Preparation of New Sm-Doped CuO/ZnO/CuMn2O4 Tri-Composite for Photoremoval of Dissolved Organic Waste and Dielectric-Energy Storage
Abstract
:1. Introduction
2. Synthesis, Characterization, and Measurements
3. Results and Discussion
3.1. XRD Investigation
3.2. Optical Properties: UV–Visible Diffuse Reflectance
3.3. Morphology and Surface Area
3.4. Treatment of Dissolved Organic Waste
- Sm-doped CuO/ZnO/CuMn2O4 + sunlight energy → e−CB + h+VB
- Sm3+ + e− → Sm2+
- Sm2+ + O2 → Sm3+ + ˙O2−
- h+VB + H2O → ·OH + H+
- e− + O2 → ˙O2−
- h+ + OH− → ·OH
- (·OH/˙O2−) + Norfloxacin and methyl green molecules → CO2+H2O
3.5. Analysis of Ac Electrical Conductivity and Dielectric Properties
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yue, C.; Chen, L.; Zhang, H.; Huang, J.; Jiang, H.; Li, H.; Yang, S. Metal–organic framework-based materials: Emerging high-efficiency catalysts for the heterogeneous photocatalytic degradation of pollutants in water. Environ. Sci. Water Res. Technol. 2023, 9, 669–695. [Google Scholar] [CrossRef]
- Bano, K.; Kaushal, S.; Singh, P.P. A review on photocatalytic degradation of hazardous pesticides using heterojunctions. Polyhedron 2021, 209, 115465. [Google Scholar] [CrossRef]
- Lee, D.-E.; Kim, M.-K.; Danish, M.; Jo, W.-K. State-of-the-art review on photocatalysis for efficient wastewater treatment: Attractive approach in photocatalyst design and parameters affecting the photocatalytic degradation. Catal. Commun. 2023, 183, 106764. [Google Scholar] [CrossRef]
- Ahmad, A.; Mohd-Setapar, S.H.; Chuong, C.S.; Khatoon, A.; Wani, W.A.; Kumar, R.; Rafatullah, M. Recent advances in new generation dye removal technologies: Novel search for approaches to reprocess wastewater. RSC Adv. 2015, 5, 30801–30818. [Google Scholar] [CrossRef]
- Waheed, A.; Baig, N.; Ullah, N.; Falath, W. Removal of hazardous dyes, toxic metal ions and organic pollutants from wastewater by using porous hyper-cross-linked polymeric materials: A review of recent advances. J. Environ. Manag. 2021, 287, 112360. [Google Scholar] [CrossRef] [PubMed]
- Rajamani, M.; Rajan, A.; Neppolian, B. Photocatalytic pathway toward real time control of tetracycline from industrial wastewater mediated by hetero-structure CuFe2O4-SnS2. J. Environ. Chem. Eng. 2023, 11, 109129. [Google Scholar] [CrossRef]
- Jabbar, Z.H.; Graimed, B.H.; Alsunbuli, M.M.; Sabit, D.A. Developing a magnetic bismuth-based quaternary semiconductor boosted by plasmonic action for photocatalytic detoxification of Cr(VI) and norfloxacin antibiotic under simulated solar irradiation: Synergistic work and radical mechanism. J. Alloys Compd. 2023, 958, 170521. [Google Scholar] [CrossRef]
- Nie, L.; Li, S.; Gao, X.; Yuan, S.; Dong, G.; Tang, G.; Song, D.; Bu, L.; Zhou, Q. Sensitive visual detection of norfloxacin in water by smartphone assisted colorimetric method based on peroxidase-like active cobalt-doped Fe3O4 nanozyme. J. Environ. Sci. 2025, 148, 198–209. [Google Scholar] [CrossRef]
