Uranium Retention in Silica-Rich Natural Glasses: Nuclear Waste Disposal Aspect
Abstract
:1. Introduction
2. Natural Radioactive Glasses
3. Bulk Characterization of the Natural Uranium Volcanic Glass
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ojovan, M.I. Glass formation. In Encyclopedia of Glass Science, Technology, History, and Culture; Richet, P., Conradt, R., Takada, A., Dyon, J., Eds.; Wiley: Hoboken, NJ, USA, 2021; Volume I, Chapter 3.1; pp. 249–259. 1568p. [Google Scholar]
- Ojovan, M.I. The Modified Random Network (MRN) Model within the Configuron Percolation Theory (CPT) of Glass Transition. Ceramics 2021, 4, 121–134. [Google Scholar] [CrossRef]
- Jantzen, C.M. Development of glass matrices for HLW radioactive wastes. In Handbook of Advanced Radioactive Waste Conditioning Technologies; Ojovan, M., Ed.; Woodhead: Cambridge, UK, 2011; pp. 230–292. [Google Scholar]
- Gin, S.; Jollivet, P.; Tribet, M.; Peuget, S.; Schuller, S. Radionuclides containment in nuclear glasses: An overview. Radiochim. Acta 2017, 105, 927–959. [Google Scholar] [CrossRef]
- Ojovan, M.I.; Lee, W.E.; Kalmykov, S.N. An Introduction to Nuclear Waste Immobilisation, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2019; 497p. [Google Scholar]
- Ojovan, M.I. Glass is key for nuclear waste immobilisation. Glass Int. 2020, 43, 77–80. [Google Scholar]
- Malkovsky, V.I.; Yudintsev, S.V.; Ojovan, M.I.; Petrov, V.A. The Influence of Radiation on Confinement Properties of Nuclear Waste Glasses. Sci. Technol. Nucl. Install. 2020, 2020, 8875723. [Google Scholar] [CrossRef]
- IAEA. Scientific and Technical Basis for Geological Disposal of Radioactive Wastes; Technical Reports Series 413; IAEA: Vienna, Austria, 2003. [Google Scholar]
- Ewing, R.C.; Roed, G. Natural analogues: Their application to the prediction of the long-term behavior of nuclear waste glasses. Mat. Res. Soc. Symp. Proc. 1987, 84, 67–83. [Google Scholar] [CrossRef]
- Laverov, N.P.; Omel’yanenko, B.I.; Yudintsev, S.V.; Stefanovsky, S.V. Confinement matrices for low- and intermediate-level radioactive waste. Geol. Ore Depos. 2012, 54, 1–16. [Google Scholar] [CrossRef]
- Verney-Carron, A.; Gin, S.; Librourel, G.A. Fractured roman glass block altered for 1800 years in seawater: Analogy with nuclear waste glass in a deep geological repository. Geochim. Cosmochim. Acta 2008, 72, 5372–5385. [Google Scholar] [CrossRef]
- Nava-Farias, L.; Neeway, J.J.; Schweiger, M.J.; Marcial, J.; Canfield, N.L.; Pearce, C.I.; Peeler, D.K.; Vicenzi, E.P.; Kosson, D.S.; Delapp, R.C.; et al. Applying laboratory methods for durability assessment of vitrified material to archaeological samples. Npj Mater. Degrad. 2021, 5, 57. [Google Scholar] [CrossRef]
