Structure, Mechanical and Luminescent Properties of Solid Solution (Y0.96Eu0.01Sm0.01Tb0.01Er0.01)Nb0.7Ta0.3O4
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Haugsrud, R.; Norby, T. Proton conduction in rare-earth ortho-niobates and ortho-tantalates. Nat. Mater. 2006, 5, 193–196. [Google Scholar] [CrossRef]
- Forbes, T.Z.; Nyman, M.; Rodriguez, M.A.; Navrotsky, A. The energetics of lanthanum tantalate materials. J. Solid State Chem. 2010, 183, 2516–2521. [Google Scholar] [CrossRef]
- Chen, L.; Hu, M.; Wu, P.; Feng, J. Thermal expansion performance and intrinsic lattice thermal conductivity of ferroelastic RETaO4 ceramics. J. Am. Ceram. Soc. 2019, 102, 4809–4821. [Google Scholar] [CrossRef]
- Zhou, Y.; Gan, G.; Ge, Z.; Feng, J. Thermophysical properties of SmTaO4, Sm3TaO7 and SmTa3O9 ceramics. Mater. Res. Express 2020, 7, 015204. [Google Scholar] [CrossRef]
- Voloshyna, O.; Gerasymov, I.; Sidletskiy, O.; Kurtsev, D.; Gorbacheva, T.; Hubenko, K.; Boiaryntseva, I.; Ivanov, A.; Spassky, D.; Omelkov, S.; et al. Fast ultradense GdTa1-xNbxO4 scintillator crystals. Opt. Mater. 2017, 66, 332–337. [Google Scholar] [CrossRef]
- Spassky, D.; Vasil’Ev, A.; Vielhauer, S.; Sidletskiy, O.; Voloshyna, O.; Belsky, A. Composition effect in luminescence properties of Y(NbxTa1-x)O4 mixed crystals. Opt. Mater. 2018, 80, 247–252. [Google Scholar] [CrossRef]
- Nakauchi, D.; Koshimizu, M.; Okada, G.; Yanagida, T. Floating zone growth and scintillation properties of undoped and Ce-doped GdTaO4 crystals. Radiat. Meas. 2017, 106, 129–133. [Google Scholar] [CrossRef]
- Palatnikov, M.N.; Smirnov, M.V.; Masloboeva, S.M.; Shcherbina, O.B.; Sidorov, N.V.; Steblevskaya, N.I.; Belobeletskaya, M.V. Luminescence Properties of Sol–Gel Derived Ceramic GdNbxTa1–xO4 and YNbxTa1–xO4 Solid Solutions. Inorg. Mater. 2020, 56, 437–442. [Google Scholar] [CrossRef]
- Ayvacıklı, M.; Ege, A.; Ekdal, E.; Popovici, E.-J.; Can, N. Radioluminescence study of rare earth doped some yttrium based phosphors. Opt. Mater. 2012, 34, 1958–1961. [Google Scholar] [CrossRef]
- Siqueira, K.P.; Carmo, A.P.; Bell, M.J.V.; Dias, A. Optical properties of undoped NdTaO4, ErTaO4 and YbTaO4 ceramics. J. Lumin. 2016, 179, 146–153. [Google Scholar] [CrossRef]
- Chen, Y.; Peng, F.; Zhang, Q.; Liu, W.; Dou, R.; Ding, S.; Luo, J.; Sun, D.; Sun, G.; Wang, X. Growth, structure and spectroscopic properties of 1 at.% Er3+: GdTaO4 laser crystal. J. Lumin. 2017, 192, 555–561. [Google Scholar] [CrossRef]
- Dou, R.; Zhang, Q.; Gao, J.; Chen, Y.; Ding, S.; Peng, F.; Liu, W.; Sun, D. Rare-Earth Tantalates and Niobates Single Crystals: Promising Scintillators and Laser Materials. Crystals 2018, 8, 55. [Google Scholar] [CrossRef] [Green Version]
