Assessing the Effectiveness of Green Landscape Buffers to Reduce Fire Severity and Limit Fire Spread in California: Case Study of Golf Courses
Abstract
:1. Introduction
- Do golf courses alter fire severity relative to similar vegetation?
- Do golf courses limit fire spread? How does this compare to other landscape features like parks or airports?
2. Materials and Methods
2.1. Study Period and Regions
2.2. Fire Severity Data
2.3. Propensity Score Matching and Linear Regression
2.4. Measuring How Golf Courses Limit Fire Spread
2.5. Robustness Checks
3. Results
3.1. Quality of Burn Severity and Matched Data
3.2. Linear Regression and Predicted Treatment Effect
3.3. Golf Courses Limiting Fire Spread
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Keeley, J.E.; Syphard, A.D. Twenty-first century California, USA, wildfires: Fuel-dominated vs. wind-dominated fires. Fire Ecol. 2019, 15, 24. [Google Scholar] [CrossRef] [Green Version]
- Kramer, H.A.; Mockrin, M.H.; Alexandre, P.M.; Radeloff, V.C. High Wildfire Damage in Interface Communities in California. Int. J. Wildland Fire 2019, 28, 641–650. [Google Scholar] [CrossRef] [Green Version]
- Schoennagel, T.; Balch, J.K.; Brenkert-Smith, H.; Dennison, P.E.; Harvey, B.J.; Krawchuk, M.A.; Mietkiewicz, N.; Morgan, P.; Moritz, M.A.; Rasker, R.; et al. Adapt to More Wildfire in Western North American Forests as Climate Changes. Proc. Natl. Acad. Sci. USA 2017, 114, 4582–4590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calkin, D.E.; Cohen, J.D.; Finney, M.A.; Thompson, M.P. How Risk Management Can Prevent Future Wildfire Disasters in the Wildland-Urban Interface. Proc. Natl. Acad. Sci. USA 2014, 111, 746–751. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moritz, M.A.; Batllori, E.; Bradstock, R.A.; Gill, A.M.; Handmer, J.; Hessburg, P.F.; Leonard, J.; McCaffrey, S.; Odion, D.C.; Schoennagel, T.; et al. Learning to Coexist with Wildfire. Nature 2014, 515, 58–66. [Google Scholar] [CrossRef]
- Moritz, M.A.; Butsic, V. Building to Coexist with Fire: Community Risk Reduction Measures for New Development in California; UC ANR Publication: Davis, CA, USA, 2020. [Google Scholar] [CrossRef]
- Agee, J.K.; Bahro, B.; Finney, M.A.; Omi, P.N.; Sapsis, D.B.; Skinner, C.N.; van Wagtendonk, J.W.; Weatherspoon, P. The Use of Shaded Fuelbreaks in Landscape Fire Management. For. Ecol. Manag. 2000, 127, 55–66. [Google Scholar] [CrossRef]
- Chirouze, M.; Clark, J.; Hayes, J.; Roberts, K.; Jones, D.; Chamberlin, S.; Heard, S.; Shive, K.; Newkirk, S. Quantifying Insurance Benefits of a Nature-Based Approach to Reducing Risk: Wildfire Risk Reduction Buffers. Nat. Conserv. 2021, 1–30. Available online: https://www.marshmclennan.com/content/dam/mmc-web/insights/publications/2021/december/MMC_TNC_Quantifying_Insurance_Benefits.pdf (accessed on 18 February 2022).
- Gross, P. Golf Courses on the Fire Line. Green Sect. Rec. 2008, 47, 13–16. Available online: https://gsrpdf.lib.msu.edu/?file=/2000s/2009/091113.pdf (accessed on 18 February 2022).
- Lentile, L.B.; Holden, Z.A.; Smith, A.M.S.; Falkowski, M.J.; Hudak, A.T.; Morgan, P.; Lewis, S.A.; Gessler, P.E.; Benson, N.C. Remote sensing techniques to assess active fire characteristics and post-fire effects. Int. J. Wildland Fire 2006, 15, 319–345. [Google Scholar] [CrossRef]
- Keeley, J.E. Fire Intensity, Fire Severity and Burn Severity: A Brief Review and Suggested Usage. Int. J. Wildland Fire 2009, 18, 116–126. [Google Scholar] [CrossRef]
- National Wildfire Coordinating Group. Wildland Fire Suppression Tactics Reference Guide. Available online: https://www.coloradofirecamp.com/suppression-tactics/suppression-tactics-guide.pdf (accessed on 3 February 2022).