- McKenzie, W.F. Natural Glass Analogues to Alteration of Nuclear Waste Glass: A Review and Recommendations for Further Study; Report UCID—21871 (DE90 013513); Earth Sciences Department, Lawrence Livermore National Laboratory, University of California: Livermore, CA, USA, 1990; 36p. [Google Scholar]
- Morgenstein, M.E.; Shettel, D.L. Volcanic Glass as a Natural Analog for Borosilicate Waste Glass. Mat. Res. Soc. Symp. Proc. 1994, 333, 605–615. [Google Scholar] [CrossRef]
- Rosholt, J.N.; Noble, D.C. Mobility of Uranium and Thorium in Glassy and Crystallized Silicic Volcanic Rocks. Econ. Geol. 1971, 66, 1061–1069. [Google Scholar] [CrossRef]
- Zielinski, R.A. Tuffaceous sediments as source rocks for uranium—A case study of the White River Formation, Wyoming. J. Geochem. Explor. 1983, 18, 285–306. [Google Scholar] [CrossRef]
- Cuney, M. Felsic magmatism and uranium deposits. Bull. Soc. Géol. Fr. 2014, 185, 75–92. [Google Scholar] [CrossRef]
- Shatkov, G.A. Streltsovsky type of uranium deposits. Reg. Geol. Metallog. 2015, 63, 85–96. [Google Scholar]
- Andreeva, O.V.; Petrov, V.A.; Poluektov, V.V. Mesozoic Acid Magmatites of Southeastern Transbaikalia: Petrogeochemistry and Relationship with Metasomatism and Ore Formation. Geol. Ore Depos. 2020, 62, 69–96. [Google Scholar] [CrossRef]
- Runde, W. The chemical interactions of actinides in the environment. Los Alamos Sci. 2000, 26, 338–357. [Google Scholar]
- Ewing, R.C. Actinides and radiation effects: Impact on the back-end of the nuclear fuel cycle. Miner. Mag. 2011, 75, 2359–2377. [Google Scholar] [CrossRef]
- Advocat, T.; Jollivet, P.; Crovisier, J.L.; del Nero, M. Long-Term Alteration Mechanisms in Water for SON 68 Radioactive Bo-rosilicate Glass. J. Nucl. Mater. 2001, 298, 55–62. [Google Scholar] [CrossRef]
- Crovisier, J.-L.; Advocat, T.; Dussossoy, J.-L. Nature and role of natural alteration gels formed on the surface of ancient volcanic glasses (Natural analogs of waste containment glasses). J. Nucl. Mater. 2003, 321, 91–109. [Google Scholar] [CrossRef]
- Grambow, B. Nuclear Waste Glasses—How Durable? Elements 2006, 2, 357–364. [Google Scholar] [CrossRef]
- Petrov, V.A. The nature of U behaviour in the processes of transformation of volcanic glasses of different composition. In Joint ICTP-IAEA International School on Nuclear Waste Vitrification; Abdus Salam International Centre for Theoretical Physics (ICTP): Trieste, Italy, 2019. [Google Scholar]
- Poluektov, V.V.; Petrov, V.A.; Andreeva, O.V. Migration and Sorption of Uranium in Various Redox Conditions on the Example of Volcanic-Related Deposits in the Streltsovka Caldera, SE Transbaikalia. Geol. Ore Depos. 2021, 63, 29–61. [Google Scholar] [CrossRef]
