Spatial and Temporal Distribution Characteristics of Active Fires in China Using Remotely Sensed Data
Abstract
:1. Introduction
2. Data Sources
3. Methodology
3.1. Spatial Statistical Analysis
3.1.1. Spatial Statistical Analysis Based on GIS Fishing Net
3.1.2. Probability of Active Fire
3.1.3. Occurrence Intensity of the Active Fires
3.2. Mathematical Analysis
3.2.1. Multiple Linearity Test
3.2.2. GWLR Fire Risk Assessment Model
4. Results
4.1. Distribution Characteristics of Active Fires in China
4.2. Probability of Active Fire in China
4.3. Intensity of Active Fires in China
4.4. Relationship between Active Fire and Fire Risk Factors
4.4.1. Relationship between Active Fire and Meteorological Factors
4.4.2. Relationship between Active Fires and Topographic Factors
4.4.3. Relationship between Active Fires and Vegetation Factors
4.4.4. Relationship between Active Fires and Human Activity Factors
4.5. Fire risk Assessment Model
4.5.1. Establishment of GWLR Model
4.5.2. Model Evaluation
4.5.3. Classification of Fire Risk Probability
4.5.4. Spatial Distribution of Fire Risk Influencing Factors and Fire Risk Zoning
5. Discussion
6. Conclusions
- There were 1,652,500 active fires in 18 years in the Chinese mainland area, with an average of 91,800 fires per year. There are great differences in the number of active fires in different years and months, mainly concentrated in 2013–2015 and February, April, and October of each year.
- During the 18 years in the Chinese mainland, the number of grids in the “fire zone” accounted for 10.13% of the total area, and the distribution range of the “fire zone” was quite different. The proportion of “fire areas” varies greatly in different provinces. The occurrence of active fire is mainly low probability, with relatively few of medium and high probability. Low-probability grids are widely distributed, medium-probability grids are distributed in dense areas of low-probability grids, and high-probability grids are in the center of medium-probability grids, advancing layer by layer.
- The occurrence intensity of active fires in the Chinese mainland is mainly Level 1, followed by Level 2. With the increase in intensity, the number of active fires decreases. The occurrence intensity of the active fire is unevenly distributed in space. The grids of Level 1 and Level 2 intensity are all over the Chinese mainland, and the intensity of 3~6 decreases from the center to the surroundings.
- From the relationship between the frequency of active fires and fire risk impact factors, it can be seen that the frequency of active fires in the Chinese mainland from 2000 to 2018 was mainly concentrated in areas with an annual average temperature of 14~19 °C, precipitation of 400–800 mm, the surface temperature of 15~20 °C, elevation of 1000–3000 m, slope < 15°, and NDVI > 0.6. The farther the road distance, the higher the average population density, and the greater the GDP value meant the less the number of active fires.
