How Does Fire Suppression Alter the Wildfire Regime? A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Screening Strategy
- (1)
- Intervention: There are four phases of wildland fire management, including prevention, preparedness, response, and restoration [23]. We rigorously included studies that examined the impact of active fire suppression during the response phase in our analysis. Active fire suppression has been the dominant wildfire management practice worldwide since the early 20th century [53]. For the purpose of our study, we excluded research that examined the effects of measures during the prevention, preparedness, or restoration phases of wildfire management, such as education or regulation of fire prevention [54], prescribed burning, mechanical fuel treatments, silvicultural treatments [55,56,57], hazard-resistant construction, and so on. These studies were excluded because they do not address the relative impacts of fire suppression on wildfire regimes, and other review studies have been devoted to these topics [34,49,58].
- (2)
- Outcome: Specific wildfire characteristics representing wildfire regimes, including:
- Fire number: the total number of wildfires within a time period.
- Fire frequency: the inverse of the return period.
- Fire size: area of individual burn scars from each wildfire event.
- Fire intensity: the rate of energy released by the fire.
- Burned area: total surface area burned within regions per month or period.
- Extremely large wildfires (ELF): number, size, or burned area of extremely large wildfires.
- (3)
- Assessment methods: Two types of quantitative research were included. Firstly, empirical studies providing insight into the effects of fire suppression on fire regimes based on historical fire regime data and fire suppression information were included. Furthermore, simulation studies using process-based wildfire behavior or risk simulation modeling to investigate changes in fire regimes under different suppression scenarios were also included.
2.3. Data Extraction
2.4. Study Assessment
3. Results
3.1. Study Setting
3.2. Study Design
3.3. Study Findings
4. Discussion
4.1. Where Are the Study Areas in the Existing Research?
4.2. How Did Existing Research Quantify the Relationship between Fire Suppression and Fire Regimes?
4.3. What Are the Responses in the Literature to the Research Question? Why Are the Conclusions Opposed?
4.4. Limitations and Future Work
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mietkiewicz, N.; Balch, J.K.; Schoennagel, T.; Leyk, S.; St. Denis, L.A.; Bradley, B.A. In the line of fire: Consequences of human-ignited wildfires to homes in the US (1992–2015). Fire 2020, 3, 50. [Google Scholar] [CrossRef]
- Calkin, D.E.; Cohen, J.D.; Finney, M.A.; Thompson, M.P. How risk management can prevent future wildfire disasters in the wildland-urban interface. Proc. Natl. Acad. Sci. USA 2014, 111, 746–751. [Google Scholar] [CrossRef] [PubMed]
- Knorr, W.; Arneth, A.; Jiang, L. Demographic controls of future global fire risk. Nat. Clim. Change 2016, 6, 781–785. [Google Scholar] [CrossRef]
- Moritz, M.A.; Batllori, E.; Bradstock, R.A.; Gill, A.M.; Handmer, J.; Hessburg, P.F.; Leonard, J.; McCaffrey, S.; Odion, D.C.; Schoennagel, T.; et al. Learning to coexist with wildfire. Nature 2014, 515, 58–66. [Google Scholar] [CrossRef]
- Xu, R.; Ye, T.; Yue, X.; Yang, Z.; Yu, W.; Zhang, Y.; Bell, M.L.; Morawska, L.; Yu, P.; Zhang, Y. Global population exposure to landscape fire air pollution from 2000 to 2019. Nature 2023, 621, 521–529. [Google Scholar] [CrossRef]
- Wotawa, G.; Trainer, M. The influence of Canadian forest fires on pollutant concentrations in the United States. Science 2000, 288, 324–328. [Google Scholar] [CrossRef]
- Smith, H.G.; Sheridan, G.J.; Lane, P.N.; Nyman, P.; Haydon, S. Wildfire effects on water quality in forest catchments: A review with implications for water supply. J. Hydrol. 2011, 396, 170–192. [Google Scholar] [CrossRef]
- Kukavskaya, E.A.A.; Shvetsov, E.G.G.; Buryak, L.V.V.; Tretyakov, P.D.D.; Groisman, P.Y. Increasing Fuel Loads, Fire Hazard, and Carbon Emissions from Fires in Central Siberia. Fire 2023, 6, 63. [Google Scholar] [CrossRef]
- Zheng, B.; Ciais, P.; Chevallier, F.; Yang, H.; Canadell, J.G.; Chen, Y.; van der Velde, I.R.; Aben, I.; Chuvieco, E.; Davis, S.J.; et al. Record-high CO2 emissions from boreal fires in 2021. Science 2023, 379, 912–917. [Google Scholar] [CrossRef]