- Karsu, E.; Popovici, E.; Ege, A.; Morar, M.; Indrea, E.; Karali, T.; Can, N. Luminescence study of some yttrium tantalate-based phosphors. J. Lumin. 2011, 131, 1052–1057. [Google Scholar] [CrossRef]
- Shcherbina, O.B.; Masloboeva, S.M.; Palatnikov, M.N.; Efremov, V.V. Synthesis, structure, luminescent and mechanical properties of YNbxTa1–xO4 solid solutions. J. Struct. Chem. 2021, 62, 1715–1722. [Google Scholar] [CrossRef]
- Blasse, G.; Bril, A. Luminescence phenomena in compounds with fergusonite structure. J. Lumin. 1970, 3, 109–131. [Google Scholar] [CrossRef]
- Ning, K.; Zhang, Q.; Zhang, D.; Fan, J.; Sun, D.; Wang, X.; Hang, Y. Crystal growth, characterization of NdTaO4: A new promising stoichiometric neodymium laser material. J. Cryst. Growth 2014, 388, 83–86. [Google Scholar] [CrossRef] [Green Version]
- Popovici, E.-J.; Nazarov, M.; Muresan, L.; Noh, D.Y.; Morar, M.; Bica, E.; Indrea, E. Studies on terbium activated yttrium based tantalate phosphors. Radiat. Meas. 2010, 45, 300–303. [Google Scholar] [CrossRef]
- Huo, J.; Zhu, J.; Wu, S.; Zhang, H.; Wang, Q. Influence of processing parameters on the luminescence of Eu3+ activated YTa1−xNbxO4 phosphors by a molten salt method. J. Lumin. 2015, 158, 417–421. [Google Scholar] [CrossRef]
- Palatnikov, M.; Shcherbina, O.; Smirnov, M.; Masloboeva, S.; Efremov, V.; Andryushin, K. Synthesis and Optical Characteristics of Gd0.96Eu0.01Sm0.01Tb0.01Er0.01Nb0.9Ta0.1O4 Ceramic Solid Solutions Prepared under Different Temperature Conditions. Ceramics 2022, 5, 499–515. [Google Scholar] [CrossRef]
- Priya, R.S.; Chaudhary, P.; Kumar, E.R.; Balamurugan, A.; Srinivas, C.; Prasad, G.; Deepty, M.; Kumar, K.P.; Yadav, B.; Sastry, D.; et al. Effect of heat treatment on structural, morphological, dielectric and magnetic properties of Mg–Zn ferrite nanoparticles. Ceram. Int. 2022, 48, 15243–15251. [Google Scholar] [CrossRef]
- Devesa, S.; Rodrigues, J.; Teixeira, S.; Rooney, A.; Graça, M.; Cooper, D.; Monteiro, T.; Costa, L. Tuning Green to Red Color in Erbium Niobate Micro- and Nanoparticles. Nanomaterials 2021, 11, 660. [Google Scholar] [CrossRef] [PubMed]
- Niu, J.; Wang, X.; Lv, J.; Li, Y.; Tang, B. Luminescent nanoprobes for in-vivo bioimaging. TrAC Trends Anal. Chem. 2014, 58, 112–119. [Google Scholar] [CrossRef]
- Zamoryanskaya, M.V.; Konnikov, S.G.; Zamoryanskii, A.N. A High-Sensitivity System for Cathodoluminescent Studies with the Camebax Electron Probe Microanalyzer. Instruments Exp. Tech. 2004, 47, 477–483. [Google Scholar] [CrossRef]
- Belikov, M.L.; Sedneva, T.A.; Lokshin, E.P. Synthesis, Properties, and Visible Light Photocatalytic Activity of Nonstoichiometric Titanium Dioxide-Based Composites. Inorg. Mater. 2020, 56, 723–733. [Google Scholar] [CrossRef]
