Encapsulation of Canola Oil by Sonication for the Development of Protein and Starch Systems: Physical Characteristics and Rheological Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Stage 1
2.2.1. Preparation of Nanoemulsions
2.2.2. Physical Properties for Determining Canola Oil Encapsulation
Particle Size Characterization and Polydispersity Index
Physical Stability of Nanoemulsions
2.2.3. Experimental Statistical Design
2.3. Stage 2
2.3.1. Preparation of Nanoemulsion-Encapsulated Gels
2.3.2. Colorimetric and Rheological Properties
Colorimetric Properties of Nanoemulsion-Based Gels
Flow Properties of Nanoemulsion-Based Gels
Viscoelastic Properties of Nanoemulsion-Based Gels
2.3.3. Experimental Statistical Design
2.4. Statistical Analysis
3. Results and Discussion
3.1. Stage 1—Physicochemical Characteristics of the Encapsulated Products
3.2. Stage 2—Colorimetric and Rheological Characteristics of the Gels with the Nanoemulsion
3.2.1. Colorimetric Parameters
3.2.2. Rheological Parameters
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Enns, J.E.; Zahradka, P.; Guzman, R.P.; Baldwin, A.; Foot, B.; Taylor, C.G. Randomized controlled trial to evaluate the effect of canola oil on blood vessel function in peripheral arterial disease: Rationale and design of the Canola-PAD Study. Open Access J. Clin. Trials 2014, 6, 117–125. [Google Scholar]
- Yang, J.-M.; Long, Y.; Ye, H.; Wu, Y.-L.; Zhu, Q.; Zhang, J.-H.; Huang, H.; Zhong, Y.-B.; Luo, Y.; Wang, M.-Y. Effects of rapeseed oil on body composition and glucolipid metabolism in people with obesity and overweight: A systematic review and meta-analysis. Eur. J. Clin. Nutr. 2024, 78, 6–18. [Google Scholar] [CrossRef]
- Pourrajab, B.; Sharifi-Zahabi, E.; Soltani, S.; Shahinfar, H.; Shidfar, F. Comparison of canola oil and olive oil consumption on the serum lipid profile in adults: A systematic review and meta-analysis of randomized controlled trials. Crit. Rev. Food Sci. Nutr. 2023, 63, 12270–12284. [Google Scholar] [CrossRef]
- Arancibia, C.; Miranda, M.; Matiacevich, S.; Troncoso, E. Physical properties and lipid bioavailability of nanoemulsion-based matrices with different thickening agents. Food Hydrocoll. 2017, 73, 243–254. [Google Scholar] [CrossRef]
- Alipour, E.; Halverson, D.; McWhirter, S.; Walker, G.C. Phospholipid Bilayers: Stability and Encapsulation of Nanoparticles. Annu. Rev. Phys. Chem. 2017, 68, 261–283. [Google Scholar] [CrossRef] [PubMed]
- McClements, D.J. Nanoemulsion-based oral delivery systems for lipophilic bioactive components: Nutraceuticals and pharmaceuticals. Ther. Deliv. 2013, 4, 841–857. [Google Scholar] [CrossRef] [PubMed]
- Guttoff, M.; Saberi, A.H.; Mcclements, D.J. Formation of vitamin D nanoemulsion-based delivery systems by spontaneous emulsification: Factors affecting particle size and stability. Food Chem. 2015, 171, 117–122. [Google Scholar] [CrossRef] [PubMed]
- Raikos, V. Encapsulation of vitamin E in edible orange oil-in-water emulsion beverages: Influence of heating temperature on physicochemical stability during chilled storage. Food Hydrocoll. 2017, 72, 155–162. [Google Scholar] [CrossRef]
- Mezdour, S.; Desplanques, S.; Relkin, P. Effects of residual phospholipids on surface properties of a soft-refined sunflower oil: Application to stabilization of sauce-types’ emulsions. Food Hydrocoll. 2011, 25, 613–619. [Google Scholar] [CrossRef]
- Ozturk, B.; McClements, D. Progress in natural emulsifiers for utilization in food emulsions. Curr. Opin. Food Sci. 2016, 7, 1–6. [Google Scholar] [CrossRef]
- Morales, E.; Burgos-Díaz, C.; Zúñiga, R.N.; Jorkowski, J.; Quilaqueo, M.; Rubilar, M. Influence of O/W emulsion interfacial ionic membranes on the encapsulation efficiency and storage stability of powder microencapsulated astaxanthin. Food Bioprod. Process. 2021, 126, 143–154. [Google Scholar] [CrossRef]
- CGNA (Director). Microencapsulación: Una Tecnología que Potencia la Calidad y la Innovación de los Alimentos. Available online: https://www.youtube.com/watch?v=iYWeBJOWX10 (accessed on 10 August 2024).