- Ghosh, S.; Kar, S.; Pal, T.; Ghosh, S. Sunlight-driven photocatalytic degradation of Norfloxacin antibiotic in wastewater by ZnSe microsphere functionalized RGO composite. Sustain. Chem. Environ. 2023, 4, 100038. [Google Scholar] [CrossRef]
- Liu, R.; Guo, J.; Gan, W.; Chen, R.; Ding, S.; Zhao, Z.; Li, J.; Zhang, M.; Sun, Z. Construction of ZnCdS/TiO2 Z-Scheme heterostructure with excellent photocatalytic performance for degradation of norfloxacin. Appl. Surf. Sci. 2024, 650, 159229. [Google Scholar] [CrossRef]
- Zhu, Z.; Xia, H.; Ren, B.; Han, S.; Li, H. Fabrication of solar-driven Zn2SnO4/g-C3N4 photocatalyst with enhanced photocatalytic performance for norfloxacin. Inorg. Chem. Commun. 2023, 149, 110432. [Google Scholar] [CrossRef]
- Geldasa, F.T.; Kebede, M.A.; Shura, M.W.; Hone, F.G. Experimental and computational study of metal oxide nanoparticles for the photocatalytic degradation of organic pollutants: A review. RSC Adv. 2023, 13, 18404–18442. [Google Scholar] [CrossRef] [PubMed]
- Sandhu, Z.A.; Raza, M.A.; Farwa, U.; Nasr, S.; Yahia, I.S.; Fatima, S.; Munawar, M.; Hadayet, Y.; Ashraf, S.; Ashraf, H. Response surface methodology: A powerful tool for optimizing the synthesis of metal sulfide nanoparticles for dye degradation. Mater. Adv. 2023, 4, 5094–5125. [Google Scholar] [CrossRef]
- Al-Tohamy, R.; Ali, S.S.; Li, F.; Okasha, K.M.; Mahmoud, Y.A.-G.; Elsamahy, T.; Jiao, H.; Fu, Y.; Sun, J. A critical review on the treatment of dye-containing wastewater: Ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety. Ecotoxicol. Environ. Saf. 2022, 231, 113160. [Google Scholar] [CrossRef]
- Shabir, M.; Yasin, M.; Hussain, M.; Shafiq, I.; Akhter, P.; Nizami, A.-S.; Jeon, B.-H.; Park, Y.-K. A review on recent advances in the treatment of dye-polluted wastewater. J. Ind. Eng. Chem. 2022, 112, 1–19. [Google Scholar] [CrossRef]
- Kumari, H.; Sonia; Suman; Ranga, R.; Chahal, S.; Devi, S.; Sharma, S.; Kumar, S.; Kumar, P.; Kumar, S.; et al. A Review on photocatalysis used for wastewater treatment: Dye degradation. Water Air Soil Pollut. 2023, 234, 349. [Google Scholar] [CrossRef] [PubMed]
- Rafiq, A.; Ikram, M.; Ali, S.; Niaz, F.; Khan, M.; Khan, Q.; Maqbool, M. Photocatalytic degradation of dyes using semiconductor photocatalysts to clean industrial water pollution. J. Ind. Eng. Chem. 2021, 97, 111–128. [Google Scholar] [CrossRef]
- Rouibah, K.; Akika, F.-Z.; Rouibah, C.; Boudermine, H.R.; Douafer, S.; Boukerche, S.; Boukerche, G.; Benamira, M. Solar photocatalytic degradation of Methyl green on CuFe2O4/α Fe2O3 heterojunction. Inorg. Chem. Commun. 2023, 148, 110361. [Google Scholar] [CrossRef]
- Mosleh, S.; Dashtian, K.; Ghaedi, M.; Amiri, M. A Bi2WO6/Ag2S/ZnS Z-scheme heterojunction photocatalyst with enhanced visible-light photoactivity towards the degradation of multiple dye pollutants. RSC Adv. 2019, 9, 30100–30111. [Google Scholar] [CrossRef]
- Liu, D.; Cai, H.; Zhou, W.; Lei, D.; Cao, C.; Xia, X.; Xiao, L.; Qian, Q.; Chen, Q. Application of 3D printing technology for green synthesis of Fe2O3 using ABS/TPU/chlorella skeletons for methyl orange removal. RSC Adv. 2024, 14, 1501–1512. [Google Scholar] [CrossRef]
- Ismael, A.M.; El-Shazly, A.N.; Gaber, S.E.; Rashad, M.M.; Kamel, A.H.; Hassan, S.S.M. Novel TiO2/GO/CuFe2O4 nanocomposite: A magnetic, reusable and visible-light-driven photocatalyst for efficient photocatalytic removal of chlorinated pesticides from wastewater. RSC Adv. 2020, 10, 34806–34814. [Google Scholar] [CrossRef] [PubMed]
- Perumal, K.; Shanavas, S.; Ahamad, T.; Karthigeyan, A.; Murugakoothan, P. Construction of Ag2CO3/BiOBr/CdS ternary composite photocatalyst with improved visible-light photocatalytic activity on tetracycline molecule degradation. J. Environ. Sci. 2023, 125, 47–60. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Zhang, S.; Feng, S.; Zhu, M.; Ma, S. The first ternary Nd-MOF/GO/Fe3O4 nanocomposite exhibiting an excellent photocatalytic performance for dye degradation. Dalton Trans. 2020, 49, 10745–10754. [Google Scholar] [CrossRef]
- Kighuta, K.; Gopalan, A.-I.; Lee, D.-G.; Kim, S.-W.; Park, S.-S.; Lee, D.-E.; Lee, K.-P.; Kim, W.-J. Novel visible light active ternary TiO2-ZnO-WO3 composites: Facile preparation strategy and performance evaluation using the response surface design. J. Environ. Chem. Eng. 2022, 10, 108224. [Google Scholar] [CrossRef]
- Ali, H.R.; Motawea, E.A. Ternary photodegradable nanocomposite (BiOBr/ZnO/WO3) for the degradation of phenol pollutants: Optimization and experimental design. ACS Omega 2021, 6, 22047–22064. [Google Scholar] [CrossRef]
- Wu, Z.; Chen, X.; Liu, X.; Yang, X.; Yang, Y. A ternary magnetic recyclable ZnO/Fe3O4/g-C3N4 composite photocatalyst for efficient photodegradation of Monoazo dye. Nanoscale Res. Lett. 2019, 14, 147. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Hu, C.; Zhai, H.; Yang, J.; Liu, X.; Jia, H. Fabrication of In2O3/ZnO@Ag nanowire ternary composites with enhanced visible light photocatalytic activity. RSC Adv. 2017, 7, 37220–37229. [Google Scholar] [CrossRef]
- Ong, C.B.; Ng, L.Y.; Mohammad, A.W. A review of ZnO nanoparticles as solar photocatalysts: Synthesis, mechanisms and applications. Renew. Sustain. Energy Rev. 2018, 81, 536–551. [Google Scholar] [CrossRef]
- Raizada, P.; Sudhaik, A.; Patial, S.; Hasija, V.; Khan, A.A.P.; Singh, P.; Gautam, S.; Kaur, M.; Nguyen, V.-H. Engineering nanostructures of CuO-based photocatalysts for water treatment: Current progress and future challenges. Arab. J. Chem. 2020, 13, 8424–8457. [Google Scholar] [CrossRef]
- Sobhani, A.; Alinavaz, S. ZnMn2O4 nanostructures: Synthesis via two different chemical methods, characterization, and photocatalytic applications for the degradation of new dyes. Heliyon 2023, 9, e21979. [Google Scholar] [CrossRef]
