First-Principles Calculation of Mechanical Properties and Thermal Conductivity of C-Doped AlN
Abstract
1. Introduction
2. Calculation Method
2.1. Theoretical Model
2.2. Calculation Parameters
3. Results and Discussion
3.1. Geometry Optimization
3.2. Structural Stability
3.3. Mechanical Properties
3.4. Thermal Conductivity
3.5. Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Da, B.; Mudiaynselage, D.H.; Wang, D.; He, Z.; Fu, H. High-voltage kV-class AlN metal-semiconductor field-effect transistors on single-crystal AlN substrates. Appl. Phys. Express 2024, 17, 104002. [Google Scholar] [CrossRef]
- Li, M.; Wang, C.; Wang, G.; Wang, C.; Shen, Q. Improvement of AlN Thermal Conductivity Based on Reductive Compound Additives. J. Wuhan Univ. Technol.—Mater. Sci. Ed. 2023, 38, 1025–1033. [Google Scholar] [CrossRef]
- Raghavan, S.; Redwing, J.M. In situ stress measurements during the MOCVD growth of AlN buffer layers on (1 1 1) Si substrates. J. Cryst. Growth 2004, 261, 294–300. [Google Scholar] [CrossRef]
- Jain, S.C.; Willander, M.; Narayan, J.; Overstraeten, R.V. III–nitrides: Growth, characterization, and properties. J. Appl. Phys. 2000, 87, 965–1006. [Google Scholar] [CrossRef]
- Duarte, M.A.; Mishra, V.; Dames, C.; Kodera, Y.; Garay, J.E. Processing and Thermal Conductivity of Bulk Nanocrystalline Aluminum Nitride. Materials 2021, 14, 5565. [Google Scholar] [CrossRef] [PubMed]
- Kameshima, Y.; Irie, M.; Yasumori, A.; Okada, K. Low temperature synthesis of AlN by addition of various Li-salts. J. Eur. Ceram. Soc. 2004, 24, 3801–3806. [Google Scholar] [CrossRef]
- Kim, J.; Ahn, H.; Kim, S.J.; Kim, J.Y.; Pee, J.H. Effect of residual oxygen concentration on the lattice parameters of aluminum nitride powder prepared via carbothermal reduction nitridation reaction. Materials 2022, 15, 8926. [Google Scholar] [CrossRef]
- Zhang, Z.; Wu, H.; Zhang, Z.; Li, J.; Xu, H.; Lu, H.; He, Q.; Gu, S.; Zhang, D.; Yin, H.; et al. Limiting the lattice oxygen impurities to obtain high thermal conductivity aluminum nitride ceramics. Ceram. Int. 2024, 50, 33488–33495. [Google Scholar] [CrossRef]
- Grimvall, G. Thermophysical Properties of Materials; Elsevier: Amsterdam, The Netherlands, 1999. [Google Scholar]
- Jia, T.; Chen, G.; Zhang, Y. Lattice thermal conductivity evaluated using elastic properties. Phys. Rev. B 2017, 95, 155206. [Google Scholar] [CrossRef]
- Abinaya, V.; Sneha, J.; Akash, R.; Hariharan, R.M.; Sivasankar, K.J.; Thiruvadigal, D.J. Functionalization of single-walled aluminum nitride nanotube with amino acids using the first principle’s study. Surf. Interfaces 2024, 54, 105216. [Google Scholar] [CrossRef]
- Wang, D.; Wang, C.; Li, M.; Shen, Q.; Zhang, L. Effect of NH4F additive on purification of AlN ceramics. J. Mater. Sci. Mater. Electron. 2017, 28, 6731–6736. [Google Scholar] [CrossRef]
- Lee, R.R. Development of high thermal conductivity aluminum nitride ceramic. J. Am. Ceram. Soc. 1991, 74, 2242–2249. [Google Scholar] [CrossRef]
- Peng, H.; Wei, L.J.; Liu, Y.; Ma, D.L.; Leng, Y.X. Effect of Si3N4 doping and annealing on the thermal conductivity and mechanical properties of AlN ceramics. J. Aust. Ceram. Soc. 2025, 61, 1487–1502. [Google Scholar] [CrossRef]
- Cai, X.M.; Zhou, Q.N.; Wang, J.M.; Wang, B.Y. Optimization of thermal conductivity in Cu doped AlN phosphor. Adv. Mater. Res. 2014, 1033, 1154–1157. [Google Scholar] [CrossRef]
- Zhang, Y.; Hou, Q. First-principle study on the effect of point defects on the mechanical properties, thermal conductivity, and optical properties of wurtzite AlN. Vacuum 2023, 207, 111694. [Google Scholar] [CrossRef]
- Jia, X.; Liu, Y.; Wang, H. First principles study on the effect of rare earth element La doping on the properties of AlN. J. At. Mol. Phys. 2021, 38, 6. [Google Scholar] [CrossRef]
- Elhamra, F.; Rougab, M.; Gueddouh, A. Theoretical investigation of transition metal (Cr, Fe)-Doped AlN in a rocksalt structure: A DFT study on physical properties. J. Phys. Chem. Solids 2025, 197, 112442. [Google Scholar] [CrossRef]
- Su, E.; Liu, J.; Li, M.; Yu, X.; Guo, S.; Zhang, L.; Zhao, X.; Lei, B. First-principles study on electronic structure and optical properties of C and Na doped AlN. J. At. Mol. Phys. 2024, 41, 24–30. [Google Scholar] [CrossRef]
- Qi, M.; Li, M.; Cheng, Y.; Pan, H.; Cao, L.; Mu, X. Study on acoustic excitation characteristics of AlN thin film heterogeneous structure. Piezoelectr. Acoustooptics 2022, 44, 709. [Google Scholar] [CrossRef]
- Li, M.; Yan, C.; Wang, X.; Yang, S.; Xue, F. Cryogenic thermal cycling induced simultaneous improvement of strength and ductility in a Zr-based bulk metallic glass composite. J. Mater. Res. Technol. 2024, 29, 4697–4701. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Thomas, L.H. The calculation of atomic fields. Math. Proc. Camb. Philos. Soc. 1927, 23, 542–548. [Google Scholar] [CrossRef]
- Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 2002, 77, 3865–3868. [Google Scholar] [CrossRef] [PubMed]
- Adamo, C.; Barone, V. Toward reliable density functional methods without adjustable parameters: The PBE0 model. J. Chem. Phys. 1999, 110, 6158–6170. [Google Scholar] [CrossRef]
- Yang, Y.; Prokopiou, G.; Qiu, T.; Schankler, A.M.; Rappe, A.M.; Kronik, L.; DiStasio, R.A., Jr. Range-separated hybrid functional pseudopotentials. Phys. Rev. B 2023, 108, 165142. [Google Scholar] [CrossRef]
- Madsen, G.K. Functional form of the generalized gradient approximation for exchange: The PBE α functional. Phys. Rev. B—Condens. Matter Mater. Phys. 2007, 75, 195108. [Google Scholar] [CrossRef]
- Tran, F.; Laskowski, R.; Blaha, P.; Schwarz, K. Performance on molecules, surfaces, and solids of the Wu-Cohen GGA exchange-correlation energy functional. Phys. Rev. B 2007, 75, 115131. [Google Scholar] [CrossRef]
- Born, M.; Huang, K. Dynamical Theory of Crystal Lattices; Oxford University Press: Oxford, UK, 1996. [Google Scholar]
- Togo, A. First-principles phonon calculations with phonopy and phono3py. J. Phys. Soc. Jpn. 2023, 92, 012001. [Google Scholar] [CrossRef]
- Xiao, H.; Cao, W.; Ouyang, T.; Guo, S.; He, C.; Zhong, J. Lattice thermal conductivity of borophene from first principle calculation. Sci. Rep. 2017, 7, 45986. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Carrete, J.; Katcho, N.A.; Mingo, N. ShengBTE: A solver of the Boltzmann transport equation for phonons. Comput. Phys. Commun. 2014, 185, 1747–1758. [Google Scholar] [CrossRef]
- Schulz, H.; Thiemann, K.H. Crystal structure refinement of AlN and GaN. Solid State Commun. 1977, 23, 815–819. [Google Scholar] [CrossRef]
- Bungaro, C.; Rapcewicz, K.; Bernholc, J. Ab initio phonon dispersions of wurtzite AlN, GaN, and InN. Phys. Rev. B 2000, 61, 6720. [Google Scholar] [CrossRef]
- Weng, H.K.; Nagakubo, A.; Ogi, H.; Watanabe, H. Phonon propagation in isotopic diamond superlattices. Phys. Rev. B 2021, 104, 054112. [Google Scholar] [CrossRef]
- Al Taleb, A.; Anemone, G.; Farias, D.; Miranda, R. Resolving localized phonon modes on graphene/Ir (111) by inelastic atom scattering. Carbon 2018, 133, 31–38. [Google Scholar] [CrossRef]
- McNeil, L.E.; Grimsditch, M.; French, R.H. Vibrational spectroscopy of aluminum nitride. J. Am. Ceram. Soc. 1993, 76, 1132–1136. [Google Scholar] [CrossRef]
- Mouhat, F.; Coudert, F.X. Necessary and sufficient elastic stability conditions in various crystal systems. Phys. Rev. B 2014, 90, 224104. [Google Scholar] [CrossRef]
- Hill, R. The elastic behaviour of a crystalline aggregate. Proc. Phys. Society. Sect. A 1952, 65, 349. [Google Scholar] [CrossRef]
- Nye, J.F. Physical Properties of Crystals: Their Representation by Tensors and Matrices; Clarendon Press: Oxford, UK, 1985; p. 145. [Google Scholar]
- Kanaun, S. Effective medium method in solution of the elastic and thermo-elastic homogenization problems for polycrystals with spheroidal transverse isotropic grains. Int. J. Eng. Sci. 2023, 190, 103886. [Google Scholar] [CrossRef]
- Lan, Z.; Calligaris, G.A.; de Menezes, A.S.; dos Santos, A.O.; Lai, X.; Cardoso, L.P.; Roberts, K.J. Characterization of the structural environment of dithionate ions associated with their role in the crystal habit modification of sodium chlorate. Cryst. Growth Des. 2018, 18, 3328–3338. [Google Scholar] [CrossRef]
- Watson, M.D.; Collins-McIntyre, L.J.; Shelford, L.R.; Coldea, A.I.; Prabhakaran, D.; Speller, S.C.; Mousavi, T.; Grovenor, C.R.M.; Salman, Z.; Giblin, S.R.; et al. Study of the structural, electric and magnetic properties of Mn-doped Bi2Te3 single crystals. New J. Phys. 2013, 15, 103016. [Google Scholar] [CrossRef]
- Taylor, R.E.; Storms, E.K. Thermal Transport in Refractory Carbides. In Thermal Conductivity 14; Springer: Boston, MA, USA, 1976; pp. 161–174. [Google Scholar] [CrossRef]
- Jaafreh, R.; Kang, Y.S.; Hamad, K. Lattice thermal conductivity: An accelerated discovery guided by machine learning. ACS Appl. Mater. Interfaces 2021, 13, 57204–57213. [Google Scholar] [CrossRef] [PubMed]
- Peng, B.; Zhang, H.; Shao, H.; Xu, Y.; Zhang, X.; Zhu, H. Low lattice thermal conductivity of stanene. Sci. Rep. 2016, 6, 20225. [Google Scholar] [CrossRef]
- Fan, T.; Oganov, A.R. AICON2: A program for calculating transport properties quickly and accurately. Comput. Phys. Commun. 2021, 266, 108027. [Google Scholar] [CrossRef]
- Ogawa, T.; Ikawa, K. Crushing strengths of SiC-Triso and ZrC-Triso coated fuel particles. J. Nucl. Mater. 1981, 98, 18–26. [Google Scholar] [CrossRef]
- Wang, L.L.; Ma, B.Y. The latest research progress on thermal conductivity and bending strength of AlN ceramics. Refract. Lime 2023, 48, 23–29. [Google Scholar]
- Nika, D.L.; Pokatilov, E.P.; Askerov, A.S.; Balandin, A.A. Phonon thermal conduction in graphene: Role of Umklapp and edge roughness scattering. Phys. Rev. B—Condens. Matter Mater. Phys. 2009, 79, 155413. [Google Scholar] [CrossRef]
- Banerjee, A.; Dasb, B.K.; Chattopadhyay, K.K. Significant enhancement of lattice thermal conductivity of monolayer AlN under bi-axial strain: A first principles study. Phys. Chem. Chem. Phys. 2022, 24, 16065–16074. [Google Scholar] [CrossRef] [PubMed]