- Barbosa-Nuñez, J.A.; Espinosa-Andrews, H.; Cardona AA, V.; Haro-González, J.N. Polymer-based encapsulation in food products: A comprehensive review of applications and advancements. J. Future Foods 2025, 5, 36–49. [Google Scholar] [CrossRef]
- Deng, R.-X.; Zheng, Y.-Y.; Liu, D.-J.; Liu, J.-Y.; Zhang, M.-N.; Xi, G.-Y.; Song, L.-L.; Liu, P. The effect of ultrasonic power on the physicochemical properties and antioxidant activities of frosted figs pectin. Ultrason. Sonochem. 2024, 106, 106883. [Google Scholar] [CrossRef]
- Ho, J.; Wang, H.; Forde, G.M. Process considerations related to the microencapsulation of plasmid DNA via ultrasonic atomization. Biotechnol. Bioeng. 2008, 101, 172–181. [Google Scholar] [CrossRef]
- Qu, W.; Feng, Y.; Xiong, T.; Qayum, A.; Ma, H. Preparation, structural and functional characterization of corn peptide-chelated calcium microcapsules using synchronous dual frequency ultrasound. Ultrason. Sonochem. 2024, 102, 106732. [Google Scholar] [CrossRef]
- Ma, D.; Yang, B.; Zhao, J.; Yuan, D.; Li, Q. Advances in protein-based microcapsules and their applications: A review. Int. J. Biol. Macromol. 2024, 263, 129742. [Google Scholar] [CrossRef]
- Piornos, J.A.; Burgos-Díaz, C.; Morales, E.; Rubilar, M.; Acevedo, F. Highly efficient encapsulation of linseed oil into alginate/lupin protein beads: Optimization of the emulsion formulation. Food Hydrocoll. 2017, 63, 139–148. [Google Scholar] [CrossRef]
- Ahmadian, S.; Kenari, R.E.; Amiri, Z.R.; Sohbatzadeh, F.; Khodaparast MH, H. Fabrication of double nano-emulsions loaded with hyssop (Hyssopus officinalis L.) extract stabilized with soy protein isolate alone and combined with chia seed gum in controlling the oxidative stability of canola oil. Food Chem. 2024, 430, 137093. [Google Scholar] [CrossRef]
- Agregán, R.; Lorenzo, J.M.; Munekata PE, S.; Dominguez, R.; Carballo, J.; Franco, D. Assessment of the antioxidant activity of Bifurcaria bifurcata aqueous extract on canola oil. Effect of extract concentration on the oxidation stability and volatile compound generation during oil storage. Food Res. Int. 2017, 99, 1095–1102. [Google Scholar] [CrossRef] [PubMed]
- Arancibia, C.; Navarro-Lisboa, R.; Zúniga, R.N.; Matiacevich, S. Application of CMC as thickener on nanoemulsions based on olive oil: Physical properties and stability. Int. J. Polym. Sci. 2016, 2016, 6280581. [Google Scholar] [CrossRef]
- Petrovic, L.B.; Sovilj, V.J.; Katona, J.M.; Milanovic, J.L. Influence of polymer-surfactant interactions on o/w emulsion properties and microcapsule formation. J. Colloid Interface Sci. 2010, 342, 333–339. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Zhang, F.; Wang, S.; Chen, W.; Li, X.; Hao, J.; Alouk, I.; Wang, Y.; Xu, D.; Sun, B. The fabrication, microstructure, rheological properties and interactions of soft solid oleogels of hazelnut oil body. Food Hydrocoll. 2025, 159, 110711. [Google Scholar] [CrossRef]
- Feczkó, T.; Tóth, J.; Dósa, G.; Gyenis, J. Optimization of protein encapsulation in PLGA nanoparticles. Chem. Eng. Process. Process Intensif. 2011, 50, 757–765. [Google Scholar] [CrossRef]
