A Narrative Review of Recent Finite Element Studies Reporting References for Elastic Properties of Zirconia Dental Ceramics
Abstract
:1. Introduction
2. Materials and Methods
- It was a review paper, a letter to an editor, a short communication, or not experimental.
- Zirconia was not included in the test model, but mentioned in the introduction, discussion, or references sections and thus retrieved in the electronic search.
- FEA was not included in the tests, but mentioned in the introduction, discussion, or references sections and thus retrieved in the electronic search.
- Zirconia material was assigned or combined to another material but was used for any part of the body other than the in-arch prosthesis or tooth restoration.
- Zirconia was only an implant or abutment material, and no zirconia restoration was included.
- If the material describes a category of zirconia without mentioning a specific commercial product’s name or manufacturer.
- The commercial zirconia materials (dental restoration, prosthesis, even frameworks or copings) were not intended to be shaped by CAD/CAM.
- The full commercial name of the zirconia material was not specified (i.e., the commercial name, manufacturer, city and country).
- The company’s name is included but the specific commercial product’s name is not.
- The commercial name and manufacturer are clear but the values of Young’s modulus and Poisson’s ratio are not mentioned for that product in the text nor tables.
- The product is no longer marketed by the manufacturer after checking the manufacturer’s website.
- The zirconia material is only a filler in resin composite (RC) (CAD/CAM) blocks.
- The study reports the material to be a “zirconia” material but inspecting the chemical composition shows that it is not. If the chemical composition was not present in the paper, the manufacturer’s website was used to verify its presence.
3. Results
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hariton, E.; Locascio, J.J. Randomised controlled trials—The gold standard for effectiveness research: Study design: Randomised controlled trials. BJOG 2018, 125, 1716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kokich, V.G. In-vitro vs in-vivo materials research. Am. J. Orthod. Dentofac. Orthop. 2013, 143, S11. [Google Scholar] [CrossRef] [PubMed]
- Vinod, B.; Kanaparthi, S. Finite Element Analysis and Its Applications in Dentistry. In Finite Element Methods and Their Applications; IntechOpen: London, UK, 2020. [Google Scholar] [CrossRef]
- Geng, J.P.; Tan, K.B.; Liu, G.R. Application of finite element analysis in implant dentistry: A review of the literature. J. Prosthet. Dent. 2001, 85, 585–598. [Google Scholar] [CrossRef] [Green Version]
- Chang, Y.; Tambe, A.A.; Maeda, Y.; Wada, M.; Gonda, T. Finite element analysis of dental implants with validation: To what extent can we expect the model to predict biological phenomena? A literature review and proposal for classification of a validation process. Int. J. Implant Dent. 2018, 8, 7. [Google Scholar] [CrossRef] [PubMed]
- Mousa, M.A.; Abdullah, J.Y.; Jamayet, N.B.; El-Anwar, M.I.; Ganji, K.K.; Alam, M.K.; Husein, A. Biomechanics in Removable Partial Dentures: A Literature Review of FEA-Based Studies. BioMed Res. Int. 2021, 2021, 5699962. [Google Scholar] [CrossRef]
- Maminskas, J.; Puisys, A.; Kuoppala, R.; Raustia, A.; Juodzbalys, G. The Prosthetic Influence and Biomechanics on Peri-Implant Strain: A Systematic Literature Review of Finite Element Studies. J. Oral Maxillofac. Res. 2016, 7, e4. [Google Scholar] [CrossRef]
- DeTolla, D.H.; Andreana, S.; Patra, A.; Buhite, R.; Comella, B. Role of the finite element model in dental implants. J. Oral Implantol. 2000, 26, 77–81. [Google Scholar] [CrossRef] [PubMed]
- Gultekin, A.; Turkoglu, P.; Yalcin, S. Application of Finite Element Analysis in Implant Dentistry. In Finite Element Analysis—New Trends and Developments; Ebrahimi, F., Ed.; IntechOpen: London, UK, 2012. [Google Scholar]