- Alexander, W.; McKinley, I. A review of the application of natural analogues in performance assessment: Improving models of radionuclide transport in groundwaters. J. Geochem. Explor. 1992, 46, 83–115. [Google Scholar] [CrossRef]
- Bruno, J.; Duro, L.; Grivé, M. The applicability and limitations of thermodynamic geochemical models to simulate trace element behaviour in natural waters. Lessons learned from natural analogue studies. Chem. Geol. 2002, 190, 371–393. [Google Scholar] [CrossRef]
- Chapman, N.A.; McKinley, I.G.; Smellie, J.A.T. The Potential of Natural Analogues in Assessing Systems for Deep Disposal of High-Level Radioactive Waste. NAGRA Technical Report Series NTB; NAGRA: Wettingen, Switzerland, 1984; pp. 41–84. [Google Scholar]
- Haveman, S.A.; Pedersen, K. Microbially mediated redox processes in natural analogues for radioactive waste. J. Contamin. Hydrol. 2002, 55, 161–174. [Google Scholar] [CrossRef]
- Smellie, J.A.T.; Karlsson, F.; Alexander, W.R. Natural analogue studies: Present status and performance assessment implications. J. Contamin. Hydrol. 1997, 26, 3–17. [Google Scholar] [CrossRef]
- Chapman, N.; Hooper, A. The disposal of radioactive wastes underground. Proc. Geol. Assoc. 2012, 123, 46–63. [Google Scholar] [CrossRef]
- Thorpe, C.L.; Neeway, J.J.; Pearce, C.I.; Hand, R.J.; Fisher, A.J.; Walling, S.A.; Hyatt, N.C.; Kruger, A.A.; Schweiger, M.; Kosson, D.S.; et al. Forty years of durability assessment of nuclear waste glass by standard methods. Npj Mater. Degrad. 2021, 5, 61. [Google Scholar] [CrossRef]
- Bitay, E.; Kacsó, I.; Veress, E. Chemical Durability of Uranium Oxide Containing Glasses. Acta Mater. Transilv. 2018, 1, 12–18. [Google Scholar] [CrossRef]
- Olkhovyk, Y.A.; Ojovan, M.I. Corrosion resistance of Chernobyl NPP lava fuel-containing masses. Innov. Corros. Mater. Sci. 2015, 5, 36–42. [Google Scholar] [CrossRef]
- Rose, P.B.; Woodward, D.I.; Ojovan, M.I.; Hyatt, N.C.; Lee, W.E. Crystallisation of a simulated borosilicate high-level waste glass produced on a full-scale vitrification line. J. Non-Cryst. Solids 2011, 357, 2989–3001. [Google Scholar] [CrossRef]
- Gribble, N.R.; Short, R.; Turner, E.; Riley, A.D. The Impact of Increased Waste Loading on Vitrified HLW Quality and Durability. Mat. Res. Soc. Symp. Proc. 2009, 1193, 283. [Google Scholar] [CrossRef]
- Ojovan, M.I.; Lee, W.E. Glassy and glass composite nuclear wasteforms. Ceram. Trans. 2011, 227, 203–216. [Google Scholar]
- Ojovan, M.I.; Petrov, V.A.; Yudintsev, S.V. Glass Crystalline Materials as Advanced Nuclear Wasteforms. Sustainability 2021, 13, 4117. [Google Scholar] [CrossRef]