- Jehng, J.M.; Wachs, I.E. Structural chemistry and Raman spectra of niobium oxides. Chem. Mater. 1991, 3, 100–107. [Google Scholar] [CrossRef]
- Ferguson, R.B. The crystallography of synthetic YTaO4 and fused fergusonite. Can. Mineral. 1957, 6, 72–77. [Google Scholar]
- Stubican, V.S. High-Temperature Transitions in Rare-Earth Niobates and TantaIates. J. Am. Ceram. Soc. 1964, 47, 55–58. [Google Scholar] [CrossRef]
- Mather, S.A.; Davies, P.K. Nonequilibrium Phase Formation in Oxides Prepared at Low Temperature: Fergusonite-Related Phases. J. Am. Ceram. Soc. 1995, 78, 2737–2745. [Google Scholar] [CrossRef]
- Brixner, L.H.; Chen, H. On the Structural and Luminescent Properties of the M ′ LnTaO4 Rare Earth Tantalates. J. Electrochem. Soc. 1983, 130, 2435–2443. [Google Scholar] [CrossRef]
- Keller, C. Über ternäre Oxide des Niobs und Tantals vom Typ ABO4. Z. Anorg. Allg. Chem. 1962, 318, 89–106. [Google Scholar] [CrossRef]
- Nishio-Hamane, D.; Minakawa, T.; Ohgoshi, Y. Takanawaite-(Y), a new mineral of the M-type polymorph with Y(Ta, Nb)O4 from Takanawa Mountain, Ehime Prefecture, Japan. J. Miner. Pet. Sci. 2013, 108, 335–344. [Google Scholar] [CrossRef]
- Zhang, F.; Zhang, G.; Yang, L.; Zhou, Y.; Du, Y. Thermodynamic modeling of YO1.5-TaO2.5 system and the effects of elastic strain energy and diffusion on phase transformation of YTaO4. J. Eur. Ceram. Soc. 2019, 39, 5036–5047. [Google Scholar] [CrossRef]
- Feng, J.; Shian, S.; Xiao, B.; Clarke, D.R. First-principles calculations of the high-temperature phase transformation in yttrium tantalate. Phys. Rev. B 2014, 90, 094102. [Google Scholar] [CrossRef]
- Xiao, W.; Yang, Y.; Pi, Z.; Zhang, F. Phase Stability and Mechanical Properties of the Monoclinic, Monoclinic-Prime and Tetragonal REMO4 (M = Ta, Nb) from First-Principles Calculations. Coatings 2022, 12, 73. [Google Scholar] [CrossRef]
- Wu, F.; Wu, P.; Zhou, Y.; Chong, X.; Feng, J. The thermo-mechanical properties and ferroelastic phase transition of RENbO4 (RE = Y, La, Nd, Sm, Gd, Dy, Yb) ceramics. J. Am. Ceram. Soc. 2019, 103, 2727–2740. [Google Scholar] [CrossRef]
- Zhu, J.; Xu, J.; Zhang, P.; Meng, X.; Cao, S.; Wu, J.; Wei, M.; Shi, Y.; Reece, M.J.; Gao, F. Enhanced mechanical and thermal properties of ferroelastic high-entropy rare-earth-niobates. Scr. Mater. 2021, 200, 113912. [Google Scholar] [CrossRef]
- Tian, Y.; Xu, B.; Zhao, Z. Microscopic theory of hardness and design of novel superhard crystals. Int. J. Refract. Met. Hard Mater. 2012, 33, 93–106. [Google Scholar] [CrossRef]