- Graham, L.L.B.; Applegate, G.B.; Thomas, A.; Ryan, K.C.; Saharjo, B.H.; Cochrane, M.A. A Field Study of Tropical Peat Fire Behaviour and Associated Carbon Emissions. Fire 2022, 5, 62. [Google Scholar] [CrossRef]
- Wu, H.; Fu, C.; Zhang, L.; Wu, H. Elevated Wildfire and Ecosystem Carbon Loss Risks Due to Plant Hydraulic Stress Functions: A Global Modeling Perspective. Fire 2022, 5, 187. [Google Scholar] [CrossRef]
- Westerling, A.L.; Hidalgo, H.G.; Cayan, D.R.; Swetnam, T.W. Warming and earlier spring increase western US forest wildfire activity. Science 2006, 313, 940–943. [Google Scholar] [CrossRef] [PubMed]
- Jolly, W.M.; Cochrane, M.A.; Freeborn, P.H.; Holden, Z.A.; Brown, T.J.; Williamson, G.J.; Bowman, D. Climate-induced variations in global wildfire danger from 1979 to 2013. Nat. Commun. 2015, 6, 7537. [Google Scholar] [CrossRef] [PubMed]
- Flannigan, M.D.; Krawchuk, M.A.; de Groot, W.J.; Wotton, B.M.; Gowman, L.M. Implications of changing climate for global wildland fire. Int. J. Wildland Fire 2009, 18, 483–507. [Google Scholar] [CrossRef]
- Abatzoglou, J.T.; Williams, A.P. Impact of anthropogenic climate change on wildfire across western US forests. Proc. Natl. Acad. Sci. USA 2016, 113, 11770–11775. [Google Scholar] [CrossRef] [PubMed]
- Keeley, J.E.; Fotheringham, C.J.; Morais, M. Reexamining fire suppression impacts on brushland fire regimes. Science 1999, 284, 1829–1832. [Google Scholar] [CrossRef]
- Taylor, A.H.; Trouet, V.; Skinner, C.N.; Stephens, S. Socioecological transitions trigger fire regime shifts and modulate fire-climate interactions in the Sierra Nevada, USA, 1600-2015 CE. Proc. Natl. Acad. Sci. USA 2016, 113, 13684–13689. [Google Scholar] [CrossRef] [PubMed]
- Montiel-Molina, C.; Vilar, L.; Romao-Sequeira, C.; Karlsson, O.; Galiana-Martin, L.; De Lomana, G.M.G.; Palacios-Estremera, M.T. Have Historical Land Use/Land Cover Changes Triggered a Fire Regime Shift in Central Spain? Fire 2019, 2, 44. [Google Scholar] [CrossRef]
- Andela, N.; Morton, D.C.; Giglio, L.; Chen, Y.; van der Werf, G.R.; Kasibhatla, P.S.; DeFries, R.S.; Collatz, G.; Hantson, S.; Kloster, S. A human-driven decline in global burned area. Science 2017, 356, 1356–1362. [Google Scholar] [CrossRef]
- Romano, N.; Ursino, N. Forest Fire Regime in a Mediterranean Ecosystem: Unraveling the Mutual Interrelations between Rainfall Seasonality, Soil Moisture, Drought Persistence, and Biomass Dynamics. Fire 2020, 3, 49. [Google Scholar] [CrossRef]
- Whitlock, C.; Shafer, S.L.; Marlon, J. The role of climate and vegetation change in shaping past and future fire regimes in the northwestern US and the implications for ecosystem management. For. Ecol. Manag. 2003, 178, 5–21. [Google Scholar] [CrossRef]
- Martell, D.L. A Review of Recent Forest and Wildland Fire Management Decision Support Systems Research. Curr. For. Rep. 2015, 1, 128–137. [Google Scholar] [CrossRef]
- Tymstra, C.; Stocks, B.J.; Cai, X.; Flannigan, M.D. Wildfire management in Canada: Review, challenges and opportunities. Prog. Disaster Sci. 2020, 5, 100045. [Google Scholar] [CrossRef]
- Thompson, M.P.; Calkin, D.E. Uncertainty and risk in wildland fire management: A review. J. Environ. Manag. 2011, 92, 1895–1909. [Google Scholar] [CrossRef]
- Bowman, D.; Balch, J.; Artaxo, P.; Bond, W.J.; Cochrane, M.A.; D’Antonio, C.M.; DeFries, R.; Johnston, F.H.; Keeley, J.E.; Krawchuk, M.A.; et al. The human dimension of fire regimes on Earth. J. Biogeogr. 2011, 38, 2223–2236. [Google Scholar] [CrossRef] [PubMed]
- Murphy, B.P.; Bowman, D.M.J.S. What controls the distribution of tropical forest and savanna? Ecol. Lett. 2012, 15, 748–758. [Google Scholar] [CrossRef] [PubMed]
- Walker, X.J.; Rogers, B.M.; Veraverbeke, S.; Johnstone, J.F.; Baltzer, J.L.; Barrett, K.; Bourgeau-Chavez, L.; Day, N.J.; de Groot, W.J.; Dieleman, C.M.; et al. Fuel availability not fire weather controls boreal wildfire severity and carbon emissions. Nat. Clim. Change 2020, 10, 1130–1136. [Google Scholar] [CrossRef]
- Pechony, O.; Shindell, D.T. Driving forces of global wildfires over the past millennium and the forthcoming century. Proc. Natl. Acad. Sci. USA 2010, 107, 19167–19170. [Google Scholar] [CrossRef]
- Ramon Arevalo, J.; Naranjo-Cigala, A. