CrossRef]
- D’Alpino, P.H.; Bechtold, J.; dos Santos, P.J.; Alonso, R.C.; Di Hipolito, V.; Silikas, N.; Rodrigues, F.P. Methacrylate- and silorane-based composite restorations: Hardness, depth of cure and interfacial gap formation as a function of the energy dose. Dent. Mater. 2011, 27, 1162–1169. [Google Scholar] [CrossRef]
- Tauböck, T.T.; Feilzer, A.J.; Buchalla, W.; Kleverlaan, C.J.; Krejci, I.; Attin, T. Effect of modulated photo-activation on polymerization shrinkage behavior of dental restorative resin composites. Eur. J. Oral Sci. 2014, 122, 293–302. [Google Scholar] [CrossRef]
- Gregor, L.; Dorien, L.; Bortolotto, T.; Feilzer, A.J.; Krejci, I. Marginal integrity of low-shrinking versus methacrylate-based composite: Effect of different one-step self-etch adhesives. Odontology 2017, 105, 291–299. [Google Scholar] [CrossRef]
- Rodrigues, F.P.; Silikas, N.; Watts, D.C.; Ballester, R.Y. Finite element analysis of bonded model Class I ‘restorations’ after shrinkage. Dent. Mater. 2012, 28, 123–132. [Google Scholar] [CrossRef]
- Sun, T.; Shao, B.; Liu, Z. Effects of the lining material, thickness and coverage on residual stress of class II molar restorations by multilayer technique. Comput. Methods Progr. Biomed. 2021, 202, 105995. [Google Scholar] [CrossRef]
- Feilzer, A.J.; De Gee, A.J.; Davidson, C.L. Setting stress in composite resin in relation to configuration of the restoration. J. Dent. Res. 1987, 66, 1636–1639. [Google Scholar] [CrossRef] [PubMed]
- Aregawi, W.A.; Fok, A.S.L. Shrinkage stress and cuspal deflection in MOD restorations: Analytical solutions and design guidelines. Dent. Mater. 2021, 37, 783–795. [Google Scholar] [CrossRef] [PubMed]
- Versluis, A.; Tantbirojn, D.; Douglas, W.H. Do dental composites always shrink toward the light? J. Dent. Res. 1998, 77, 1435–1445. [Google Scholar] [CrossRef]
- Goncalves, F.; Boaro, L.C.; Ferracane, J.L.; Braga, R.R. A comparative evaluation of polymerization stress data obtained with four different mechanical testing systems. Dent. Mater. 2012, 28, 680–686. [Google Scholar] [CrossRef]
- Ghavami-Lahiji, M.; Hooshmand, T. Analytical methods for the measurement of polymerization kinetics and stresses of dental resin-based composites: A review. Dent. Res. J. 2017, 14, 225. [Google Scholar]
- Enochs, T.; Hill, A.E.; Worley, C.E.; Veríssimo, C.; Tantbirojn, D.; Versluis, A. Cuspal flexure of composite-restored typodont teeth and correlation with polymerization shrinkage values. Dent. Mater. 2018, 34, 152–160. [Google Scholar] [CrossRef] [PubMed]
- Labella, R.; Lambrechts, P.; Van Meerbeek, B.; Vanherle, G. Polymerization shrinkage and elasticity of flowable composites and filled adhesives. Dent. Mater. 1999, 15, 128–137. [Google Scholar] [CrossRef]
- Dauvillier, B.S.; Aarnts, M.P.; Feilzer, A.J. Developments in shrinkage control of adhesive restoratives. J. Esthet. Dent. 2000, 12, 291–299. [Google Scholar] [CrossRef] [PubMed]
- Dauvillier, B.S.; Feilzer, A.J.; de Gee, A.J.; Davidson, C.L. Visco-elastic parameters of dental restorative materials during setting. J. Dent. Res. 2000, 79, 818–823. [Google Scholar] [CrossRef]
- De Gee, A.F.; Feilzer, A.J.; Davidson, C.L. True linear polymerization shrinkage of unfilled resins and composites determined with a linometer. Dent. Mater. 1993, 9, 11–14. [Google Scholar] [CrossRef]
- Mitrović, A.; Antonović, D.; Tanasić, I.; Mitrović, N.; Bakić, G.; Popović, D.; Milošević, M. 3D digital image correlation analysis of the shrinkage strain in four dual cure composite cements. Biomed Res. Int. 2019, 2019, 2041348. [Google Scholar] [CrossRef] [PubMed]
- Barcellos, D.C.; Fonseca, B.M.; Pucci, C.R.; das Cavalcanti, B.N.; Persici, E.D.S.; de Gonçalves, S.E.P. Zn-doped etch-and-rinse model dentin adhesives: Dentin bond integrity, biocompatibility, and properties. Dent. Mater. 2016, 32, 940–950. [Google Scholar] [CrossRef] [Green Version]
- Correa Netto, L.R.; Borges, A.L.S.; Guimarães, H.B.; de Almeida, E.R.N.; Poskus, L.T.; da Silva, E.M. Marginal integrity of restorations produced with a model composite based on polyhedral oligomeric silsesquioxane (POSS). J. Appl. Oral Sci. 2015, 23, 450–458. [Google Scholar] [CrossRef] [Green Version]
- Otani, L.B.; Pereira, A.H.A.; Melo, J.D.D.; Amico, S.C. Elastic Moduli Characterization of Composites Using the Impulse Excitation. Technical-Scientific Informative ATCP Physical Engineering: White Paper. 2014. Available online: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwjmudHRrtT0AhVOM-wKHb7OCAUQFnoECAoQAQ&url=http%3A%2F%2Fsonelastic.com%2Fimages%2Fdownloads%2FITC-06-IET-MOE-Composites-v1.4.pdf&usg=AOvVaw03MzFa2VG4wTulMT7EhhRp (accessed on 10 December 2021).
- Meirelles, L.C.F.; Pierre, F.Z.; Tribst, J.P.M.; Pagani, C.; Bresciani, E.; Borges, A.L.S. Influence of preparation design, restorative material and load direction on the stress distribution of ceramic veneer in upper central incisor. Braz. Dent. Sci. 2021, 24. [Google Scholar] [CrossRef]
- Souza, R.O.A.; Ozcan, M.; Mesquita, A.M.M.; De Melo, R.M.; Galhano, G.A.P.; Bottino, M.A.; Pavanelli, C.A. Effect of different polymerization devices on the degree of conversion and the physical properties of an indirect resin composite. Acta Odontol. Latinoam. 2010, 23, 129–135. [Google Scholar] [PubMed]
- Walter, R.; Swift, E.J., Jr.; Sheikh, H.; Ferracane, J.L. Effects of temperature on composite resin shrinkage. Quintessence Int. 2009, 40, 843–847. [Google Scholar] [PubMed]
- Szczesio-Wlodarczyk, A.; Sokolowski, J.; Kleczewska, J.; Bociong, K. Ageing of dental composites based on methacrylate resins—A critical review of the causes and method of assessment. Polymers 2020, 12, 882. [Google Scholar] [CrossRef] [PubMed]