- Zhou, Y.; Ma, Q.; Lü, M.; Qiu, Z.; Zhang, A. Combustion Synthesis and Photoluminescence Properties of YNbO4-Based Nanophosphors. J. Phys. Chem. C 2008, 112, 19901–19907. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, Q.; Zhou, W.; Gu, C.; Yin, S. Growth and Luminescence of M-Type GdTaO4 and Tb:GdTaO4 Scintillation Single Crystals. IEEE Trans. Nucl. Sci. 2010, 57, 1287–1290. [Google Scholar] [CrossRef]
- Xiao, X.; Yan, B. Synthesis and luminescent properties of novel RENbO4:Ln3+ (RE = Y, Gd, Lu; Ln = Eu, Tb) micro-crystalline phosphors. J. Non-Cryst. Solids 2005, 351, 3634–3639. [Google Scholar] [CrossRef]
- Si, J.; Yang, N.; Xu, M.; Li, G.; Cai, G.; Yi, W.; Zhang, J. Structure and tunable luminescence in Sm3+/Er3+ doped host-sensitized LaNbO4 phosphor by energy transfer. Ceram. Int. 2020, 46, 28373–28381. [Google Scholar] [CrossRef]
- Voloshyna, O.; Boiaryntseva, I.; Spassky, D.; Sidletskiy, O. Luminescence Properties of the Yttrium and Gadolinium Tantalo-Niobates. Sol. St. Phenom. 2015, 230, 172–177. [Google Scholar] [CrossRef]
- Xie, M.; Li, Y.; Li, R. Na2CaSiO4:Eu3+-deep red-emitting phosphors with intense 5D0→7F4 transition. J. Lumin. 2013, 136, 303–306. [Google Scholar] [CrossRef]
- Voloshyna, O.V.; Boiaryntseva, I.A.; Baumer, V.N.; Ivanov, A.I.; Korjik, M.V.; Sidletskiy, O.T. New, dense, and fast scintillators based on rare-earth tantalo-niobates. Nucl. Instruments Methods Phys. Res. Sect. A 2014, 764, 227–231. [Google Scholar] [CrossRef]
Sample Number | Powder Calcination Temperature, Tc °С | Ceramic Sintering Temperature, Ts °С | Сeramics Sintering Time, h |
---|---|---|---|
1 | 1200 | 1400 | 3 |
2 | 1200 | 1500 | 2 |
3 | 1400 | 1500 | 2 |
Sample | Nb | Ta | Eu | Sm | Tb | Er |
---|---|---|---|---|---|---|
(Y0.96Eu0.01Sm0.01Tb0.01Er0.01)Nb0.7Ta0.3O4 | 0.69 ± 0.02 | 0.31 ± 0.020 | 0.0072 ± 0.0010 | 0.0056 ± 0.0020 | 0.0075 ± 0.0010 | 0.0068 ± 0.0005 |
Sample 1 | YTa0.4Nb0.6O4 with SPGR C2/с (ICDD Card 04-016-7255) | ||||||
---|---|---|---|---|---|---|---|
a = 7.0175(9), b = 10.9421(2), c = 5.3060(1) Å, β = 134.01(5)° | a = 7.037, b = 10.945, c = 5.298 Å, β = 134.07° | ||||||
atom | G | x/a | y/b | z/c | x/a | y/b | z/c |
O1 | 1.0 | 0.2452(1) | 0.0409(1) | 0.3399(2) | 0.2442 | 0.0418 | 0.3374 |
O2 | 1.0 | 0.2839(2) | 0.2847(7) | 0.2983(5) | 0.2919 | 0.2819 | 0.2968 |
Nb | 0.7 | 0.0 | 0.1458(7) | 0.25 | 0.0 | 0.1445 | 0.25 |
Ta(Nb) | 0.3 | 0.0 | 0.1437(3) | 0.25 | |||
Y | 0.93 | 0.0 | 0.6202(1) | 0.25 | 0.0 | 0.6212 | 0.25 |
Tb(Y) | 0.01 | 0.0 | 0.6333(5) | 0.25 | |||
Er(Y) | 0.007 | 0.0 | 0.6035(5) | ||||
Eu(Y) | 0.01 | 0.0 | 0.6212(5) | 0.25 | |||
Sm(Y) | 0.005 | 0.0 | 0.6297(5) | 0.25 |
Fomula | YTa0.4Nb0.6O4 | YNbO4 | ||
---|---|---|---|---|
ICDD Card | 04-016-7255 | 04-006-8921 | ||
Syngony | Monoclinic | Monoclinic | ||
SPGR | C2/c, M´-type | Sample 2 | C2/c, M´-type | Sample 2 |
a, Å | 7.0089 | 7.01484 | 7.0297 | 7.03387 |