- Nine fire risk factors were selected from four aspects of meteorology, topography, vegetation, and human activities to build the GWLR fire risk assessment model. The fire risk probability of the Chinese mainland was obtained and divided into five fire risk probability regions. The main occurrence areas of active fires in China were concluded. Then, the spatial distribution of fire impact factors shows that QW and NDVI have a significant spatial impact on the occurrence of active fires in the Chinese mainland, and GC and PD factors have a small impact on the occurrence of active fires, which are only distributed in remote and high-elevation areas. Finally, it was divided into eight fire risk impact factor areas, and differentiated fire prevention suggestions have been put forward.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kitzberger, T.; Tiribelli, F.; Barberá, I.; Gowda, J.H.; Morales, J.M.; Zalazar, L.; Paritsis, J. Projections of fire probability and ecosystem vulnerability under 21st-century climate across a trans-Andean productivity gradient in Patagonia. Sci. Total. Environ. 2022, 839, 156303. [Google Scholar] [CrossRef]
- Wang, X.; Swystun, T.; Flannigan, M.D. Future wildfire extent and frequency determined by the longest fire-conducive weather spell. Sci. Total. Environ. 2022, 830, 154752. [Google Scholar] [CrossRef]
- Cochrane, M.A.; Barber, C.P. Climate change, human land use and future fires in the Amazon. Glob. Chang. Biol. 2009, 15, 601–612. [Google Scholar] [CrossRef]
- Chen, A.; Tang, R.; Mao, J.; Yue, C.; Li, X.; Gao, M.; Shi, X.; Jin, M.; Ricciuto, D.; Rabin, S.; et al. Spatiotemporal dynamics of ecosystem fires and biomass burning-induced carbon emissions in China over the past two decades. Geogr. Sustain. 2020, 1, 47–58. [Google Scholar] [CrossRef]
- Gui, J.; Wang, D.; Jiang, Y.; Liu, J.; Yang, L. Study on the Protection Effect of Sprinklers on Glass by Fire Scale in Building Fires. Fire 2022, 5, 100. [Google Scholar] [CrossRef]
- Bowman, D.M.; Balch, J.K.; Artaxo, P.; Bond, W.J.; Carlson, J.M.; Cochrane, M.A.; Antonio, C.M.; Defries, R.S.; Doyle, J.C.; Harrison, S.P.; et al. Fire in the Earth system. Science 2009, 324, 481–484. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, S.S.; Fearnside, P.M.; de Graça, P.M.L.A.; Brown, I.F.; Alencar, A.; de Melo, A.W.F. Dynamics of forest fires in the southwestern Amazon. For. Ecol. Manag. 2018, 424, 312–322. [Google Scholar] [CrossRef]
- Barreiro, A.; Díaz-Raviña, M. Fire impacts on soil microorganisms: Mass, activity, and diversity. Curr. Opin. Environ. Sci. Health 2021, 22, 100264. [Google Scholar] [CrossRef]
- Nichols, L.; Shinneman, D.J.; McIlroy, S.K.; Marie-Anne, G. Fire frequency impacts soil properties and processes in sagebrush steppe ecosystems of the Columbia Basin. Appl. Soil Ecol. 2021, 165, 103967. [Google Scholar] [CrossRef]
- Mantoni, C.; Musciano, M.D.; Fattorini, S. Use of microarthropods to evaluate the impact of fire on soil biological quality. J. Environ. Manag. 2020, 266, 110624. [Google Scholar] [CrossRef]
- Attorre, F.; Govender, N.; Hausmann, A.; Farcomeni, A.; Guillet, A.; Scepi, E.; Smit, I.P.J.; Vitale, M. Assessing the effect of management Changes and environmental features on the spatio-temporal pattern of fire in an African Savanna: Fire spatiotemporal pattern. J. Nat. Conserv. 2015, 28, 1–10. [Google Scholar] [CrossRef]
- Wooster, M.J.; Roberts, G.J.; Giglio, L.; Roy, D.; Freeborn, P.; Boschetti, L.; Justice, C.; Ichoku, C.; Schroeder, W.; Davies, D.; et al. Satellite remote sensing of active fires: History and current status, applications and future requirements. Remote Sens. Environ. 2021, 267, 112694. [Google Scholar] [CrossRef]
- Pérez-Cabello, F.; Montorio, R.; Alves, D.B. Remote sensing techniques to assess post-fire vegetation recovery. Curr. Opin. Environ. Sci. Health. 2021, 21, 100251. [Google Scholar] [CrossRef]
- Wang, K.; Jiang, Q.; Yu, D.; Yang, Q.; Li Wang, L.; Han, T.; Xu, X. Detecting daytime and nighttime land surface temperature anomalies using thermal infrared remote sensing in Dandong geothermal prospect. Int. J. Appl. Earth Obs. Geoinf. 2019, 80, 196–205. [Google Scholar] [CrossRef]
- Sirimongkonlertkul, N.; Phonekeo, V. Remote Sensing and GIS Application Analysis of Active Fire, Aerosol Optical Thickness and Estimated PM10 in the North of Thailand and Chiang Rai Province. APCBEE Procedia 2012, 1, 304–308. [Google Scholar] [CrossRef] [Green Version]
- Ma, C.; Sui, X.; Zeng, Y.; Yang, J.; Xie, Y.; Li, T.; Zhang, P. Classification of Industrial Heat Source Objects Based on Active Fire Point Density Segmentation and Spatial Topological Correlation Analysis in the Beijing–Tianjin–Hebei Region. Sustainability 2022, 14, 11228. [Google Scholar] [CrossRef]
- Liu, Q.; Shan, Y.; Shu, L.; Sun, P.; Du, S. Spatial and temporal distribution of forest fire frequency and forest area burnt in Jilin Province, Northeast China. J. For. Res. 2018, 29, 1233–1239. [Google Scholar] [CrossRef]
- Zhu, Z.; Deng, X.; Zhao, F.; Li, S.; Wang, L. How Environmental Factors Affect Forest Fire Occurrence in Yunnan Forest Region. Forests 2022, 13, 1392. [Google Scholar] [CrossRef]
- Guo, F.; Wang, G.; Su, Z.; Liang, H.; Wang, W.; Lin, F.; Liu, A. What drives forest fire in Fujian, China? Evidence from logistic regression and Random Forests. Int. J. Wildland Fire 2016, 25, 505–519. [Google Scholar] [CrossRef]
- Goldammer, J.G. History of equatorial vegetation fires and fire research in Southeast Asia before the 1997- 98 episode: A reconstruction of creeping environmental changes. Mitig. Adapt. Strateg. Glob. Chang. 2007, 12, 13–32. [Google Scholar] [CrossRef]
- Martín-Sanz, P.J.; Santiago-Martín, A.; Valverde-Asenjo, I.; Quintana-Nieto, J.R.; González-Huecas, C.; López-Lafuente, A.L. Comparison of soil quality indexes calculated by network and principal component analysis for carbonated soils under different uses. Ecol. Indic. 2022, 143, 109374. [Google Scholar] [CrossRef]
- Kerr, T.; Duncan, K.; Myers, L. Post fire materials identification by micro-Raman spectroscopy and principal components analysis. J. Anal. Appl. Pyrolysis 2013, 102, 103–113. [Google Scholar] [CrossRef]
- Döring, C.; Lesot, M.-J.; Kruse, R. Data analysis with fuzzy clustering methods. Comput. Stat. Data Anal. 2006, 51, 192–214. [Google Scholar] [CrossRef]
- Garcia-Prats, A.; Antonio, D.C.; Gualberto Fernandes, T.J.G.; Molina, A.J. Development of a Keetch and Byram—Based drought index sensitive to forest management in Mediterranean conditions. Agric. For. Meteorol. 2015, 205, 40–50. [Google Scholar] [CrossRef]
- Woo, T.H. Analysis of nuclear fire safety by dynamic complex algorithm of fuzzy theory and system dynamics. Ann. Nucl. Eng. 2018, 114, 149–153. [Google Scholar] [CrossRef]
- Cho, I.; Park, S.; Kim, J. A fire risk assessment method for high-capacity battery packs using interquartile range filter. J. Energy Storage 2022, 50, 104663. [Google Scholar] [CrossRef]
- Schroeder, W.; Oliva, P.; Giglio, L.; Csiszar, I.A. The New VIIRS 375m active fire detection data product: Algorithm description and initial assessment. Remote Sens. Environ. 2014, 143, 85–96. [Google Scholar] [CrossRef]
- Sharma, A.; Kumar, H.; Mittal, K.; Kauhsal, S.; Kaushal, M.; Gupta, D.; Narula, A. IoT and deep learning-inspired multi-model framework for monitoring Active Fire Locations in Agricultural Activities. Comput. Electr. Eng. 2021, 93, 107216. [Google Scholar] [CrossRef]
- Bera, B.; Saha, S.; Bhattacharjee, S. Forest cover dynamics (1998 to 2019) and prediction of deforestation probability using binary logistic regression (BLR) model of Silabati watershed, India. Trees For. People 2020, 2, 100034. [Google Scholar] [CrossRef]
- Nazarpour, A.; Paydar, G.R.; Mehregan, F.; Hejazi, S.J.; Jafari, M.A. Application of geographically weighted regression (GWR) and singularity analysis to identify stream sediment geochemical anomalies, case study, Takab Area, NW Iran. J. Geochem. Explor. 2022, 235, 106953. [Google Scholar] [CrossRef]
- Liu, Y.; Lam, K.F.; Wu, J.T.; Lam, T.T.Y. Geographically weighted temporally correlated logistic regression model. Sci. Rep. 2018, 8, 1417. [Google Scholar] [CrossRef] [Green Version]
- Giglio, L.; Schroeder, W.; Justice, C.O. The collection 6 MODIS active fire detection algorithm and fire products. Remote Sens. Environ. 2016, 178, 31–41. [Google Scholar] [CrossRef] [Green Version]
- Huesca, M.; Litago, J.; Palacios-Orueta, A.; Montes, F.; Sebastián-López, A.; Escribano, P. Assessment of forest fire seasonality using MODIS fire potential: A time series approach. Agric. For. Meteorol. 2009, 149, 1946–1955. [Google Scholar] [CrossRef]
- Bolaño-Díaz, S.; Camargo-Caicedo, Y.; Soro, T.D.; N’Dri, A.B.; Bolaño-Ortiz, T.R. Spatio-Temporal Characterization of Fire Using MODIS Data (2000–2020) in Colombia. Fire 2022, 5, 134. [Google Scholar] [CrossRef]
- Singh, M.; Sood, S.; Collins, C.M. Fire Dynamics of the Bolivian Amazon. Land 2022, 11, 1436. [Google Scholar] [CrossRef]
- Aldersley, A.; Murray, S.J.; Cornell, S.E. Global and regional analysis of climate and human drivers of wildfire. Sci. Total Environ. 2011, 409, 3472–3481. [Google Scholar] [CrossRef] [PubMed]
- Hantson, S.; Pueyo, S.; Chuvieco, E. Global fire size distribution is driven by human impact and climate. Glob. Ecol. Biogeogr. 2015, 24, 77–86. [Google Scholar] [CrossRef]
- Smit, I.P.; Smit, C.F.; Govender, N.; Linde MV, D.; MacFadyen, S. Rainfall, geology and landscape position generate large-scale spatiotemporal fire pattern heterogeneity in an African savanna. Ecography 2013, 36, 447–459. [Google Scholar] [CrossRef]
- Capece, P.; Ganga, A.; Dessy, C.; Delitala, A.M.S. NDVI Analysis for Monitoring the Spatial and Temporal Variability of the Vegetation Cover in Sardinia: A Proposal to Support Natural Hazard Management. Environ. Sci. Proc. 2022, 17, 121. [Google Scholar]
- Liu, J.; Liang, Y.; Li, P.; Xiao, C. Occurrence characteristics and response to El Niño of MODIS-based active fires in Indonesia during 2001–2018. Acta Geogr. Sin. 2020, 75, 1907–1920. (In Chinese) [Google Scholar]
- Kim, J.H. Multicollinearity and misleading statistical results. Korean J. Anesthesiol. 2019, 72, 558–569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, W.; Pan, J.; Feng, Y.; Li, Z.; Dong, L. Model and Zoning of Fire Risk in Gansu Province based on GWLR and MODIS Imagery. Remote Sens. Technol. Appl. 2017, 32, 514–523. (In Chinese) [Google Scholar]
- Indah Manfaati Nur, I.M.; Al Haris, M. Geographically Weighted Logistic Regression (GWLR) with Adaptive Gaussian Weighting Function in Human Development Index (HDI) in The Province of Central Java. J. Phys. Conf. Ser. 2021, 1776, 012048. [Google Scholar]
- Tian, X.; Zhao, F.; Shu, L.; Wang, M. Distribution characteristics and the influence factors of forest fires in China. For. Ecol. Manag. 2013, 310, 460–467. [Google Scholar] [CrossRef]
- Carmo, M.; Moreira, F.; Casimiro, P.; Vaz, P. Land use and topography influences on wildfire occurrence in northern Portugal. Landsc. Urban Plan. 2011, 100, 169–176. [Google Scholar] [CrossRef] [Green Version]