Material | Doping Type | Method | Key Findings | Ref. |
---|---|---|---|---|
AlN | / | Experimental | Thermal conductivity: 150–180 W·m−1·K−1 (polycrystalline) | [8] |
AlN-C | C (0.5%) | Experimental | Thermal conductivity increased | [13] |
AlN-Si3N4 | Si3N4 (3%) | Experimental | Thermal conductivity reduced by ~50% | [14] |
AlN-Cu | Cu (1%) | DFPT/Debye | Thermal conductivity: 75 W·m−1·K−1 at 300 K | [15] |
AlN-(O,C,Vac) | Point defects | DFT | O impurities and Al vacancies most detrimental to κ | [16] |
AlN-La | La | DFT | B decreased by 12%, E by 14% | [17] |
Al0.75Fe0.25N | Fe | DFT | G decreased by 20%, E by 16%, Hᵥ by 35% | [18] |
AlN-C/Na | C, C-Na | DFT | B decreased by 8%; co-doping further reduced E | [19] |
ScxAl1-xN | Sc (>20%) | Experimental | C33 decreased by 39% | [20] |
System | C-Doping Concentration | a/Å | b/Å | c/Å | V/Å3 |
---|---|---|---|---|---|
AlN | 0 | 6.257 | 6.257 | 10.030 | 340.092 |
AlN(Exp) [34] | 0 | 6.220 | 6.220 | 9.960 | 333.711 |
1C@AlN | 3.125% | 6.257 | 6.257 | 10.032 | 340.172 |
2C@AlN | 6.25% | 6.257 | 6.257 | 10.222 | 346.598 |
4C@AlN | 12.5% | 6.260 | 6.121 | 10.365 | 351.357 |
System | C-Doping Concentration | C11/GPa | C12/GPa | C13/GPa | C33/GPa | C44/GPa | C66/GPa |
---|---|---|---|---|---|---|---|
AlN | 0 | 382 | 133 | 107 | 344 | 116 | 124 |
AlN(Exp) [38] | 0 | 400 | 138 | 98 | 378 | 120 | / |
1C@AlN | 3.125% | 339 | 157 | 108 | 344 | 99 | 91 |
2C@AlN | 6.25% | 281 | 197 | 107 | 348 | 87 | 42 |
4C@AlN | 12.5% | 241 | 140 | 184 | 273 | 86 | 97 |
System | C-Doping Concentration | B/GPa | G/GPa | E/GPa | B/G | v | Hv/GPa | AU |
---|---|---|---|---|---|---|---|---|
AlN | 0 | 199.7 | 122.0 | 304.0 | 1.638 | 0.246 | 18.417 | 0.021 |
1C@AlN | 3.125% | 195.8 | 100.4 | 257.3 | 1.950 | 0.281 | 15.164 | 0.079 |
2C@AlN | 6.25% | 192.5 | 69.9 | 187.1 | 2.752 | 0.338 | 10.559 | 1.057 |
4C@AlN | 12.5% | 188.2 | 70.8 | 188.8 | 2.657 | 0.333 | 10.698 | 1.180 |
Model | a/Å | b/Å | c/Å | V/Å3 | BH/GPa | GH/GPa | E/GPa |
---|---|---|---|---|---|---|---|
(a) | 6.257 | 6.257 | 10.222 | 346.598 | 192.4578 | 69.92453 | 187.1128 |
(b) | 6.257 | 6.225 | 10.086 | 341.975 | 194.2918 | 58.83744 | 160.3282 |
(c) | 6.257 | 6.257 | 10.075 | 341.611 | 194.8536 | 57.39972 | 156.8023 |
(d) | 6.257 | 6.272 | 10.079 | 341.755 | 194.7237 | 57.3242 | 156.6051 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shao, H.; Wang, Y.; Song, J.; Lei, L.; Liu, X.; Hou, X.; Zhang, J. First-Principles Calculation of Mechanical Properties and Thermal Conductivity of C-Doped AlN. Ceramics 2025, 8, 117. https://doi.org/10.3390/ceramics8030117
Shao H, Wang Y, Song J, Lei L, Liu X, Hou X, Zhang J. First-Principles Calculation of Mechanical Properties and Thermal Conductivity of C-Doped AlN. Ceramics. 2025; 8(3):117. https://doi.org/10.3390/ceramics8030117
Chicago/Turabian StyleShao, Hongfei, Ying Wang, Jiahe Song, Liwen Lei, Xia Liu, Xuejun Hou, and Jinyong Zhang. 2025. "First-Principles Calculation of Mechanical Properties and Thermal Conductivity of C-Doped AlN" Ceramics 8, no. 3: 117. https://doi.org/10.3390/ceramics8030117
APA StyleShao, H., Wang, Y., Song, J., Lei, L., Liu, X., Hou, X., & Zhang, J. (2025). First-Principles Calculation of Mechanical Properties and Thermal Conductivity of C-Doped AlN. Ceramics, 8(3), 117. https://doi.org/10.3390/ceramics8030117