- Badami, V.; Ketineni, H.; Pb, S.; Akarapu, S.; Mittapalli, S.P.; Khan, A. Comparative Evaluation of Different Post Materials on Stress Distribution in Endodontically Treated Teeth Using the Finite Element Analysis Method: A Systematic Review. Cureus 2022, 14, e29753. [Google Scholar] [CrossRef]
- Ozgen, M. Evaluation of Streses around Implants That Were PLACED in anterior Maxillary Vertical Defect Region: A Finite Element Analysis Study. Ph.D. Thesis, Istanbul University, Istanbul, Turkey, 2011. [Google Scholar]
- Darwich, M.A.; Aljareh, A.; Alhouri, N.; Szávai, S.; Nazha, H.M.; Duvigneau, F.; Juhre, D. Biomechanical Assessment of Endodontically Treated Molars Restored by Endocrowns Made from Different CAD/CAM Materials. Materials 2023, 12, 764. [Google Scholar] [CrossRef]
- Miura, S.; Shinya, A.; Ishida, Y.; Fujisawa, M. Mechanical and surface properties of additive manufactured zirconia under the different building directions. J. Prosthodont. Res. 2022; (published online ahead of print). [Google Scholar] [CrossRef]
- Guazzato, M.; Albakry, M.; Swain, M.V.; Ironside, J. Mechanical properties of In-Ceram Alumina and In-Ceram Zirconia. Int. J. Prosthodont. 2002, 15, 339–346. [Google Scholar]
- Belli, R.; Wendler, M.; de Ligny, D.; Cicconi, M.R.; Petschelt, A.; Peterlik, H.; Lohbauer, U. Chairside CAD/CAM materials. Part 1: Measurement of elastic constants and microstructural characterization. Dent. Mater. 2017, 33, 84–98. [Google Scholar] [CrossRef] [PubMed]
- Borba, M.; de Araújo, M.D.; de Lima, E.; Yoshimura, H.N.; Cesar, P.F.; Griggs, J.A.; Della Bona, A. Flexural strength and failure modes of layered ceramic structures. Dent. Mater. 2011, 27, 1259–1266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abu-Izze, F.O.; Ramos, G.F.; Borges, A.L.S.; Anami, L.C.; Bottino, M.A. Fatigue behavior of ultrafine tabletop ceramic restorations. Dent. Mater. 2018, 34, 1401–1409. [Google Scholar] [CrossRef] [Green Version]
- Archangelo, K.C.; Guilardi, L.F.; Campanelli, D.; Valandro, L.F.; Borges, A.L.S. Fatigue failure load and finite element analysis of multilayer ceramic restorations. Dent. Mater. 2019, 35, 64–73. [Google Scholar] [CrossRef]
- Bahadirli, G.; Yilmaz, S.; Jones, T.; Sen, D. Influences of Implant and Framework Materials on Stress Distribution: A Three-Dimensional Finite Element Analysis Study. Int. J. Oral Maxillofac. Implant. 2018, 33, e117–e126. [Google Scholar] [CrossRef] [Green Version]
- Chirca, O.; Biclesanu, C.; Florescu, A.; Stoia, D.I.; Pangica, A.M.; Burcea, A.; Vasilescu, M.; Antoniac, I.V. Adhesive-Ceramic Interface Behavior in Dental Restorations. FEM Study and SEM Investigation. Materials 2021, 3, 5048. [Google Scholar] [CrossRef]
- Čokić, S.M.; Cóndor, M.; Vleugels, J.; Meerbeek, B.V.; Oosterwyck, H.V.; Inokoshi, M.; Zhang, F. Mechanical properties-translucency-microstructure relationships in commercial monolayer and multilayer monolithic zirconia ceramics. Dent. Mater. 2022, 38, 797–810. [Google Scholar] [CrossRef] [PubMed]
- Dal Piva, A.M.O.; Tribst, J.P.M.; Benalcázar Jalkh, E.B.; Anami, L.C.; Bonfante, E.A.; Bottino, M.A. Minimal tooth preparation for posterior monolithic ceramic crowns: Effect on the mechanical behavior, reliability and translucency. Dent. Mater. 2021, 37, e140–e150. [Google Scholar] [CrossRef] [PubMed]
- Dal Piva, A.O.; Tribst, J.P.; Borges, A.L.; de Melo, R.M.; Bottino, M.A. Influence of substrate design for in vitro mechanical testing. J. Clin. Exp. Dent. 2019, 11, e119–e125. [Google Scholar] [CrossRef]
- Dartora, N.R.; Maurício Moris, I.C.; Poole, S.F.; Bacchi, A.; Sousa-Neto, M.D.; Silva-Sousa, Y.T.; Gomes, E.A. Mechanical behavior of endocrowns fabricated with different CAD-CAM ceramic systems. J. Prosthet. Dent. 2021, 125, 117–125. [Google Scholar] [CrossRef] [PubMed]
- Demirci, F.; Bahce, E.; Baran, M.C. Mechanical analysis of three-unit metal-free fixed dental prostheses produced in different materials with CAD/CAM technology. Clin. Oral Investig. 2022, 26, 5969–5978. [Google Scholar] [CrossRef] [PubMed]
- Fraga, S.; de Jager, N.; Campos, F.; Valandro, L.F.; Kleverlaan, C.J. Does Luting Strategy Affect the Fatigue Behavior of Bonded Y-TZP Ceramic? J. Adhes. Dent. 2018, 20, 307–315. [Google Scholar] [PubMed]
- Guilardi, L.F.; Werner, A.; Jager, N.; Pereira, G.K.R.; Kleverlaan, C.J.; Rippe, M.P.; Valandro, L.F. The influence of roughness on the resistance to impact of different CAD/CAM dental ceramics. Braz. Dent. J. 2021, 32, 54–65. [Google Scholar] [CrossRef] [PubMed]
- Heintze, S.D.; Monreal, D.; Reinhardt, M.; Eser, A.; Peschke, A.; Reinshagen, J.; Rousson, V. Fatigue resistance of all-ceramic fixed partial dentures—Fatigue tests and finite element analysis. Dent. Mater. 2018, 34, 494–507. [Google Scholar] [CrossRef]
- Jadaan, O.; Esquivel-Upshaw, J.; Nemeth, N.N.; Baker, E. Proof testing to improve the reliability and lifetime of ceramic dental prostheses. Dent. Mater. 2023, 25, 227–234. [Google Scholar] [CrossRef]
- Kaizer, M.R.; Kolakarnprasert, N.; Rodrigues, C.; Chai, H.; Zhang, Y. Probing the interfacial strength of novel multi-layer zirconias. Dent. Mater. 2020, 36, 60–67. [Google Scholar] [CrossRef]
- Kasem, A.T.; Elsherbiny, A.A.; Abo-Madina, M.; Tribst, J.P.M.; Al-Zordk, W. Biomechanical behavior of posterior metal-free cantilever fixed dental prostheses: Effect of material and retainer design. Clin. Oral Investig. 2022; (published online ahead of print). [Google Scholar] [CrossRef]
- Kim, H.K.; Yoo, K.W.; Kim, S.J.; Jung, C.H. Phase Transformations and Subsurface Changes in Three Dental Zirconia Grades after Sandblasting with Various Al2O3 Particle Sizes. Materials 2021, 14, 5321. [Google Scholar] [CrossRef]
- Lima, J.M.C.; Costa, A.K.F.; Anami, L.C.; Souza, K.B.; Silva, N.R.D.; Marinho, R.M.M.; Borges, A.L.S.; Bottino, M.A.; Özcan, M.; Souza, R.O.A. CAD-FEA modeling and fracture resistance of bilayer zirconia crowns manufactured by the rapid layer technology. Braz. Dent. J. 2021, 32, 44–55. [Google Scholar] [CrossRef]
- Liu, Y.; Gao, S.; Han, Y.; Yang, Q.; Arola, D.; Zhang, D. Bearing, capacity of ceramic crowns before and after cyclic loading: An in vitro study. J. Mech. Behav. Biomed. Mater. 2018, 87, 197–204. [Google Scholar] [CrossRef] [PubMed]
- Machry, R.V.; Borges, A.L.S.; Pereira, G.K.R.; Kleverlaan, C.J.; Venturini, A.B.; Valandro, L.F. Influence of the foundation substrate on the fatigue behavior of bonded glass, zirconia polycrystals, and polymer infiltrated ceramic simplified CAD-CAM restorations. J. Mech. Behav. Biomed. Mater. 2021, 117, 104391. [Google Scholar] [CrossRef] [PubMed]
- Machry, R.V.; Dapieve, K.S.; Cadore-Rodrigues, A.C.; Werner, A.; de Jager, N.; Pereira, G.K.R.; Valandro, L.F.; Kleverlaan, C.J. Mechanical characterization of a multi-layered zirconia: Flexural strength, hardness, and fracture toughness of the different layers. J Mech Behav Biomed Mater 2022, 135, 105455. [Google Scholar] [CrossRef] [PubMed]
- Mello, C.C.; Santiago, J.F., Jr.; Lemos, C.A.A.; Galhano, G.A.; Evangelisti, E.; Scotti, R.; Verri, F.R.; Pellizzer, E.P. Evaluation of the accuracy and stress distribution of 3-unit implant supported prostheses obtained by different manufacturing methods. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 102, 66–74. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, J.B.; Riquieri, H.; Prochnow, C.; Guilardi, L.F.; Pereira, G.K.R.; Borges, A.L.S.; de Melo, R.M.; Valandro, L.F. Fatigue failure load of two resin-bonded zirconia-reinforced lithium silicate glass-ceramics: Effect of ceramic thickness. Dent. Mater. 2018, 34, 891–900. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, K.; Ankyu, S.; Nilsson, F.; Kanno, T.; Niwano, Y.; Vult von Steyern, P.; Örtengren, U. Critical considerations on load-to-failure test for monolithic zirconia molar crowns. J Mech Behav Biomed Mater 2018, 87, 180–189. [Google Scholar] [CrossRef]