- Colombo, M.; Gallo, S.; Chiesa, M.; Poggio, C.; Scribante, A.; Zampetti, P.; Pietrocola, G. In vitro weight loss of dental composite resins and glass-ionomer cements exposed to A challenge simulating the oral intake of acidic drinks and foods. J. Compos. Sci. 2021, 5, 298. [Google Scholar] [CrossRef]
- Yadav, R.; Kumar, M. Dental restorative composite materials: A review. J. Oral Biosci. 2019, 61, 78–83. [Google Scholar] [CrossRef] [PubMed]
- Maia, K.M.F.V.; Rodrigues, F.V.; Damasceno, J.E.; Ramos, R.V.D.C.; Martins, V.L.; Lima, M.J.P.; Cavalcanti, A.N. Water sorption and solubility of a nanofilled composite resin protected against erosive challenges. Braz. Dent. Sci. 2019, 22, 46–54. [Google Scholar] [CrossRef] [Green Version]
- Martin, N.; Jedynakiewicz, N.M.; Fisher, A.C. Hygroscopic expansion and solubility of composite restoratives. Dent. Mater. 2003, 19, 77–86. [Google Scholar] [CrossRef]
- Martin, N.; Jedynakiewicz, N. Measurement of water sorption in dental composites. Biomaterials 1998, 19, 77–83. [Google Scholar] [CrossRef]
- Chutinan, S.; Platt, J.A.; Cochran, M.A.; Moore, B.K. Volumetric dimensional change of six direct core materials. Dent. Mater. 2004, 20, 345–351. [Google Scholar] [CrossRef]
- Feilzer, A.J.; de Gee, A.J.; Davidson, C.L. Relaxation of polymerization contraction shear stress by hygroscopic expansion. J. Dent. Res. 1990, 69, 36–39. [Google Scholar] [CrossRef]
- Gale, M.S.; Darvell, B.W. Thermal cycling procedures for laboratory testing of dental restorations. J. Dent. 1999, 27, 89–99. [Google Scholar] [CrossRef]
- Wei, Y.-J.; Chen, Y.-Y.; Jiang, Q.-S. Long-term hygroscopic dimensional changes of core buildup materials in deionized water and artificial saliva. Dent. Mater. J. 2021, 40, 143–149. [Google Scholar] [CrossRef] [PubMed]
- Catalbas, B.; Uysal, T.; Nur, M.; Demir, A.; Gunduz, B. Effects of thermocycling on the degree of cure of two lingual retainer composites. Dent. Mater. J. 2010, 29, 41–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mair, L.H. Effect of surface conditioning on the abrasion rate of dental composites. J. Dent. 1991, 19, 100–106. [Google Scholar] [CrossRef]
- Montes, G.G.; Draughn, R.A. In vitro surface degradation of composites by water and thermal cycling. Dent. Mater. 1986, 2, 193–197. [Google Scholar] [CrossRef]
- Kaneko, O.; Asakura, M.; Hayashi, T.; Kato, D.; Ban, S.; Kawai, T.; Murakami, H. Effect of degradation of filler elements on flexural strength for dental CAD/CAM resin composite materials in water. J. Prosthodont. Res. 2021, 65, 509–514. [Google Scholar] [CrossRef] [PubMed]
- Kalachandra, S. Influence of fillers on the water sorption of composites. Dent. Mater. 1989, 5, 283–288. [Google Scholar] [CrossRef]
- Ferracane, J.L. Hygroscopic and hydrolytic effects in dental polymer networks. Dent. Mater. 2006, 22, 211–222. [Google Scholar] [CrossRef] [PubMed]
- Apicella, A.; Di Palma, L.; Aversa, R.; Ausiello, P. DSC kinetic characterization of dental composites using different light sources. J. Adv. Mater. 2002, 34, 22–25. [Google Scholar]
- Han, L.; Okamoto, A.; Fukushima, M.; Okiji, T. Evaluation of physical properties and surface degradation of self-adhesive resin cements. Dent. Mater. J. 2007, 26, 906–914. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tseng, C.-C.; Lin, P.-Y.; Kirankumar, R.; Chuang, Z.-W.; Wu, I.-H.; Hsieh, S. Surface degradation effects of carbonated soft drink on a resin based dental compound. Heliyon 2021, 7, e06400. [Google Scholar] [CrossRef] [PubMed]
- Borges, A.L.S.; Tribst, J.P.M.; Dal Piva, A.M.O.; Souza, A.C.O. In vitro evaluation of multi-walled carbon nanotube reinforced nanofibers composites for dental application. Int. J. Polym. Mater. 2020, 69, 1015–1022. [Google Scholar] [CrossRef]
Materials (Batch) | Manufacturer | Mean Filler Size (µm) | % Filler (Weight) | % Filler (Volume) | Filler Type | Organic Matrix | Manufacture’s Classification |
---|---|---|---|---|---|---|---|
Venus (#010313) | Heraeus Kulzer, GMbH & Co, Kg, Germany | 0.01–0.07 | 78% | 61% | SiO2, Barium, aluminiumfluoride | BisGMA. TEGDMA | Nanohybrid |
Charisma (#010401) | 0.002–0.7 | 78% | 61% | Fluoride, barium, SiO2 | BisGMA, TEGDMA | Hybrid | |
Filtek Supreme (#FBU) | 3M ESPE, St. Paul, MN, USA | 0.005–0.02/0.6–1.4 | 78.5% | 59.5% | SiO2 | BisGMA, BisEMA, UDMA, TEGDMA | Nanohybrid |
Filtek P 90 (#N183458) | 0.04–1.7 | 77% | 51% | Quartz, fluoride, Itria fluoride | Siloranes | Nanohybrid | |
Filtek Z250 (#7EE) | 0.01–3.5 | 78% | 60% | SiO2 | BisGMA, UDMA, BisEMA | Hybrid | |
4 Seasons (#N48095) | Ivoclar Vivadent, São Paulo, SP, Brazil | 0.6 | 76% | 58% | Barium, Aluminium fluorsilicate, SiO2 | BisGMA, TEGMA, UDMA | Hybrid |
Opallis (#210619) | FGM, Joinville, SC, Brazil | 0.5 | 79 % | 58% | Barium, aluminiumsilicate | BisGMA, BisEMA, TEGDMA | Hybrid |
EsthetX (#100522) | Dentsply Detrey GmbH, Konstanz, Germany | <1.0 | 86% | 60% | Barium fluoralumínium, borosilicate, SiO2 | UDMA, BisGMA, TEGDMA | Hybrid |
Natural Look (#09080800) | DFL, Rio de Janeiro, RJ, Brazil | 0.5 | 77% | 59% | Barium amorphous silicate | BisGMA, BisEMA, TEGDMA | Hybrid |
Amaris (#1024125) | VOCO, GMBH, Germany | 0.7 | 80 % | 64% | Silanized ceramic particles SiO2 | BisGMA, TEGDMA | Hybrid |
Grandio (#1031020) | 0.7 | 80% | 63% | Silanized ceramic particles SiO2 | BisGMA, TEGDMA | Hybrid | |
Vit-l-escence (#B5L7Y) | Ultradent Products USA | 0.7 | 75% | 52% | Silanized ceramic particles SiO2 | BisGMA | Microhybrid |
Amelogem PLUS (#B5M99) | 0.7 | 76% | 61% | SiO2 | BisGMA, TEGDMA | Hybrid |
Material | Mean ± Stand. Dev. | Grouping | |||||||
---|---|---|---|---|---|---|---|---|---|
Vit-L-Escence | 3.83 ± 0.51 | A | |||||||
Natural look | 3.52 ± 0.58 | A | B | ||||||
Venus | 3.21 ± 0.16 | B | C | ||||||
4 Seasons | 3.18 ± 1.04 | B | C | D | |||||
Opallis | 3.15 ± 0.28 | B | C | D | E | ||||
Amelogen | 2.97 ± 0.18 | C | D | E | |||||
EsthetX | 2.89 ± 0.33 | C | D | E | F | ||||
Z350 | 2.75 ± 0.64 | D | E | F | |||||
Charisma | 2.71 ± 0.20 | E | F | ||||||
Amaris | 2.51 ± 0.70 | F | G | ||||||
Z250 | 2.48 ± 0.68 | F | G | ||||||
Grandio | 2.18 ± 0.70 | G | |||||||
P90 | 1.04 ± 0.41 | H |
Material × Time | Mean ± Stand. Dev. | Grouping | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Vit-L-Escence × 24 h | 4.31 ± 0.14 | A | |||||||||||
4 Seasons × 24 h | 3.93 ± 1.03 | A | B | ||||||||||
Natural look × 24 h | 3.87 ± 0.64 | A | B | C | |||||||||
Vit-L-Escence × 5 min | 3.34 ± 0.17 | B | C | D | |||||||||
Venus × 24 h | 3.30 ± 0.17 | B | C | D | |||||||||
Z350 × 24 h | 3.26 ± 0.51 | B | C | D | E | ||||||||
Opallis × 24 h | 3.22 ± 0.38 | C | D | E | F | ||||||||
EsthetX × 24 h | 3.18 ± 0.20 | C | D | E | F | ||||||||
Natural look × 5 min | 3.17 ± 0.14 | D | E | F | |||||||||
Venus × 5 min | 3.13 ± 0.09 | D | E | F | G | ||||||||
Opallis × 5 min | 3.08 ± 0.11 | D | E | F | G | ||||||||
Amelogen × 5 min | 3.00 ± 0.14 | D | E | F | G | ||||||||
Amelogen × 24 h | 2.93 ± 0.22 | D | E | F | G | H | |||||||
Charisma × 24 h | 2.90 ± 0.09 | D | E | F | G | H | |||||||
Amaris × 24 h | 2.88 ± 0.84 | D | E | F | G | H | |||||||
Z250 × 24 h | 2.87 ± 0.90 | D | E | F | G | H | |||||||
Grandio × 24 h | 2.68 ± 0.69 | D | E | F | G | H | I | ||||||
EsthetX × 5 min | 2.59 ± 0.06 | E | F | G | H | I | |||||||
Charisma × 5 min | 2.53 ± 0.09 | F | G | H | I | ||||||||
4 Seasons × 5 min | 2.43 ± 0.07 | G | H | I | |||||||||
Z350 × 5 min | 2.24 ± 0.16 | H | I | J | |||||||||
Amaris × 5 min | 2.13 ± 0.07 | I | J | ||||||||||
Z250 × 5 min | 2.08 ± 0.05 | I | J | ||||||||||
Grandio × 5 min | 1.68 ± 0.07 | J | K | ||||||||||
P90 × 24 h | 1.09 ± 0.14 | K | |||||||||||
P90 × 5 min | 0.98 ± 0.08 | K |
Material | Initial Volume | 5 min | 24 h | 5000 Cycles | 10,000 Cycles | 15,000 Cycles | 20,000 Cycles |
---|---|---|---|---|---|---|---|
Grandio | 12.6924 | 12.4753 | 12.3366 | 12.9196 | 12.9712 | 12.9028 | 12.8062 |
Natural Look | 12.8977 | 12.4655 | 12.4124 | 12.7651 | 12.6028 | 12.5833 | 12.5041 |
4Season | 12.7869 | 12.4708 | 12.2934 | 13.0604 | 12.7115 | 12.7859 | 12.6772 |
EsthetX-HD | 12.8141 | 12.4543 | 12.4198 | 13.0564 | 12.8844 | 12.9077 | 12.7392 |
Amaris | 12.7433 | 12.4765 | 12.4549 | 13.0499 | 12.8212 | 12.8880 | 12.9252 |
Opallis | 12.8696 | 12.4743 | 12.4426 | 13.0631 | 12.8871 | 12.9100 | 12.8878 |
Vit-l-lescence | 12.9021 | 12.4864 | 12.3421 | 13.0600 | 12.8859 | 12.9371 | 12.8669 |
Filtek Z350 | 12.7648 | 12.4833 | 12.4285 | 13.1339 | 12.9876 | 12.9673 | 12.9285 |
P90 | 12.6060 | 12.4867 | 12.4735 | 13.1121 | 12.9719 | 12.9658 | 12.9592 |
Amelogen | 12.8671 | 12.4823 | 12.4724 | 13.0355 | 12.9250 | 13.0264 | 12.9208 |
Venus | 12.8718 | 12.5365 | 12.5253 | 13.1018 | 12.9525 | 12.9466 | 12.8691 |
Charisma | 12.8208 | 12.4765 | 12.4533 | 13.1031 | 12.7304 | 13.0762 | 12.9795 |
Z250 | 12.8123 | 12.5367 | 12.4848 | 13.1532 | 13.0281 | 13.0199 | 12.9772 |
Material | Mean ± Stand. Dev. | Grouping | ||
---|---|---|---|---|
Grandio | 22.15 ± 2.68 | A | ||
Vit-L-Escence | 16.24 ± 3.8 | A | B | |
Natural look | 16.01 ± 1.34 | B | C | |
Opallis | 15.68 ± 1.5 | B | C | |
Amaris | 15.04 ± 0.93 | B | C | |
Charisma | 13.77 ± 2.02 | B | C | |
Z350 | 13.61 ± 0.27 | B | C | |
Venus | 13.33 ± 0.86 | B | C | |
Z250 | 12.76 ± 0.83 | B | C | |
EsthetX | 12.75 ± 1.25 | B | C | |
Amelogen | 12.35 ± 1.05 | B | C | |
P90 | 12.12 ± 0.58 | B | C | |
4 Seasons | 10.06 ± 1.37 | C |
Material | Mean ± Stand. Dev. | Grouping | ||
---|---|---|---|---|
Grandio | 0.54 ± 0.08 | A | ||
Z350 | 0.47 ± 0.20 | A | B | |
Amelogen | 0.41 ± 0.13 | A | B | C |
Vit-L-Escence | 0.40 ± 0.12 | A | B | C |
Charisma | 0.38 ± 0.13 | A | B | C |
Natural look | 0.35 ± 0.10 | A | B | C |
Venus | 0.35 ± 0.14 | A | B | C |
EsthetX | 0.34 ± 0.10 | A | B | C |
Opallis | 0.33 ± 0.14 | A | B | C |
4 Seasons | 0.31 ± 0.13 | B | C | |
Z250 | 0.30 ± 0.06 | B | C | |
P90 | 0.29 ± 0.11 | B | C | |
Amaris | 0.22 ± 0.05 | C |
Material | Mean ± Stand. Dev. | Grouping | ||||||
---|---|---|---|---|---|---|---|---|
4 Seasons | 83.01 ± 5.04 | A | ||||||
Z350 | 78.63 ± 3.06 | A | B | |||||
P90 | 78.07 ± 4.41 | A | B | |||||
Z250 | 76.97 ± 2.82 | B | ||||||
Amaris | 70.92 ± 2.14 | C | ||||||
Amelogen | 69.36 ± 3.97 | C | D | |||||
Charisma | 68.96 ± 3.28 | C | D | E | ||||
Natural look | 68.63 ± 3.46 | C | D | E | F | |||
Opallis | 64.62 ± 1.04 | D | E | F | G | |||
Grandio | 63.60 ± 3.66 | D | E | F | G | |||
Venus | 63.21 ± 1.92 | E | F | G | ||||
Vit-L-Escence | 62.93 ± 3.40 | F | G | |||||
EsthetX | 60.76 ± 1.84 | G |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borges, A.L.S.; Dal Piva, A.M.d.O.; Moecke, S.E.; de Morais, R.C.; Tribst, J.P.M. Polymerization Shrinkage, Hygroscopic Expansion, Elastic Modulus and Degree of Conversion of Different Composites for Dental Application. J. Compos. Sci. 2021, 5, 322. https://doi.org/10.3390/jcs5120322
Borges ALS, Dal Piva AMdO, Moecke SE, de Morais RC, Tribst JPM. Polymerization Shrinkage, Hygroscopic Expansion, Elastic Modulus and Degree of Conversion of Different Composites for Dental Application. Journal of Composites Science. 2021; 5(12):322. https://doi.org/10.3390/jcs5120322
Chicago/Turabian StyleBorges, Alexandre Luiz Souto, Amanda Maria de Oliveira Dal Piva, Sabrina Elise Moecke, Raquel Coutinho de Morais, and João Paulo Mendes Tribst. 2021. "Polymerization Shrinkage, Hygroscopic Expansion, Elastic Modulus and Degree of Conversion of Different Composites for Dental Application" Journal of Composites Science 5, no. 12: 322. https://doi.org/10.3390/jcs5120322
APA StyleBorges, A. L. S., Dal Piva, A. M. d. O., Moecke, S. E., de Morais, R. C., & Tribst, J. P. M. (2021). Polymerization Shrinkage, Hygroscopic Expansion, Elastic Modulus and Degree of Conversion of Different Composites for Dental Application. Journal of Composites Science, 5(12), 322. https://doi.org/10.3390/jcs5120322