- Bouriche, S.; Cózar-Bernal, M.J.; Rezgui, F.; Álvarez, A.M.R.; González-Rodríguez, M.L. Optimization of preparation method by W/O/W emulsion for entrapping metformin hydrochloride into poly (lactic acid) microparticles using Box-Behnken design. J. Drug Deliv. Sci. Technol. 2019, 51, 419–429. [Google Scholar] [CrossRef]
- Essifi, K.; Lakrat, M.; Berraaouan, D.; Fauconnier, M.-L.; El Bachiri, A.; Tahani, A. Optimization of gallic acid encapsulation in calcium alginate microbeads using Box-Behnken Experimental Design. Polym. Bull. 2021, 78, 5789–5814. [Google Scholar] [CrossRef]
- Sharaf, N.S.; Shetta, A.; Elhalawani, J.E.; Mamdouh, W. Application of Box-Behnken design for the formulation and optimization of coffee and PLGA nanoparticles and detection of enhanced antioxidant and anticancer activities. Polymers 2022, 14, 144. [Google Scholar] [CrossRef]
- Xie, H.; Ni, F.; Gao, J.; Liu, C.; Shi, J.; Ren, G.; Tian, S.; Lei, Q.; Fang, W. Preparation of zein-lecithin-EGCG complex nanoparticles stabilized peppermint oil emulsions: Physicochemical properties, stability and intelligent sensory analysis. Food Chem. 2022, 383, 132453. [Google Scholar] [CrossRef] [PubMed]
- Aktaş, H.; Custodio-Mendoza, J.; Moczkowska-Wyrwisz, M.; Szpicer, A.; Kurek, M.A. The role of canola, black caraway, and wheat bran protein isolates in anthocyanin microencapsulation via double emulsions. Ind. Crops Prod. 2024, 222, 119644. [Google Scholar] [CrossRef]
- Abbasi, H.; Tavakoli, J.; Zare, F.; Salmanpour, M. Improving the efficacy of phenolic extract from Pimpinella affinis in edible oils through nanoencapsulation: Utilizing chitosan and Salvia macrosiphon gum as coating agents. Food Sci. Nutr. 2024, 12, 5463–5472. [Google Scholar] [CrossRef]
- Paximada, P.; Koutinas, A.A.; Scholten, E.; Mandala, I.G. Effect of bacterial cellulose addition on physical properties of WPI emulsions. Comparison with common thickeners. Food Hydrocoll. 2016, 54, 245–254. [Google Scholar] [CrossRef]
- Li, X.; Wang, L.; Wang, B. Optimization of encapsulation efficiency and average particle size of Hohenbuehelia serotina polysaccharides nanoemulsions using response surface methodology. Food Chem. 2017, 229, 479–486. [Google Scholar] [CrossRef] [PubMed]
- Pashazadeh, H.; Zannou, O.; Ghellam, M.; Koca, I.; Galanakis, C.M.; Aldawoud, T.M. Optimization and encapsulation of phenolic compounds extracted from corn waste by freeze-drying, spray drying and microwave drying using maltodextrin. Foods 2021, 10, 1396. [Google Scholar] [CrossRef]
- Salvia-Trujillo, L.; Rojas-Graü, M.A.; Soliva-Fortuny, R.; Martín-Belloso, O. Use of antimicrobial nanoemulsions as edible coatings: Impact on safety and quality attributes of fresh-cut Fuji apples. Postharvest Biol. Technol. 2015, 105, 8–16. [Google Scholar] [CrossRef]
- McClements, D.J. Colloidal basis of emulsion color. Curr. Opin. Colloid Interface Sci. 2002, 7, 451–455. [Google Scholar] [CrossRef]
- Ricaurte, L.; de Jesús Perea-Flores, M.; Martinez, A.; Quintanilla-Carvajal, M.X. Production of high-oleic palm oil nanoemulsions by high-shear homogenization (microfluidization). Innov. Food Sci. Emerg. Technol. 2016, 35, 75–85. [Google Scholar] [CrossRef]