- Penteado, M.M.; Mendes Tribst, J.P.; Dal Piva, A.M.O.; Archangelo, K.C.; Bottino, M.A.; Souto Borges, A.L. Influence of different restorative material and cement on the stress distribution of ceramic veneer in upper central incisor. Indian J. Dent. Res. 2020, 31, 236–240. [Google Scholar]
- Peskersoy, C.; Sahan, H.M. Finite element analysis and nanomechanical properties of composite and ceramic dental onlays. Comput. Methods Biomech. Biomed. Eng. 2022, 25, 1649–1661. [Google Scholar] [CrossRef]
- Rodrigues, C.S.; Dhital, S.; Kim, J.; May, L.G.; Wolff, M.S.; Zhang, Y. Residual stresses explaining clinical fractures of bilayer zirconia and lithium disilicate crowns: A VFEM study. Dent. Mater. 2021, 37, 1655–1666. [Google Scholar] [CrossRef]
- Ruan, W.; Zheng, Z.; Jiang, L.; He, J.; Sun, J.; Yan, W. Optimal cuspal coverage of ceramic restorations using CAD/CAM: Biomechanical characteristic analysis by 3D finite element analysis and in vitro investigation. Int. J. Comput. Dent. 2022, 25, 267–276. [Google Scholar]
- Soares, P.M.; Cadore-Rodrigues, A.C.; Souto Borges, A.L.; Valandro, L.F.; Pereira, G.K.R.; Rippe, M.P. Load-bearing capacity under fatigue and FEA analysis of simplified ceramic restorations supported by Peek or zirconia polycrystals as foundation substrate for implant purposes. J. Mech. Behav. Biomed. Mater. 2021, 123, 104760. [Google Scholar] [CrossRef]
- Tanaka, C.B.; Ballester, R.Y.; De Souza, G.M.; Zhang, Y.; Meira, J.B.C. Influence of residual thermal stresses on the edge chipping resistance of PFM and veneered zirconia structures: Experimental and FEA study. Dent. Mater. 2019, 35, 344–355. [Google Scholar] [CrossRef]
- Tanaka, I.V.; Tribst, J.P.M.; Silva-Concilio, L.R.; Bottino, M.A. Effect of Different Ceramic Materials on Fatigue Resistance and Stress Distribution in Upper Canines with Palatal Veneers. Eur. J. Dent. 2022, 4, 856–866. [Google Scholar] [CrossRef]
- Taneja, S.; Kumar, P.; Gupta, N.; Khan, R. Influence of type of cement and their thickness on stress distribution at dentin-cement interface of computer-aided designed glass fiber post: A three-dimensional finite element analysis. J. Conserv. Dent. 2019, 22, 228–232. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Han, F.; Chen, C.; Xie, H. Comparison of stress distribution between zirconia/alloy endocrown and CAD/CAM multi-piece zirconia post-crown: Three- dimensional finite element analysis. Clin. Oral Investig. 2022, 26, 5007–5017. [Google Scholar] [CrossRef]
- Yeğin, E.; Atala, M.H. Comparison of CAD/CAM manufactured implant-supported crowns with different analyses. Int. J. Implant Dent. 2020, 69, 27. [Google Scholar] [CrossRef] [PubMed]
- Zamzam, H.; Olivares, A.; Fok, A. Load capacity of occlusal veneers of different restorative CAD/CAM materials under lateral static loading. J. Mech. Behav. Biomed. Mater. 2021, 115, 104290. [Google Scholar] [CrossRef]
- Zheng, Z.; He, Y.; Ruan, W.; Ling, Z.; Zheng, C.; Gai, Y.; Yan, W. Biomechanical behavior of endocrown restorations with different CAD-CAM materials: A 3D finite element and in vitro analysis. J. Prosthet. Dent. 2021, 125, 890–899. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.; Sun, J.; Jiang, L.; Wu, Y.; He, J.; Ruan, W.; Yan, W. Influence of margin design and restorative material on the stress distribution of endocrowns: A 3D finite element analysis. BMC Oral Health 2022, 522, 30. [Google Scholar] [CrossRef]
- Sagat, G.; Yalcin, S.; Gultekin, B.A.; Mijiritsky, E. Influence of arch shape and implant position on stress distribution around implants supporting fixed full-arch prosthesis in edentulous maxilla. Implant Dent. 2010, 19, 498–508. [Google Scholar] [CrossRef]
- Gröning, F.; Fagan, M.; O’Higgins, P. Modeling the human mandible under masticatory loads: Which input variables are important? Anat. Rec. 2012, 295, 853–863. [Google Scholar] [CrossRef] [PubMed]
- ISO 6872:2015; Dentistry—Ceramic Materials. Available online: https://www.iso.org/standard/59936.html (accessed on 7 February 2023).