- Ojovan, M.I.; Yudintsev, S.V. Glass, ceramic, and glass-crystalline matrices for HLW immobilisation. Open Ceram. 2023, 14, 100355. [Google Scholar] [CrossRef]
- Farges, F.; Ponader, C.W.; Calas, G.; Brown, G.E. Structural environments of incompatible elements in silicate glass/melt systems: II. UIV, UV, and UVI. Geochim. Cosmochim. Acta 1992, 56, 4205–4220. [Google Scholar] [CrossRef]
- Schreiber, H.D.; Balazs, G.B. The chemistry of uranium in borosilicate glasses. Part1. Simple base compositions relevant to the immobilisation of nuclear waste. Phys. Chem. Glas. 1982, 23, 139. [Google Scholar]
- Fábián, M.; Sváb, E.; Zimmermann, M. Structure study of new uranium loaded borosilicate glasses. J. Non-Cryst. Solids 2013, 380, 71–77. [Google Scholar] [CrossRef]
- Connelly, A.; Hyatt, N.; Travis, K.; Hand, R.; Stennett, M.; Gandy, A.; Brown, A.; Apperley, D. The effect of uranium oxide additions on the structure of alkali borosilicate glasses. J. Non-Cryst. Solids 2013, 378, 282–289. [Google Scholar] [CrossRef]
- Ojovan, M.I.; Lee, W.E. Alkali ion exchange in γ-irradiated glasses. J. Nucl. Mater. 2004, 335, 425–432. [Google Scholar] [CrossRef]
- Patel, K.B.; Boizot, B.; Facq, S.P.; Peuget, S.; Schuller, S.; Farnan, I. Impacts of composition and beta irradiation on phase separation in multiphase amorphous calcium borosilicates. J. Non-Cryst. Solids 2017, 473, 1–16. [Google Scholar] [CrossRef]
- Ojovan, M.I. Challenges in the Long-Term Behaviour of Highly Radioactive Materials. Sustainability 2022, 14, 2445. [Google Scholar] [CrossRef]
- Ewing, R.C. Ageing Studies of Nuclear Waste Forms. In Ageing Studies and Lifetime Extension of Materials; Mallinson, L.G., Ed.; Springer: Boston, MA, USA, 2001. [Google Scholar] [CrossRef]
- Ojovan, M.I.; Pankov, A.; Lee, W.E. The ion exchange phase in corrosion of nuclear waste glasses. J. Nucl. Mater. 2006, 358, 57–68. [Google Scholar] [CrossRef]
- Ojovan, M.I.; Lee, W.E. About U-shaped Glass Corrosion Rate/pH Curves for Vitreous Nuclear Wasteforms. Innov. Corros. Mater. Sci. 2017, 7, 30–37. [Google Scholar] [CrossRef]
- Ojovan, M.I.; Hand, R.J.; Ojovan, N.V.; Lee, W.E. Corrosion of alkali–borosilicate waste glass K-26 in non-saturated conditions. J. Nucl. Mater. 2005, 340, 12–24. [Google Scholar] [CrossRef]
Country, Facilities | Performance Data |
---|---|
France, R7/T7, AVM | 8252 tonnes, 291⋅106 TBq to 2019 |
USA, DWPF, WVDP, WTP | 7870 tonnes, 2.7⋅106 TBq to 2012 |
Russia, EP-500 | 6200 tonnes, 23.8⋅106 TBq to 2010 |
UK, WVP | 2200 tonnes, 33⋅106 TBq to 2012 |
Belgium, Pamela | 500 tonnes, 0.5⋅106 TBq. Completed. |
Japan, Tokai | 70 tonnes, 14.8⋅103 TBq to 2007 |
Germany, Karlsruhe | 55 tonnes, 0.8⋅106 TBq. Completed. |
India, WIP (1), AVS, WIP (2) | 28 tonnes, 9.62⋅103 TBq to 2012 |
Slovakia, Bohunice | 1.53 m3 to 2012 |
Country | Plant | Glass Composition |
---|---|---|
Belgium | Pamela | 70.7P2O5·7.1Al2O3·22.2Fe2O3 and 52.7SiO2·13.2B2O3·2.7Al2O3·4.6CaO·2.2MgO·5.9Na2O·18.7 Misc. 1 |
France | AVM | 46.6SiO2·14.2B2O3·5.0Al2O3·2.9Fe2O3·4.1CaO·10.0Na2O·17.2 Misc. |
France | R7/T7 | 54.9SiO2·16.9B2O3·5.9Al2O3·4.9CaO·11.9Na2O·5.5 Mis. |
Germany | Karlsruhe | 60.0SiO2·17.6B2O3·3.1Al2O3·5.3CaO·7.1Na2O·6.9 Mis. |
India | WIP | 30.0SiO2·20.0B2O3·25.0PbO·5.0Na2O·20.0 Mis. |
India | AVS | 34.1SiO2·6.4B2O3·6.2TiO2·0.2Na2O·9.3MnO·43.8 Mis. |
Japan | Tokai | 46.7SiO2·14.3B2O3·5.0Al2O3·3.0CaO·9.6Na2O·21.4 Mis. |
Russia | EP500 | 53.3P2O5·15.8Al2O3·1.6Fe2O3·23.5Na2O·5.8 Misc. |
UK | WVP | 47.2SiO2·16.9B2O3·4.8Al2O3·5.3MgO·8.4Na2O·17.4 Misc. |
US | DWPF | 49.8SiO2·8.0B2O3·4.0Al2O3·1.0CaO·1.4MgO·8.7Na2O·27.1 Misc. |
US | WVDP | 45.8SiO2·8.4B2O3·6.1Al2O3·11.4Fe2O3·1.4MgO·9.1Na2O·17.8 Mis. |
US | WTP | 50.0SiO2·20.0B2O3·5.0Al2O3·25.0Na2O |
No. | SiO2 | TiO2 | Al2O3 | ΣFeO | MnO | MgO | CaO | Na2O | K2O | P2O5 | S | F | LOI 1 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
NY1 | 70.77 | 0.12 | 11.51 | 1.26 | 0.081 | 0.18 | 0.75 | 4.16 | 4.24 | 0.01 | 0.03 | 0.32 | 6.04 |
NY5-1 | 71.38 | 0.13 | 11.23 | 1.29 | 0.085 | 0.06 | 0.44 | 5.83 | 2.55 | <0.01 | <0.01 | - | 6.59 |
NY5-2 | 71.78 | 0.17 | 11.41 | 1.37 | 0.041 | 0.29 | 1.80 | 2.58 | 5.24 | 0.02 | <0.01 | - | 5.05 |
NY5-3 | 71.76 | 0.12 | 11.30 | 1.24 | 0.071 | 0.16 | 0.84 | 4.33 | 3.66 | <0.01 | 0.03 | 0.07 | 6.22 |
NY22-1 | 71.50 | 0.12 | 11.20 | 1.23 | 0.085 | 0.11 | 0.49 | 5.66 | 2.49 | <0.01 | <0.01 | 0.05 | 6.63 |
NY22-2 | 71.51 | 0.12 | 11.32 | 1.26 | 0.072 | 0.19 | 0.95 | 3.96 | 3.78 | <0.01 | <0.01 | 0.05 | 6.44 |
NY19-2 | 66.81 | 0.13 | 0.13 | 1.30 | 0.062 | 0.24 | 2.42 | 2.81 | 3.26 | 0.02 | 0.06 | 0.29 | 10.48 |
NY15 | 61.60 | 0.14 | 0.14 | 2.43 | 0.194 | 3.93 | 2.27 | 1.32 | 1.92 | 0.02 | 0.14 | 0.53 | 12.05 |
NY17 | 62.76 | 0.15 | 0.15 | 1.89 | 0.536 | 1.24 | 2.65 | 1.05 | 2.72 | 0.01 | 0.06 | 0.25 | 12.64 |
NY18 | 64.57 | 0.14 | 0.14 | 2.29 | 0.226 | 1.37 | 2.31 | 1.41 | 1.99 | 0.02 | 0.06 | 0.33 | 12.02 |
NY12 | 59.59 | 0.14 | 0.14 | 1.53 | 0.207 | 4.03 | 2.55 | 0.55 | 2.30 | 0.01 | 0.09 | 0.83 | 14.90 |
NY7-2 | 66.80 | 0.14 | 0.14 | 1.42 | 0.259 | 1.01 | 2.15 | 1.58 | 3.78 | 0.02 | 0.03 | 0.45 | 9.41 |
No. | Li | Rb | Sr | Cs | Co | Zr | Nb | Mo | Ba | Ta | Pb | Th | U |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
NY1 | 96.9 | 808.9 | 173.4 | 933.6 | 2.5 | 197.1 | 55.0 | 5.2 | 23.1 | 4.7 | 42.6 | 45.9 | 25.8 |
NY5-1 | 89.9 | 752.5 | 33.2 | 291.9 | 0.3 | 189.8 | 51.6 | 7.9 | 6.5 | 4.5 | 28.9 | 44.6 | 19.1 |