- Pi, X.; Zhu, L.; Xiang, M.; Zhao, S.; Cheng, Z.; Qiao, D.; Zhang, B. Insight of soy protein isolate to decrease the gel properties corn starch based binary system: Rheological and structural investigation. Food Hydrocoll. 2025, 160, 110750. [Google Scholar] [CrossRef]
- Fu, J.; Cai, X.; Yang, Y.; Xie, H.; Duan, Q.; Liu, H.; Yu, L. Application of various polysaccharide gums to improve gelation and rheological properties of hydroxypropyl starch hydrocolloids. Food Hydrocoll. 2024, 154, 110043. [Google Scholar] [CrossRef]
- Liang, X.; Ma, C.; Yan, X.; Zeng, H.; McClements, D.J.; Liu, X.; Liu, F. Structure, rheology and functionality of whey protein emulsion gels: Effects of double cross-linking with transglutaminase and calcium ions. Food Hydrocoll. 2020, 102, 105569. [Google Scholar] [CrossRef]
- Farooq, S.; Ahmad, M.I.; Zhang, Y.; Chen, M.; Zhang, H. Preparation, characterization and digestive mechanism of plant-derived oil bodies-based oleogels structured by chitosan and vanillin. Food Hydrocoll. 2023, 136, 108247. [Google Scholar] [CrossRef]
- Mert, B.; Vilgis, T.A. Hydrocolloid coated oleosomes for development of oleogels. Food Hydrocoll. 2021, 119, 106832. [Google Scholar] [CrossRef]
Treatment | Independent Variable | Dependent Variable | ||
---|---|---|---|---|
Time (min) | Lecithin (g) | Tween 80 (g) | ||
1 | 12.5 | 2.45 | 0.3 | Creaming index Particle size Polydispersion index |
2 | 5.0 | 2.45 | 0.1 | |
3 | 12.5 | 0.40 | 0.5 | |
4 | 20.0 | 4.50 | 0.3 | |
5 | 20.0 | 2.45 | 0.5 | |
6 | 5.0 | 0.40 | 0.3 | |
7 | 5.0 | 4.50 | 0.3 | |
8 | 20 | 0.40 | 0.3 | |
9 | 12.5 | 0.40 | 0.1 | |
10 | 12.5 | 2.45 | 0.3 | |
11 | 20.0 | 2.45 | 0.1 | |
12 | 12.5 | 2.45 | 0.3 | |
13 | 12.5 | 4.50 | 0.1 | |
14 | 5.0 | 2.45 | 0.5 | |
15 | 12.5 | 4.50 | 0.5 |
Treatment | Independent Variable | Response Variables |
---|---|---|
Essay: Protein System (WPI) | Colorimetric parameters Rheological parameters | |
T1 | 7.5% WPI | |
T2 | 10% WPI | |
T3 | 12.5% WPI | |
T4 | 15% WPI | |
Essay: Protein–starch mixture system (ALM) | ||
T5 | 1% Starch + 3% WPI | |
T6 | 2% Starch + 3% WPI | |
T7 | 3% Starch + 3% WPI | |
T8 | 4% Starch + 3% WPI |
Treatments | Creaming Index (%) | Particle Size (nm) | Polydispersity Index |
---|---|---|---|
1 | 1.0 | 196.400 | 0.21525 |
2 | 4.5 | 258.325 | 0.26050 |
3 | 2.0 | 266.475 | 0.21825 |
4 | 1.0 | 161.400 | 0.21275 |
5 | 7.5 | 137.900 | 0.15775 |
6 | 5.5 | 280.800 | 0.21500 |
7 | 1.0 | 177.425 | 0.18350 |
8 | 5.5 | 273.900 | 0.21000 |
9 | 3.5 | 267.575 | 0.20900 |
10 | 1.5 | 174.275 | 0.15025 |
11 | 2.0 | 209.050 | 0.17800 |
12 | 1.0 | 172.325 | 0.16100 |
13 | 1.0 | 187.675 | 0.20200 |
14 | 4.5 | 143.575 | 0.15800 |
15 | 1.0 | 134.350 | 0.19025 |
Factor | Creaming Index | Particle Size (nm) | Polydispersity Index | |||
---|---|---|---|---|---|---|
Coefficient | p-Value | Coefficient | p-Value | Coefficient | p-Value | |
Time | 0.125 | 1.000 | −19.469 | 0.176 | −0.015 | 0.613 |
Time × Time | −2.416 | 0.004 | −7.788 | 0.379 | −0.007 | 0.745 |