- Tabatabaian, F. Color Aspect of Monolithic Zirconia Restorations: A Review of the Literature. J. Prosthodont. 2019, 28, 276–287. [Google Scholar] [CrossRef] [PubMed]
- Juntavee, N.; Attashu, S. Effect of sintering process on color parameters of nano-sized yttria partially stabilized tetragonal monolithic zirconia. J. Clin. Exp. Dent. 2018, 10, e794–e804. [Google Scholar] [CrossRef]
- Ahmed, W.M.; Troczynski, T.; McCullagh, A.P.; Wyatt, C.C.L.; Carvalho, R.M. The influence of altering sintering protocols on the optical and mechanical properties of zirconia: A review. J. Esthet. Restor. Dent. 2019, 31, 423–430. [Google Scholar] [CrossRef]
- Zhang, F.; Inokoshi, M.; Batuk, M.; Hadermann, J.; Naert, I.; Van Meerbeek, B.; Vleugels, J. Strength, toughness and aging stability of highly-translucent Y-TZP ceramics for dental restorations. Dent. Mater. 2016, 32, e327–e337. [Google Scholar] [CrossRef]
- Chevalier, J.; Gremillard, L.; Deville, S. Low-Temperature Degradation of Zirconia and Implications for Biomedical Implants. Annu. Rev. Mater. Res. 2007, 37, 1–32. [Google Scholar] [CrossRef] [Green Version]
- Alves, M.; Abreu, L.; Klippel, G.; Santos, C.; Strecker, K. Mechanical properties and translucency of a multilayered zirconia with color gradient for dental applications. Ceram. Int. 2020, 47, 301–309. [Google Scholar] [CrossRef]
- Ban, S.; Suzuki, T.; Yoshihara, K.; Sasaki, K.; Kawai, T.; Kono, H. Effect of Coloring on Mechanical Properties of Dental Zirconia. J. Med. Biol. Eng. 2014, 34, 24–29. [Google Scholar] [CrossRef]
- Yu, N.-K.; Park, M.-G. Effect of different coloring liquids on the flexural strength of multilayered zirconia. J. Adv. Prosthodont. 2019, 11, 209–214. [Google Scholar] [CrossRef] [Green Version]
- Hedia, H.S.; Barton, D.C.; Fisher, J. Material optimisation of the femoral component of a hip prosthesis based on the fatigue notch fatigue approach. Biomed. Mater. Eng. 1997, 7, 83–98. [Google Scholar] [CrossRef]
- Wendler, M.; Belli, R.; Petschelt, A.; Mevec, D.; Harrer, W.; Lube, T.; Danzer, R.; Lohbauer, U. Chairside CAD/CAM materials. Part 2: Flexural strength testing. Dent. Mater. 2017, 33, 99–109. [Google Scholar] [CrossRef] [PubMed]
Information Extracted from the Full-Text Documents | Yes * | No * |
---|---|---|
| 11 | 25 |
| 32 | 4 |
| 11 | 25 |
| 15 | 21 |
| 36 | 0 |
| 13 | 23 |
| 12 | 24 |
| 36 | 0 |
| 35 | 1 |
| 21 | 15 |
The Reference | Young’s Modulus and Poisson’s Ratio are Reported for the Following Materials in the Text | Young’s Modulus [GPa] | Poisson’s Ratio |
---|---|---|---|
Abu-Izze, et al. (2018) Fatigue behavior of ultrafine tabletop ceramic restorations [17]. | Lithium silicate zirconia-reinforced ZLS: Vita Suprinity | 65.6 | 0.23 |
Hybrid ceramic PIC: Vita Enamic | 34.7 | 0.28 | |
Panavia F | 3 | 0.35 | |
Dentin-like material: Epoxy resin G10 | 14.9 | 0.31 | |
Enamel | 84.1 | 0.33 | |
Dentin | 18.6 | 0.32 | |
Structural steel | 200 | 0.30 | |
Acrylic resin | 26 | 0.38 | |
Archangelo, K.C., et al. (2019) Fatigue failure load and finite element analysis of multilayer ceramic restorations [18]. | Vita In-Ceram YZ | 209.3 | 0.32 |
IPS e.max CAD (HT) | 102.7 | 0.21 | |
Vitablocs Mark II (2 M2C I-40/19) | 64 | 0.25 | |
Multilink N | 18.6 | 0.28 | |
Bahadirli, G., et al. (2018) Influences of Implant and Framework Materials on Stress Distribution: A Three-Dimensional Finite Element Analysis Study [19]. | Cortical bone | 13.7 | 0.30 |
Trabecular bone | 1.37 | 0.30 | |