- Butsic, V.; Lewis, D.J.; Radeloff, V.C.; Baumann, M.; Kuemmerle, T. Quasi-Experimental Methods Enable Stronger Inferences from Observational Data in Ecology. Basic Appl. Ecol. 2017, 19, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Woo, H.; Eskelson, B.N.I.; Monleon, V.J. Matching methods to quantify wildfire effects on forest carbon mass in the U.S. Pacific Northwest. Ecol. Appl. 2021, 31, e02283. [Google Scholar] [CrossRef] [PubMed]
- Ramsey, D.S.L.; Forsyth, D.M.; Wright, E.; McKay, M.; Westbrooke, I. Using Propensity Scores for Causal Inference in Ecology: Options, Considerations, and a Case Study. Methods Ecol. Evol. 2018, 10, 320–331. [Google Scholar] [CrossRef] [Green Version]
- Butry, D.T. Fighting Fire with Fire: Estimating the Efficacy of Wildfire Mitigation Programs Using Propensity Scores. Environ. Ecol. Stat. 2009, 16, 291–319. [Google Scholar] [CrossRef]
- CAL FIRE (California Department of Forestry and Fire Protection). Cal Fire Fuel Breaks and Use during Fire Suppression 2019. Available online: https://www.fire.ca.gov/media/5585/fuel_break_case_studies_03212019.pdf (accessed on 18 February 2022).
- Fire Terminology. Available online: https://www.fs.fed.us/nwacfire/home/terminology.html (accessed on 3 February 2022).
- OpenStreetMap Contributors. Planet Dump [Data File from 2021] 2015. Available online: https://planet.openstreetmap.org (accessed on 18 February 2022).
- Overpass Turbo Golf Course Query. Available online: https://overpass-turbo.eu/s/1fLY (accessed on 28 July 2021).
- U.S. Bureau of the Census. TIGER/Line: Current State and Equivalent National; Bureau of the Census: Washington, DC, USA, 2019.
- Esri Inc. ArcGIS Pro, version 2.7.1; Esri Inc.: Redlands, CA, USA, 2020; Available online: https://www.esri.com/en-us/arcgis/products/arcgis-pro/overview (accessed on 18 February 2022).
- Fire Perimeters. Available online: https://frap.fire.ca.gov/frap-projects/fire-perimeters/ (accessed on 6 June 2021).
- Overpass Turbo Park Query. Available online: https://overpass-turbo.eu/s/1fLZ (accessed on 28 July 2021).
- Overpass Turbo Airport Query. Available online: https://overpass-turbo.eu/s/1fM0 (accessed on 28 July 2021).
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-Scale Geospatial Analysis for Everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Parks, S.A.; Holsinger, L.M.; Voss, M.A.; Loehman, R.A.; Robinson, N.P. Mean Composite Fire Severity Metrics Computed with Google Earth Engine Offer Improved Accuracy and Expanded Mapping Potential. Remote Sens. 2018, 10, 879. [Google Scholar] [CrossRef] [Green Version]
- Wildfire Coordinating Group (NWCG) Data Element Standard. Available online: https://www.nwcg.gov/sites/default/files/stds/standards/fire-containment_v1-0.htm#:~:text=Attribute%20Name-,Fire%20Containment%20Date,the%20wildfire%20was%20declared%20contained (accessed on 3 February 2022).
- MTBS Data Access: Fire Level Geospatial Data. (2017, July-last revised). MTBS Project (USDA Forest Service/U.S. Geological Survey) 2017. Available online: http://mtbs.gov/direct-download (accessed on 18 February 2022).
- Austin, P.C. An Introduction to Propensity Score Methods for Reducing the Effects of Confounding in Observational Studies. Multivar. Behav. Res. 2011, 46, 399–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Landsat-5, Landsat-7, and Landsat-8 Imagery Courtesy of the U.S. Geological Survey. Available online: https://www.usgs.gov/centers/eros/data-citation (accessed on 18 February 2022).
- NASA JPL. NASADEM Merged DEM Global 1 Arc Second V001 [Data set]. NASA EOSDIS Land Processes DAAC 2020. Available online: https://lpdaac.usgs.gov/products/nasadem_hgtv001/ (accessed on 30 December 2020).