- Abel, M.J.; Pramothkumar, A.; Senthilkumar, N.; Jothivenkatachalam, K.; Inbaraj, P.F.H.; Joseph prince, J. Flake-like CuMn2O4 nanoparticles synthesized via co-precipitation method for photocatalytic activity. Phys. B Condens. Matter 2019, 572, 117–124. [Google Scholar]
- Wirunchit, S.; Charoonsuk, T.; Vittayakorn, N. Facile sonochemical synthesis of near spherical barium zirconate titanate (BaZr1-yTiyO3; BZT); perovskite stability and formation mechanism. RSC Adv. 2015, 5, 38061–38074. [Google Scholar] [CrossRef]
- Alias, F.I.H.; Rajmi, R.; Maulud, M.F.; Mohamed, Z. Structural, optical and dielectric properties of tellurium-based double perovskite Sr2Ni1−xZnxTeO6. RSC Adv. 2021, 11, 31631–31640. [Google Scholar] [CrossRef]
- Salem, B.B.; Essalah, G.; Ameur, S.B.; Duponchel, B.; Guermazi, H.; Guermazi, S.; Leroy, G. Synthesis and comparative study of the structural and optical properties of binary ZnO-based composites for environmental applications. RSC Adv. 2023, 13, 6287–6303. [Google Scholar] [CrossRef]
- Mahroug, A.; Boudjadar, S.; Hamrit, S.; Guerbous, L. Structural, optical and photocurrent properties of undoped and Al-doped ZnO thin films deposited by sol–gel spin coating technique. Mater. Lett. 2014, 134, 248–251. [Google Scholar] [CrossRef]
- Anand, A.M.; Raj, A.; Salam, J.A.; Nath, R.A.; Jayakrishnan, R. Photoconductivity in self-assembled CuO thin films. Mater. Renew. Sustain. Energy 2024, 13, 45–58. [Google Scholar] [CrossRef]
- Wang, X.; Xu, C.; Liu, J. Extracting optical parameters of Cu-Mn-Fe spinel oxide nanoparticles for optimizing air-stable, high-efficiency solar selective coatings. ACS Appl. Opt. Mater. 2023, 1, 960–972. [Google Scholar] [CrossRef]
- Sukriti; Chand, P.; Singh, V. Enhanced visible-light photocatalytic activity of samarium-doped zinc oxide nanostructures. J. Rare Earths 2020, 38, 29–38. [Google Scholar] [CrossRef]
- Wang, J.; Liu, C.; Tong, L.; Li, J.; Luo, R.; Qi, J.; Li, Y.; Wang, L. Iron–copper bimetallic nanoparticles supported on hollow mesoporous silica spheres: An effective heterogeneous Fenton catalyst for orange II degradation. RSC Adv. 2015, 5, 69593–69605. [Google Scholar] [CrossRef]
- Peng, F.; Lai, Q.; Chang, W.; Cui, Y. Preparation, characterization and visible light photocatalytic activities of samarium-doped mixed crystalline phase TiO2 nanoparticles. IOP Conf. Ser. Mater. Sci. Eng. 2019, 562, 012031. [Google Scholar] [CrossRef]
- Dash, D.; Panda, N.R.; Sahu, D. Sm3+ driven enhancement in photocatalytic degradation of hazardous dyes and photoluminescence properties of hexagonal-ZnO nanocolumns. Nano Ex. 2021, 2, 010007. [Google Scholar] [CrossRef]
- Alzahrani, F.M.A.; Anwar, M.; Farooq, A.; Alrowaili, Z.A.; Al-Buriahi, M.S.; Warsi, M.F. A new BiOCl–ZnFe2O4/CNTs ternary composite for remarkable photocatalytic degradation studies of a herbicide and a diazo dye. Opt. Mater. 2024, 148, 114876. [Google Scholar] [CrossRef]
- Yu, F.; Cui, J.; Zhou, Y.; Li, Y.; Liu, Z.; He, L.; Zhang, J.; Tang, X.; Liu, Y. Structural and optical properties of ultra-thin g-C3N4 nanotubes based g-C3N4/Ag/Ag2CrO4 ternary composite photocatalyst with Z-scheme carrier transfer mechanism. Opt. Mater. 2021, 121, 111608. [Google Scholar] [CrossRef]