NY5-2 | 245.4 | 410.5 | 343.1 | 758.3 | 0.9 | 195.1 | 56.6 | 6.6 | 71.2 | 4.4 | 35.8 | 56.7 | 23.5 |
NY5-3 | 132.6 | 790.5 | 155.2 | 753.4 | 0.4 | 199.7 | 55.3 | 7.9 | 18.9 | 4.7 | 38.5 | 53.6 | 23.7 |
NY22-1 | 94.4 | 913.1 | 56.8 | 605.3 | 0.2 | 196.8 | 49.1 | 6.5 | 5.3 | 2.7 | 30.3 | 32.4 | 17.8 |
NY22-2 | 127.2 | 666.3 | 149.3 | 827.7 | 0.3 | 198.7 | 51.7 | 5.7 | 10.8 | 3.9 | 28.2 | 15.9 | 12.8 |
NY19-2 | 63.7 | 179.2 | 680.6 | 1201.7 | 17.1 | 183.6 | 48.9 | 3.8 | 36.2 | 12.3 | 23.3 | 36.3 | 18.4 |
NY15 | 77.4 | 152.7 | 493.9 | 1485.2 | 402.1 | 205.3 | 47.5 | 2.5 | 237.5 | 4.6 | 57.0 | 52.1 | 9.7 |
NY17 | 134.2 | 186.9 | 3244.2 | 744.6 | 3.9 | 228.5 | 62.2 | - | 137.3 | 5.9 | 81.1 | 70.7 | 15.6 |
NY18 | 87.6 | 182.2 | 595.8 | 1715.8 | 59.4 | 212.5 | 118.1 | - | 186.4 | 1032.4 | 17.8 | 65.8 | 14.2 |
NY12 | 538.7 | 140.9 | 443.5 | 273.2 | 69.7 | 211.3 | 59.0 | 2.9 | 102.3 | 5.5 | 49.3 | 53.5 | 15.3 |
NY7-2 | 172.9 | 238.8 | 1057.8 | 966.3 | 4.8 | 195.6 | 53.2 | 0.6 | 61.4 | 4.5 | 45.4 | 45.3 | 15.2 |
Samples | Number of Sites Studied | Content of U, ppm | Variation Coefficient | |
---|---|---|---|---|
Average | Range | |||
Relatively unaltered massive and fluidal glasses 1 | ||||
Fresh glass (NY22-1) | 8 | 25.26 | 23.97–27.47 | 5.31 |
Fresh glass (NY5-1) | 9 | 19.30 | 18.17–21.03 | 4.97 |
Initial devitrified I (NY22-1) | 9 | 17.85 | 17.30–19.11 | 3.59 |
Initial devitrified II (NY5-1) | 9 | 14.12 | 12.54–15.18 | 6.94 |
Altered and devitrified glasses | ||||
Altered I glass (NY23-1) | 9 | 14.75 | 13.12–17.75 | 10.78 |
Altered II glass (NY0-1) | 9 | 11.42 | 9.49–12.19 | 8.06 |
Altered III glass (NY2-1) | 9 | 5.34 | 5.06–6.62 | 10.86 |
Altered IV glass (NY26-1) | 9 | 1.72 | 1.60–2.69 | 26.16 |
Area with HEM (NY26-1) 2 | 5 | 39.55 | 32.12–55.33 | 22.66 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Poluektov, V.V.; Petrov, V.A.; Ojovan, M.I.; Yudintsev, S.V. Uranium Retention in Silica-Rich Natural Glasses: Nuclear Waste Disposal Aspect. Ceramics 2023, 6, 1152-1163. https://doi.org/10.3390/ceramics6020069
Poluektov VV, Petrov VA, Ojovan MI, Yudintsev SV. Uranium Retention in Silica-Rich Natural Glasses: Nuclear Waste Disposal Aspect. Ceramics. 2023; 6(2):1152-1163. https://doi.org/10.3390/ceramics6020069
Chicago/Turabian StylePoluektov, Valeri V., Vladislav A. Petrov, Michael I. Ojovan, and Sergey V. Yudintsev. 2023. "Uranium Retention in Silica-Rich Natural Glasses: Nuclear Waste Disposal Aspect" Ceramics 6, no. 2: 1152-1163. https://doi.org/10.3390/ceramics6020069
APA StylePoluektov, V. V., Petrov, V. A., Ojovan, M. I., & Yudintsev, S. V. (2023). Uranium Retention in Silica-Rich Natural Glasses: Nuclear Waste Disposal Aspect. Ceramics, 6(2), 1152-1163. https://doi.org/10.3390/ceramics6020069