- Catry, F.X.; Rego, F.C.; Bação, F.L.; Moreira, F. Modeling and mapping wildfire ignition risk in Portugal. Int. J. Wildland Fire 2009, 18, 921–931. [Google Scholar] [CrossRef] [Green Version]
- Fawcett, T. An introduction to ROC analysis. Pattern Recognit. Lett. 2006, 27, 861–874. [Google Scholar] [CrossRef]
- Song, R.; Wang, T.; Han, J.; Xu, B.; Ma, D.; Zhang, M.; Li, S.; Zhuang, B.; Li, M.; Xie, M. Spatial and temporal variation of air pollutant emissions from forest fires in China. Atmos. Environ. 2022, 281, 119156. [Google Scholar] [CrossRef]
- Matthews, S.A.; Yang, T.C. Mapping the results of local statistics: Using geographically weighted regression. Demogr. Res. 2012, 26, 151–166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.Y.; Ding, Y.H. Climatic Characteristics of Rainy Seasons in China. Chin. J. Atmos. Sci. 2008, 32, 1–13. [Google Scholar]
- Wei, X.K.; Wang, G.J.; Chen, T.X.; Hagan, D.F.T.; Ullah, W. A Spatio-Temporal Analysis of Active Fires over China during 2003–2016. Remote Sens. 2020, 12, 1787. [Google Scholar] [CrossRef]
- Ma, W.; Feng, Z.; Cheng, Z.; Chen, S.; Wang, F. Identifying Forest Fire Driving Factors and Related Impacts in China Using Random Forest Algorithm. Forests 2020, 11, 507. [Google Scholar] [CrossRef]
- Mohammadi, F.; Bavaghar, M.P.; Shabanian, N. Forest Fire Risk Zone Modeling Using Logistic Regression and GIS: An Iranian Case Study. Small-Scale For. 2014, 13, 117–125. [Google Scholar] [CrossRef]
- Li, X.Y.; Liu, L.J.; Qi, S.Z. Forest fire hazard during 2000–2016 in Zhejiang province of the typical subtropical region, China. Nat. Hazard. 2018, 94, 975–977. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, L.; Xue, N.; Du, Z. Spatiotemporal Analysis of Active Fires in the Arctic Region during 2001–2019 and a Fire Risk Assessment Model. Fire 2021, 4, 57. [Google Scholar] [CrossRef]
- Chang, Y.; Zhu, Z.; Bu, R.; Chen, H.; Feng, Y.; Li, Y.; Hu, Y.; Wang, Z. Predicting fire occurrence patterns with logistic regression in Heilongjiang Province, China. Landscape Ecol. 2013, 28, 10. [Google Scholar] [CrossRef]
- Cui, S.; Song, Z.; Zhang, L.; Shen, Z.; Hough, R.; Zhang, Z.; An, L.; Fu, Q.; Zhao, Y.; Jia, Z. Spatial and temporal variations of open straw burning based on fire spots in northeast China from 2013 to 2017. Atmos. Environ. 2021, 244, 117962. [Google Scholar] [CrossRef]
- Li, Y.D.; Feng, Z.K.; Chen, S.L.; Zhao, Z.Y.; Wang, F.G. Application of the Artificial Neural Network and Support Vector Machines in Forest Fire Prediction in the Guangxi Autonomous Region, China. Discrete Dyn. Nat. Soc. 2020, 2020, 5612650. [Google Scholar] [CrossRef]
Data | Data Sources | Purpose |
---|---|---|
MODIS C6 | Fire Information for Resource Management System (https://firms.modaps.eosdis.nasa.gov, accessed on 12 November 2022) | Temporal and spatial distribution of active fire |
Temperature | National Qinghai-Tibet Plateau Science Data Center (https://data.tpdc.ac.cn, accessed on 12 November 2022) | Meteorological factor |
Precipitation | ||
Surface temperature | Resource and Environmental Science Data Center of Chinese Academy of Sciences (http://www.resdc.cn, accessed on 12 November 2022) | |
DEM | Resource and Environmental Science Data Center of Chinese Academy of Sciences (http://www.resdc.cn, accessed on 12 November 2022) | Terrain factor |
NDVI | Resource and Environmental Science Data Center of Chinese Academy of Sciences (http://www.resdc.cn, accessed on 12 November 2022) | Vegetation factor |