Cp grade IV Ti implant | 110 | 0.35 | |
ZrO, implant and abutment | 220 | 0.30 | |
TiZr implant | 98 | 0.25 | |
IPS e.max ZirCAD framework | 220 | 0.30 | |
IPS e.max CAD framework | 95 | 0.23 | |
IPS e.max Ceram Feldspathic ceramic | 68 | 0.24 | |
Chirca, O et al. (2021) Adhesive-Ceramic Interface Behavior in Dental Restorations. FEM Study and SEM Investigation. Materials [20]. | Universal RelyX Ultimate clicker | 7.7 | 0.24 |
Self-adhesive Maxcem | 4.4 | 0.24 | |
Double cure Variolink | 8.1 | 0.25 | |
Pressed IPS e.max press | 82.3 | 0.22 | |
Carbonat IPS e.max CAD-on | 82.3 | 0.23 | |
Zirconia Novodent GS | 88 | 0.34 | |
Dentine | 17 | 0.30 | |
Enamel | 74 | 0.23 | |
Dal Piva, A.M.O., et al. (2021) Minimal tooth preparation for posterior monolithic ceramic crowns: Effect on the mechanical behavior, reliability and translucency [22]. | Enamel | 84.1 | 0.33 |
Dentin | 18.6 | 0.32 | |
Periodontal ligament | 0.069 | 0.45 | |
High-translucency zirconia: YZHT0 | 210 | 0.33 | |
Zirconia-reinforced lithium silicate: Vita Suprinity | 65.6 | 0.23 | |
Hybrid ceramic: Vita Enamic | 34.7 | 0.28 | |
Resin cement | 7.5 | 0.25 | |
Dal Piva, A.O., et al. (2019) Influence of substrate design for in vitro mechanical testing [23]. | Zirconia-reinforced lithium silicate: Vita Suprinity | 70 | 0.23 |
Acrylic resin | 2.7 | 0.35 | |
Dentin root | 18.6 | 0.32 | |
Epoxy root | 18 | 0.30 | |
Resin cement | 6 | 0.30 | |
Dartora, N.R. et al. (2021) Mechanical behavior of endocrowns fabricated with different CAD/CAM ceramic systems [24]. | Leucite-reinforced vitreous ceramic (IPS Empress CAD) | 65.3 | 0.20 |
Lithium disilicate-reinforced vitreous ceramic (IPS and max CAD) | 102.5 | 0.21 | |
Vitreous ceramic reinforced with lithium silicate and zirconium oxide (VITA Suprinity PC) | 102.9 | 0.19 | |
Monolithic zirconia (ZirkOM SI) | 206.3 | 0.24 | |
Bone marrow | 1.37 | 0.30 | |
Dentin | 18.6 | 0.31 | |
Periodontal ligament | 0.05 | 0.45 | |
Gutta-percha | 0.14 | 0.45 | |
Fraga, S., et al. (2018) Does Luting Strategy Affect the Fatigue Behavior of Bonded Y-TZP Ceramic? [26] | Zirconia Y-TZP: Lava Frame | 205 | 0.32 |
Epoxy resin: epoxyd-platte | 14.9 | 0.31 | |
Stainless steel ring/sphere | 190 | 0.27 | |
Guilardi LF, et al. (2021) The influence of roughness on the resistance to impact of different CAD/CAM dental ceramics [27]. | Zirconia-reinforced lithium silicate glass-ceramic ZLS: VITA Suprinity | 70 | - |
Lithium disilicate glass-ceramic LD: IPS e.max CAD | 95 | - | |
Yttria-stabilized tetragonal zirconia polycrystal ceramic YZ:VITA YZ-55/19 T White | 210 | - | |
Feldspathic glass-ceramic FC: Vitablocs Mark II | 45 | - | |
Polymer-infiltrated ceramic network PICN: VITA Enamic: 2 M2-HT | 30 | - | |
Lima, J.M.C., et al. (2021) CAD-FEA modeling and fracture resistance of bilayer zirconia crowns manufactured by the rapid layer technology [33]. | Interface resin cement: G10 | 14.9 | 0.31 |
Resin cement: Panavia F | 9.2 | 0.28 | |
Y-TZP In-Ceram YZ | 209.3 | 0.32 | |
Ceramic: Triluxe Forte | 70.7 | 0.21 | |
Liu, Y., et al. (2018) Bearing, capacity of ceramic crowns before and after cyclic loading: An in vitro study [34]. | Lithium disilicate: IPS e.max CAD | 100.1 | 0.20 |
Resin cement: Panavia F | 18.3 | 0.30 | |
Resin cement: Variolink II | 8.3 | 0.35 | |
Resin cement: 3M RelyX ARC | 6.4 | 0.27 | |
Core ceramic: Lava zirconia | 210.0 | 0.30 | |
Resin composite: 3M Z100 | 16.0 | 0.24 | |
Monteiro, J.B. et al. (2018) Fatigue failure load of two resin-bonded zirconia-reinforced lithium silicate glass-ceramics: Effect of ceramic thickness [38]. | Zirconia-reinforced lithium silicate glass-ceramics: Suprinity | 65.6 | 0.23 |
Zirconia-reinforced lithium silicate glass-ceramics: Celtra Duo | 61.0 | 0.30 | |
Dentin analogue material | 18.0 | 0.30 | |
Dual cured resin cement: Variolink N | 8.3 | 0.35 | |
Stainless steel sphere and supporting ring | 195.0 | 0.30 | |
Nakamura, K., et al. (2018) Critical considerations on load-to-failure test for monolithic zirconia molar crowns [39]. | Zirconia: Lava Plus Zirconia | 230.6 | 0.30 |
Resin-based cement: Panavia F2.0 | 10.51 | 0.39 | |
Resin-based composite designed for a dental CAD/CAM (RC): Lava Ultimate | 13.10 | 0.40 | |
Aluminum-filled castable epoxy resin (EP): EpoxAcast 655 | 8.59 | 0.37 | |
Polyoxymethylene-copolymer (POM-C): Ertacetal C, Quadrant | 2.45 | 0.39 | |
Penteado, M.M., et al. (2020) Influence of different restorative material and cement on the stress distribution of ceramic veneer in upper central incisor [40]. | Enamel | 84 | 0.30 |
Dentine | 18 | 0.23 | |
Periodontal ligament | 0.069 | 0.45 | |
Poliurethane fixation cylinder: acquired from the Laboratory of Bioengineering at São Paulo State University (Unesp/São José dos Campos) | 3.6 | 0.30 | |
Cement agent 1: low elastic modulus resinous cement | 10 | 0.30 | |
Cement agent 2: medium elastic modulus resinous cement | 18 | 0.30 | |
Cement agent 3: high elastic modulus resinous cement | 26 | 0.30 | |
Hybrid ceramic: Vita Enamic | 30 | 0.30 | |
Zirconia-reinforced lithium silicate: Vita Suprinity | 70 | 0.30 | |
Lithium disilicate: IPS Emax press | 95 | 0.30 | |
Peskersoy, Cet al. (2022) Finite element analysis and nanomechanical properties of composite and ceramic dental onlays [41]. | Enamel | 84.1 | 0.33 |
Dentin | 18.6 | 0.31 | |
Pulp | 0.0028 | 0.45 | |
Cementum | 4.4 | 0.31 | |
Periodontal ligament | 0.0689 | 0.45 | |
Cortical bone | 14.5 | 0.6 | |
Spongiose bone | 1.37 | 0.30 | |
Luting cement: RelyX U200 | 7.17 | 0.32 | |
Conventional composite resin: Tescera ATL 2 | 8.03 | 0.31 | |
Composite resin block: Cerasmart | 10.36 | 0.30 | |
Hybrid ceramic block: Vita Enamic | 34.56 | 0.29 | |
Hybrid ceramic block: Vita Suprinity | 210.1 | 0.29 | |
Ruan, W., et al. (2022) Optimal cuspal coverage of ceramic restorations using CAD/CAM: Biomechanical characteristic analysis by 3D finite element analysis and in vitro investigation [43]. | Enamel | 84.1 | 0.33 |
Dentin | 18.6 | 0.32 | |
Zirconia-reinforced lithium silicateceramic: Vita Suprinity (VS) | 104.9 | 0.21 | |
Cancellous bone | 1.37 | 0.30 | |
Cortical bone | 10.7 | 0.30 | |
Periodontal ligament | 0.0689 | 0.45 | |
Flowable resin composite: Surefil SDR | 7 | 0.25 | |
Gutta-percha | 0.00069 | 0.45 | |
Soares, P.M., et al. (2021) Load-bearing capacity under fatigue and FEA analysis of simplified ceramic restorations supported by Peek or zirconia polycrystals as foundation substrate for implant purposes [44]. | Yttria-stabilized tetragonal zirconia polycrystal (YZ) IPS e.max ZirCAD MO | 210 | 0.31 |
Polyetheretherketone (Peek) Ceramill PEEK | 4 | 0.4 | |
Polymer-infiltrated ceramic network (PICN) VITA Enamic; 2 M2-HT | 30 | 0.28 | |
Zirconia-reinforced lithium silicate glass-ceramic (ZLS): VITA Suprinity, A2 HT PC 14 | 105 | 0.21 | |
Lithium disilicate glass-ceramic (LD): IPS e.max CAD; LT A2/C14 | 95 | 0.25 | |
Translucent zirconia (TZ): IPS e.max ZirCAD MT Multi | 200 | 0.31 | |
Resin cement: Multilink N | 7.5 | 0.30 | |
Stainless steel ring/sphere | 190 | 0.27 | |
Yang, J., et al. (2022) Comparison of stress distribution between zirconia/alloy endocrown and CAD/CAM multi-piece zirconia post-crown: three- dimensional finite element analysis [48]. | Dentin | 18.6 | 0.31 |
Periodontium | 0.05 | 0.45 | |
Cortical bone | 13.7 | 0.30 | |
Trabecular bone | 1.37 | 0.30 | |
Zirconia: e.max ZirCAD | 210 | 0.24 | |
NiCr alloy multi-piece post-crown: KENNAMETAL | 188 | 0.33 | |
Glass ionomer cement: Ketac Cem Easymix | 7.56 | 0.35 | |
Resin cement: Variolink II composite cement | 8.3 | 0.35 | |
Zamzam, H., et al. (2021) Load capacity of occlusal veneers of different restorative CAD/CAM materials under lateral static loading [50]. | Enamel | 84 | 0.30 |
Dentin | 18.6 | 0.30 | |
Stainless steel alloy | 200 | 0.30 | |
Hybrid ceramic: Vita Enamic | 30 | 0.30 | |
Lithium disilicate: IPS e.max CAD | 95 | 0.30 | |
Translucent zirconia: Bruxzir | 210 | 0.30 | |
Zheng, Z., et al. (2021) Biomechanical behavior of endocrown restorations with different CAD-CAM materials: A 3D finite element and in vitro analysis [51]. | Zirconia-reinforced lithium silicate glass ceramic *: Vita Suprinity | 104.9 | 0.21 |
Lithium-disilicate glass-ceramic blocks *: IPS e.max CAD | 102.7 | 0.22 | |
Hybrid ceramic with a dual ceramic-polymer network structure *: Vita Enamic | 37.8 | 0.24 | |
Resin nano ceramic *: Lava Ultimate | 12.7 | 0.45 | |
Nano ceramic resin hybrid CAD/CAM blocks *: Grandio blocs | 18.0 | 0.26 | |
Enamel | 84.1 | 0.33 | |
Dentin | 18.6 | 0.31 | |
Spongious bone | 1.37 | 0.30 | |
Cortical bone | 10.7 | 0.30 | |
Periodontal ligament | 0.068 | 0.45 | |
Flowable resin: SDR | 7.0 | 0.25 | |
Gutta-percha | 0.00069 | 0.45 | |
Zheng, Z., et al. (2022) Influence of margin design and restorative material on the stress distribution of endocrowns: a 3D finite element analysis [52]. | Enamel | 84.1 | 0.33 |
Dentin | 18.6 | 0.31 | |
Spongious bone | 1.37 | 0.30 | |
Cortical bone | 13.7 | 0.30 | |
Periodontal ligament | 0.07 | 0.45 | |
Gutta-percha | 0.00069 | 0.45 | |
Zirconia-reinforced glass-ceramic: Vita Suprinity | 104.9 | 0.21 | |
High-leucite content ceramic: IPS Empress | 65.5 | 0.20 | |
Nano ceramic resin hybrid CAD/CAM blocks *: Grandio blocs | 18.0 | 0.26 | |
Termoviscous bulk-fill composite: VisCalor bulk | 12.3 | 0.28 | |
PEEK: Coprapeek Light | 3.7 | 0.40 | |
Zirconia-Toughened Alumina *: In-Ceram Zirconia | 200 | 0.31 | |
Flowable resin: SDR | 7.0 | 0.25 | |
Resin cement: not mentioned * | 7.4 | 0.35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abu-Naba’a, L.A. A Narrative Review of Recent Finite Element Studies Reporting References for Elastic Properties of Zirconia Dental Ceramics. Ceramics 2023, 6, 898-911. https://doi.org/10.3390/ceramics6020052
Abu-Naba’a LA. A Narrative Review of Recent Finite Element Studies Reporting References for Elastic Properties of Zirconia Dental Ceramics. Ceramics. 2023; 6(2):898-911. https://doi.org/10.3390/ceramics6020052
Chicago/Turabian StyleAbu-Naba’a, Layla A. 2023. "A Narrative Review of Recent Finite Element Studies Reporting References for Elastic Properties of Zirconia Dental Ceramics" Ceramics 6, no. 2: 898-911. https://doi.org/10.3390/ceramics6020052
APA StyleAbu-Naba’a, L. A. (2023). A Narrative Review of Recent Finite Element Studies Reporting References for Elastic Properties of Zirconia Dental Ceramics. Ceramics, 6(2), 898-911. https://doi.org/10.3390/ceramics6020052