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A.; et al. The climate hazards infrared precipitation with stations—a new environmental record for monitoring extremes. Sci. Data 2015, 2, 150066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, L.; Jin, S.; Danielson, P.; Homer, C.; Gass, L.; Case, A.; Costello, C.; Dewitz, J.; Fry, J.; Funk, M.; et al. A New Generation of the United States National Land Cover Database: Requirements, Research Priorities, Design, and Implementation Strategies. ISPRS J. Photogramm. Remote Sens. 2018, 146, 108–123. [Google Scholar] [CrossRef]
- Walker, K.; Herman, M. Tidycensus: Load US Census Boundary and Attribute Data as ‘tidyverse’ and ‘sf’-Ready Data Frames. R package version 1.1. 2021. Available online: https://CRAN.R-project.org/package=tidycensus (accessed on 18 February 2022).
- RStudio Team. RStudio: Integrated Development for R. RStudio; PBC: Boston, MA, USA, 2020. Available online: http://www.rstudio.com/ (accessed on 18 February 2022).
- R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, 2021. Available online: https://www.R-project.org/ (accessed on 18 February 2022).
- Ho, D.E.; Imai, K.; King, G.; Stuart, E.A. MatchIt: Nonparametric Preprocessing for Parametric Causal Inference. J. Stat. Softw. 2011, 42, 1–28. Available online: https://www.jstatsoft.org/v42/i08/ (accessed on 18 February 2022). [CrossRef] [Green Version]
- Wickham, H.; François, R.; Henry, L.; Müller, K. dplyr: A Grammar of Data Manipulation. R package version 1.0.7. 2021. Available online: https://CRAN.R-project.org/package=dplyr (accessed on 18 February 2022).
- Syphard, A.D.; Rustigian-Romsos, H.; Keeley, J.E. Multiple-Scale Relationships between Vegetation, the Wildland–Urban Interface, and Structure Loss to Wildfire in California. Fire 2021, 4, 12. [Google Scholar] [CrossRef]
- Leeper, T.J. Margins: Marginal Effects for Model Objects. R package version 0.3.26. 2021. Available online: https://rdrr.io/cran/margins/ (accessed on 18 February 2022).
- Lenth, R.V. Emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.6.3. 2021. Available online: https://CRAN.R-project.org/package=emmeans (accessed on 18 February 2022).
- Wickham, H. Ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016. [Google Scholar]
- McKnight, P.E.; Najab, J. Mann-Whitney U Test. The Corsini Encyclopedia of Psychology; American Cancer Society: Atlanta, GA, USA, 2010. [Google Scholar]
- Peng, R.D. Simpleboot: Simple Bootstrap Routines. R package Version 1.1-7. 2019. Available online: https://CRAN.R-project.org/package=simpleboot (accessed on 18 February 2022).
- About CPAD. Available online: https://www.calands.org/cpad/ (accessed on 7 July 2021).
- Greifer, N. Cobalt: Covariate Balance Tables and Plots. R package Version 4.3.1. 2021. Available online: https://CRAN.R-project.org/package=cobalt (accessed on 18 February 2022).
- Ruecker, G.; Leimbach, D.; Tiemann, J. Estimation of Byram’s Fire Intensity and Rate of Spread from Spaceborne Remote Sensing Data in a Savanna Landscape. Fire 2021, 4, 65. [Google Scholar] [CrossRef]
- Giglio, L.; Schroeder, W.; Justice, C.O. The collection 6 MODIS active fire detection algorithm and fire products. Sens. Environ. 2016, 178, 31–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Syphard, A.D.; Keeley, J.E.; Brennan, T.J. Factors Affecting Fuel Break Effectiveness in the Control of Large Fires on the Factors Affecting Fuel Break Effectiveness in the Control of Large Fires on the Los Padres National Forest, California. Int. J. Wildland Fire 2011, 20, 764–775. [Google Scholar] [CrossRef]
- Chelleri, L.; Waters, J.J.; Olazabal, M.; Minucci, G. Resilience Trade-Offs: Addressing Multiple Scales and Temporal Aspects of Urban Resilience. Environ. Urban. 2015, 27, 181–198. [Google Scholar] [CrossRef] [Green Version]