b, Å | 10.9394 | 10.54867 | 10.937 | 10.94350 |
c, Å | 5.0628 | 5.06709 | 5.069 | 5.07201 |
α, ° | 90.000 | 90.000 | 90.000 | 90.000 |
β, ° | 130.991 | 130.991 | 131.374 | 131.374 |
γ, ° | 90.000 | 90.000 | 90.000 | 90.000 |
V, Å3 | 293.00 | 293.02 | 292.45 | 292.45 |
Deformation, % | 0.0(3) | 0.0(2) | ||
Weight fraction in the sample, wt% | 91.1(3) | 8.88(19) |
Formula | YTa0.4Nb0.6O4 | YNbO4 | YTa0.9 Nb0.1O4 | YTaO4 | ||
---|---|---|---|---|---|---|
ICDD Card | 04-016-7255 | 04-006-8921 | 04-016-7254 | 00-050-0846 | ||
Syngony SPGR | Monoclinic C2/c | Monoclinic C2/c | Monoclinic P2/c (13) M-type | Tetragonal P42/mmc (131) | ||
Sample 3 | Sample 3 | Sample 3 | Card | Sample 3 | Card | |
a, Å | 7.02074(13) | 6.81(4) | 5.26(3) | 5.1107 | 3.654(8) | 3.648(5) |
b, Å | 10.9490(3) | 10.06(6) | 5.47(4) | 5.4469 | 3.654(8) | 3.648(5 |
c, Å | 5.06794(10) | 4.96(3) | 5.11 (14) | 5.2989 | 5.478(7) | 5.466(9) |
α, ° | 90.000 | 90.000 | 90.000 | 90.000 | 90.000 | 90.000 |
β, ° | 131.0853(10) | 120.0(4) | 96.54(1) | 96.43 | 90.20(11 | 90.000 |
γ, ° | 90.000 | 90.000 | 90.000 | 90.000 | 90.000 | 90.000 |
V, Å3 | 293.633 | 294.350 | 146.62 | 146.58 | 73.18 | 72.74 |
Deformation, % | 0.0(3) | 2.58(18) | 0.0(3) | 0.0(14) | ||
Weight fraction in the sample, wt% | 84.6(7) | 6.6(4) | 7.4(2) | 2.3(7) |
Sample | ρexp | ρrel, % | Microhardness, H, GPa | Young’s Modulus, E, GPa | Crack Resistance KIC, MPa m0.5 |
---|---|---|---|---|---|
1 | 4.06 | 69.82 | 4.04 ± 0.6 | 176.8 ± 2.5 | 0.88 ± 0.1 |
2 | 4.35 | 74.87 | 4.85 ± 0.5 | 269.9 ± 1.9 | 1.0 ± 0.8 |
3 | 4.68 | 80.55 | 7.2 ± 1.0 | 306.0 ± 5.0 | 1.15 ± 0.16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palatnikov, M.; Shcherbina, O.; Smirnov, M.; Masloboeva, S.; Efremov, V. Structure, Mechanical and Luminescent Properties of Solid Solution (Y0.96Eu0.01Sm0.01Tb0.01Er0.01)Nb0.7Ta0.3O4. Ceramics 2023, 6, 86-101. https://doi.org/10.3390/ceramics6010007
Palatnikov M, Shcherbina O, Smirnov M, Masloboeva S, Efremov V. Structure, Mechanical and Luminescent Properties of Solid Solution (Y0.96Eu0.01Sm0.01Tb0.01Er0.01)Nb0.7Ta0.3O4. Ceramics. 2023; 6(1):86-101. https://doi.org/10.3390/ceramics6010007
Chicago/Turabian StylePalatnikov, Mikhail, Olga Shcherbina, Maxim Smirnov, Sofja Masloboeva, and Vadim Efremov. 2023. "Structure, Mechanical and Luminescent Properties of Solid Solution (Y0.96Eu0.01Sm0.01Tb0.01Er0.01)Nb0.7Ta0.3O4" Ceramics 6, no. 1: 86-101. https://doi.org/10.3390/ceramics6010007
APA StylePalatnikov, M., Shcherbina, O., Smirnov, M., Masloboeva, S., & Efremov, V. (2023). Structure, Mechanical and Luminescent Properties of Solid Solution (Y0.96Eu0.01Sm0.01Tb0.01Er0.01)Nb0.7Ta0.3O4. Ceramics, 6(1), 86-101. https://doi.org/10.3390/ceramics6010007