- Asif, N.; Shehzadi, S.; Fatima, S.; Fatma, T. Photocatalytic Degradation of Synthetic Dyes Using Cyanobacteria-Derived Zinc Oxide Nanoparticles. BioNanoSci. 2023, 13, 365–375. [Google Scholar] [CrossRef]
- Isai, K.A.; Shrivastava, V.S. Photocatalytic degradation of methylene blue using ZnO and 2%Fe–ZnO semiconductor nanomaterials synthesized by sol–gel method: A comparative study. SN Appl. Sci. 2019, 1, 1247. [Google Scholar] [CrossRef]
- Aroob, S.; Carabineiro, S.A.C.; Taj, M.B.; Bibi, I.; Raheel, A.; Javed, T.; Yahya, R.; Alelwani, W.; Verpoort, F.; Kamwilaisak, K.; et al. Green Synthesis and Photocatalytic Dye Degradation Activity of CuO Nanoparticles. Catalysts 2023, 13, 502. [Google Scholar] [CrossRef]
- Truong, T.T.; Pham, T.T.; Truong, T.T.T.; Pham, T.D. Synthesis, characterization of novel ZnO/CuO nanoparticles, and the applications in photocatalytic performance for rhodamine B dye degradation. Environ. Sci. Pollut Res. 2022, 29, 22576–22588. [Google Scholar] [CrossRef]
- George, A.; Raj, D.M.A.; Venci, X.; Raj, A.D.; Irudayaraj, A.A.; Josephine, R.L.; Sundaram, S.J.; Al-Mohaimeed, A.M.; Al Farraj, D.A.; Chen, T.-W.; et al. Photocatalytic effect of CuO nanoparticles flower-like 3D nanostructures under visible light irradiation with the degradation of methylene blue (MB) dye for environmental application. Environ. Res. 2022, 203, 111880. [Google Scholar] [CrossRef]
- Sobhani, A. Hydrothermal synthesis of CuMn2O4/CuO nanocomposite without capping agent and study its photocatalytic activity for elimination of dye pollution. Int. J. Hydrog. Energy 2022, 47, 20138–20152. [Google Scholar] [CrossRef]
- Saravanan, R.; Karthikeyan, S.; Gupta, V.K.; Sekaran, G.; Narayanan, V.; Stephen, A. Enhanced photocatalytic activity of ZnO/CuO nanocomposite for the degradation of textile dye on visible light illumination. Mater. Sci. Eng. C 2013, 33, 91–98. [Google Scholar] [CrossRef]
- Alsulmi, A.; Mohammed, N.N.; Soltan, A.; Messih, M.F.A.; Ahmed, M.A. Engineering S-scheme CuO/ZnO heterojunctions sonochemically for eradicating RhB dye from wastewater under solar radiation. RSC Adv. 2023, 13, 13269–13281. [Google Scholar] [CrossRef]
- Saadi, H.; Rhouma, F.I.H.; Benzarti, Z.; Bougrioua, Z.; Guermazi, S.; Khirouni, K. Electrical conductivity improvement of Fe doped ZnO nanopowders. Mater. Res. Bull. 2020, 129, 110884. [Google Scholar] [CrossRef]
- Khan, R.; Zulfiqar; de Araujo, C.I.L.; Khan, T.; Muneeb-Ur-Rahman; Zia-Ur-Rehman; Khan, A.; Ullah, B.; Fashu, S. Influence of oxygen vacancies on the structural, dielectric, and magnetic properties of (Mn, Co) co-doped ZnO nanostructures. J. Mater. Sci. Mater. Electron. 2018, 29, 9785–9795. [Google Scholar] [CrossRef]