Lecithin | −3.125 | 0.004 | −106.975 | 0.008 | −0.016 | 0.584 |
Lecithin × Lecithin | 0.333 | 0.156 | −34.594 | 0.038 | −0.023 | 0.331 |
Tween 80 | 1.000 | 0.039 | −60.081 | 0.024 | −0.031 | 0.332 |
Tween 80 × Tween 80 | −1.041 | 0.0201 | 1.575 | 0.842 | −0.006 | 0.761 |
Time × Lecithin | 0.000 | 1.000 | −4.563 | 0.765 | 0.017 | 0.672 |
Time × Tween 80 | 2.750 | 0.011 | 21.800 | 0.245 | 0.041 | 0.359 |
Lecithin × Tween 80 | 0.750 | 0.121 | −26.112 | 0.190 | −0.011 | 0.792 |
R2 | 0.845 | 0.932 | 0.556 | |||
Lack of fit | 0.0246 | 0.1956 | 0.567496 |
Treatment | Flow Sweep—Power Law | Oscillatory Sweep—Frequency 1.17 Hz | |||
---|---|---|---|---|---|
K | n | R2 | G′ | G″ | |
T1: 7.5% WPI | 0.086 ± 0.0002 e | 0.897 ± 0.001 a | 0.971 ± 0.0002 | 257.950 ± 3.320 c | 47.793 ± 0.576 g |
T2: 10% WPI | 0.085 ± 0.0004 e | 0.851 ± 0.0016 b | 0.918 ± 0.0006 | 807.110 ± 4.790 bc | 129.890 ± 0.997 d |
T3: 12.5% WPI | 2.781 ± 0.0016 c | 0.364 ± 0.0015 g | 0.981 ± 0.0006 | 1258.400 ± 2.400 b | 262.080 ± 1.030 b |
T4: 15% WPI | 11.069 ± 0.0969 b | 0.393 ± 0.0019 e | 0.988 ± 0.0011 | 22,987.000 ± 685.00 a | 3922.900 ± 9.05 a |
T5: 1% Starch + 3% WPI | 0.019 ± 0.0001 e | 0.826 ± 0.0008 c | 0.802 ± 0.0003 | 303.610 ± 1.970 bc | 48.627 ± 0.528 g |
T6: 2% Starch + 3% WPI | 0.478 ± 0.0006 d | 0.439 ± 0.0007 d | 0.929 ± 0.0004 | 458.910 ± 1.820 bc | 94.904 ± 0.560 e |
T7: 3% Starch + 3% WPI | 2.639 ± 0.0016 c | 0.374 ± 0.0006 f | 0.987 ± 0.0003 | 528.060 ± 2.740 bc | 78.503 ± 0.703 f |
T8: 4% Starch + 3% WPI | 12.422 ± 0.0318 a | 0.355 ± 0.0001 h | 0.997 ± 0.0003 | 1000.900 ± 1.520 bc | 208.110 ± 0.559 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva-Paz, R.J.; Ñope-Quito, C.E.; Rivera-Ashqui, T.A.; Jamanca-Gonzales, N.C.; Eccoña-Sota, A.; Riquelme, N.; Arancibia, C. Encapsulation of Canola Oil by Sonication for the Development of Protein and Starch Systems: Physical Characteristics and Rheological Properties. Colloids Interfaces 2025, 9, 10. https://doi.org/10.3390/colloids9010010
Silva-Paz RJ, Ñope-Quito CE, Rivera-Ashqui TA, Jamanca-Gonzales NC, Eccoña-Sota A, Riquelme N, Arancibia C. Encapsulation of Canola Oil by Sonication for the Development of Protein and Starch Systems: Physical Characteristics and Rheological Properties. Colloids and Interfaces. 2025; 9(1):10. https://doi.org/10.3390/colloids9010010
Chicago/Turabian StyleSilva-Paz, Reynaldo J., Celenia E. Ñope-Quito, Thalia A. Rivera-Ashqui, Nicodemo C. Jamanca-Gonzales, Amparo Eccoña-Sota, Natalia Riquelme, and Carla Arancibia. 2025. "Encapsulation of Canola Oil by Sonication for the Development of Protein and Starch Systems: Physical Characteristics and Rheological Properties" Colloids and Interfaces 9, no. 1: 10. https://doi.org/10.3390/colloids9010010
APA StyleSilva-Paz, R. J., Ñope-Quito, C. E., Rivera-Ashqui, T. A., Jamanca-Gonzales, N. C., Eccoña-Sota, A., Riquelme, N., & Arancibia, C. (2025). Encapsulation of Canola Oil by Sonication for the Development of Protein and Starch Systems: Physical Characteristics and Rheological Properties. Colloids and Interfaces, 9(1), 10. https://doi.org/10.3390/colloids9010010