- Copeland, S.; Comes, T.; Bach, S.; Nagenborg, M.; Schulte, Y.; Doorn, N. Measuring Social Resilience: Trade-Offs, Challenges and Opportunities for Indicator Models in Transforming Societies. Int. J. Disaster Risk Reduct. 2020, 51, 101799. [Google Scholar] [CrossRef]
Type | Name | Description | Spatial and Temporal Resolution | Source |
---|---|---|---|---|
Burn Severity | NBR offset | Normalized Burn Ratio Offset using pre-fire dates from 1.5 months pre-fire to 1.5 months post fire | 30 m; 16-day | Landsat 5 TM, Landsat 7 ETM+, Landsat 8 OLI/TIRS [31] |
Geography | Eastness | Aspect-derived measure of ‘east’ facing, determined by sine function transformation | 90 m; DEM from 2000 | NASA SRTM [32] |
Northness | Aspect-derived measure of ‘north’ facing, determined by cosine function transformation | 90 m; DEM from 2000 | NASA SRTM | |
Slope | STRM-derived DEM in GEE to calculate slope | 90 m; DEM from 2000 | NASA SRTM | |
Latitude | Latitude of each pixel in degrees determined by GEE function | NA | Google Earth Engine | |
Vegetation and Vegetation Moisture | NDMI 6 | Normalized Difference Moisture Index, NDMI = (NIR − SWIR) / (NIR + SWIR), taken from clear-sky composited image between 3 and 6 months pre-fire alarm date | 30 m; 16-day | Landsat 5 TM, Landsat 7 ETM+, Landsat 8 OLI/TIRS |
Precipitation | Total precipitation from 1 January–31 March (mm) | 5566 m; daily | CHIRPS [33] | |
Precipitation 3 | Total precipitation from 1 October–31 December (mm) | 5566 m; daily | CHRIPS | |
Landcover | Dominant vegetation determined by satellite and ground-truthed data. The landcover closest to the date prior to fire is used. | 30 m; epochs produced for 2001, 2004, 2006, 2008, 2011, 2013, 2016 | NLCD Land Cover [34] | |
Suppression Effort | Median Income | Median household income from the five-year 2018, 2013, 2009 ACS and 2000 Decennial surveys | Variable; 5-year and 10-year | US Census 5-year American Community Survey and Decennial [35] |
Region | Group | n. | Predicted | SE | LCL | UCL | Unburned | Low | Moderate | High |
---|---|---|---|---|---|---|---|---|---|---|
northeast | Cont. | 142 | 91.36 | 27.88 | 36.69 | 146.02 | 52.17% | 31.51% | 12.03% | 8.00% |
northeast | Treat. | 142 | 11.70 | 27.68 | −42.58 | 65.97 | 18.45% | 10.64% | 4.16% | 3.05% |
northwest | Cont. | 278 | 99.90 | 23.00 | 54.81 | 144.99 | 63.91% | 23.18% | 1.722% | 0.12% |
northwest | Treat. | 278 | −41.49 | 23.00 | −87.17 | 4.19 | 10.52% | 0.57% | 0% | 0% |
south | Cont. | 950 | 164.59 | 15.93 | 133.36 | 195.81 | 54.39% | 31.94% | 12.42% | 12.17% |
south | Treat. | 950 | 99.44 | 15.93 | 68.22 | 130.66 | 44.44% | 19.75% | 6.14% | 7.81% |
Comparison | Test Statistic | Significant (0.05 Cutoff) |
---|---|---|
Golf Course—Airport | 3551 | No |
Golf Course—Park | 4996 | Yes |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Herbert, C.; Butsic, V. Assessing the Effectiveness of Green Landscape Buffers to Reduce Fire Severity and Limit Fire Spread in California: Case Study of Golf Courses. Fire 2022, 5, 44. https://doi.org/10.3390/fire5020044
Herbert C, Butsic V. Assessing the Effectiveness of Green Landscape Buffers to Reduce Fire Severity and Limit Fire Spread in California: Case Study of Golf Courses. Fire. 2022; 5(2):44. https://doi.org/10.3390/fire5020044
Chicago/Turabian StyleHerbert, Claudia, and Van Butsic. 2022. "Assessing the Effectiveness of Green Landscape Buffers to Reduce Fire Severity and Limit Fire Spread in California: Case Study of Golf Courses" Fire 5, no. 2: 44. https://doi.org/10.3390/fire5020044
APA StyleHerbert, C., & Butsic, V. (2022). Assessing the Effectiveness of Green Landscape Buffers to Reduce Fire Severity and Limit Fire Spread in California: Case Study of Golf Courses. Fire, 5(2), 44. https://doi.org/10.3390/fire5020044