Road vector | Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences (http://www.radi.ac.cn/, accessed on 12 November 2022) | Human activity factor |
Population density | Resource and Environmental Science Data Center of Chinese Academy of Sciences (http://www.resdc.cn, accessed on 12 November 2022) | |
GDP |
Grouping | Probability of Occurrence | |||||
---|---|---|---|---|---|---|
Low-probability group | 1/18 | 2/18 | 3/18 | 4/18 | 5/18 | 6/18 |
Medium-probability group | 7/18 | 8/18 | 9/18 | 10/18 | 11/18 | 12/18 |
High-probability group | 13/18 | 14/18 | 15/18 | 16/18 | 17/18 | 18/18 |
Level | Strength Range (Times/a) | Corresponding Grid Quantity Range |
---|---|---|
Level 1 | 1 | 693,361 |
Level 2 | 2 | 100,633 |
Level 3 | 3–4 | 9709 |
Level 4 | 5–7 | 913 |
Level 5 | 8–9 | 384 |
Level 6 | 20–201 | 133 |
Level | Intensity Range (Times/a) | Proportion of Different Strengths (%) | ||||||
---|---|---|---|---|---|---|---|---|
China | Heilongjiang | Guangxi | Henan | Shandong | Fujian | Qinghai | ||
1 | 1 | 86.12 | 81.63 | 88.04 | 88.63 | 87.15 | 87.12 | 88.33 |
2 | 2 | 12.50 | 16.69 | 11.13 | 10.43 | 11.32 | 11.84 | 9.56 |
3 | 3~4 | 1.21 | 1.58 | 0.79 | 0.85 | 1.38 | 0.99 | 1.67 |
4 | 5~7 | 0.11 | 0.09 | 0.03 | 0.07 | 0.11 | 0.05 | 0.19 |
5 | 8~19 | 0.05 | 0.01 | 0.02 | 0.02 | 0.03 | 0.00 | 0.26 |
6 | 20~201 | 0.02 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 |
Model Variable | Collinearity Statistics | |
---|---|---|
Allowance | VIF | |
Temperature | 0.239 | 4.434 |
Precipitation | 0.243 | 4.162 |
Elevation | 0.296 | 3.224 |
Slope | 0.686 | 1.448 |
Normalized vegetation index | 0.371 | 2.692 |
Distance from road | 0.626 | 1.514 |
Variable | Coefficient | Standard Error | Minimum | Maximum |
---|---|---|---|---|
Constant | −5.352 | 7.627 | −18.235 | 16.940 |
Temperature x1 | 3.681 | 9.533 | −22.184 | 21.001 |
Precipitation x2 | −3.003 | 9.143 | −45.868 | 4.142 |
Elevation x3 | −3.180 | 21.402 | −89.001 | 7.852 |
Slope x4 | −3.243 | 4.711 | −16.463 | 10.128 |
Normalized vegetation index x5 | 5.514 | 2.667 | −0.148 | 11.466 |
Distance from road x6 | −1.558 | 3.389 | −9.620 | 4.741 |
Fire Risk Zoning | Fire Risk Probability Value | Active Fire Point Proportion (%) | Total Area Ratio (%) |
---|---|---|---|
Extremely high fire danger area | 0 < p < 0.2 | 15.60 | 5.19 |
High fire danger area | 0.2 < p < 0.4 | 62.70 | 27.68 |
Middle fire danger area | 04 < p < 0.6 | 15.26 | 11.63 |
Low fire danger area | 0.6 < p < 0.8 | 4.28 | 8.59 |
Extremely low fire danger area | 0.8 < p < 1 | 2.16 | 46.91 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, J.; Wu, X.; Zhou, L.; Wei, S. Spatial and Temporal Distribution Characteristics of Active Fires in China Using Remotely Sensed Data. Fire 2022, 5, 200. https://doi.org/10.3390/fire5060200
Pan J, Wu X, Zhou L, Wei S. Spatial and Temporal Distribution Characteristics of Active Fires in China Using Remotely Sensed Data. Fire. 2022; 5(6):200. https://doi.org/10.3390/fire5060200
Chicago/Turabian StylePan, Jinghu, Xueting Wu, Lu Zhou, and Shimei Wei. 2022. "Spatial and Temporal Distribution Characteristics of Active Fires in China Using Remotely Sensed Data" Fire 5, no. 6: 200. https://doi.org/10.3390/fire5060200
APA StylePan, J., Wu, X., Zhou, L., & Wei, S. (2022). Spatial and Temporal Distribution Characteristics of Active Fires in China Using Remotely Sensed Data. Fire, 5(6), 200. https://doi.org/10.3390/fire5060200