- Bendahhou, A.; Chourti, K.; Loutou, M.; El Barkany, S.; Abou-Salama, M. Impact of rare earth (RE3+ = La3+, Sm3+) substitution in the A site perovskite on the structural, and electrical properties of Ba(Zr0.9Ti0.1)O3 ceramics. RSC Adv. 2022, 12, 10895–10910. [Google Scholar] [CrossRef]
- Ishaque, M.Z.; Zaman, Y.; Arif, A.; Siddique, A.B.; Shahzad, M.; Ali, D.; Aslam, M.; Zaman, H.; Faizan, M. Fabrication of ternary metal oxide (ZnO:NiO:CuO) nanocomposite heterojunctions for enhanced photocatalytic and antibacterial applications. RSC Adv. 2023, 13, 30838–30854. [Google Scholar] [CrossRef]
Samples | Phase | a (Å) | b (Å) | c (Å) | V (Å3) |
---|---|---|---|---|---|
CuO/ZnO/CuMn2O4 | CuO | 4.696 | 3.426 | 5.135 | 81.51 |
ZnO | 3.254 | 3.254 | 5.219 | 47.89 | |
CuMn2O4 | 8.343 | 8.343 | 8.343 | 580.8 | |
Sm-CuO/ZnO/CuMn2O4 | CuO | 4.702 | 3.428 | 5.140 | 81.69 |
ZnO | 3.262 | 3.262 | 5.224 | 48.14 | |
CuMn2O4 | 8.350 | 8.350 | 8.350 | 582.2 |
Samples | Pollutant | Time (min) | Efficiency (%) | Reference |
---|---|---|---|---|
Sm-CuO/ZnO/CuMn2O4 | Norfloxacin | 50 | 97 | Current study |
Methyl green | 40 | 96 | ||
ZnO | Methylene blue | 80 | 91 | [44] |
Methyl orange | 150 | 86 | ||
2%Fe–ZnO | Methylene blue | 180 | 92 | [45] |
CuO | Methyl green Methyl orange | 60 60 | 65 65 | [46] |
ZnO/CuO | Rhodamine B | 180 | 98 | [47] |
Zn-CuO | Methylene blue | 60 | 63 | [48] |
CuMn2O4/CuO | Malachite green | 90 | 73.27 | [49] |
CuMn2O4 | Methylene Blue Malachite green | 120 60 | 86 92 | [31] |
ZnO/CuO | Methylene Blue Methyl orange | 120 120 | 97.2 87.7 | [50] |
CuO/ZnO | Rhodamine B | 240 | 93 | [51] |
Samples | 50 Hz | 100 | 250 | 500 | 1000 | 3000 | 5000 | 8000 | 10,000 |
CuO/ZnO/CuMn2O4 | 22,448 | 9756 | 4383 | 2532 | 1507 | 749 | 556 | 390 | 332 |
Sm-CuO/ZnO/CuMn2O4 | 47,845 | 39,254 | 30,214 | 24,562 | 17,211 | 11,726 | 10,709 | 9197 | 8579 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Althikrallah, H.A.; Alsulaim, G.M.; Alsharif, S.A.; Alnahdi, K.M. Preparation of New Sm-Doped CuO/ZnO/CuMn2O4 Tri-Composite for Photoremoval of Dissolved Organic Waste and Dielectric-Energy Storage. J. Compos. Sci. 2024, 8, 152. https://doi.org/10.3390/jcs8040152
Althikrallah HA, Alsulaim GM, Alsharif SA, Alnahdi KM. Preparation of New Sm-Doped CuO/ZnO/CuMn2O4 Tri-Composite for Photoremoval of Dissolved Organic Waste and Dielectric-Energy Storage. Journal of Composites Science. 2024; 8(4):152. https://doi.org/10.3390/jcs8040152
Chicago/Turabian StyleAlthikrallah, Hanan A., Ghayah M. Alsulaim, Shada A. Alsharif, and Kholoud M. Alnahdi. 2024. "Preparation of New Sm-Doped CuO/ZnO/CuMn2O4 Tri-Composite for Photoremoval of Dissolved Organic Waste and Dielectric-Energy Storage" Journal of Composites Science 8, no. 4: 152. https://doi.org/10.3390/jcs8040152
APA StyleAlthikrallah, H. A., Alsulaim, G. M., Alsharif, S. A., & Alnahdi, K. M. (2024). Preparation of New Sm-Doped CuO/ZnO/CuMn2O4 Tri-Composite for Photoremoval of Dissolved Organic Waste and Dielectric-Energy Storage. Journal of Composites Science, 8(4), 152. https://doi.org/10.3390/jcs8040152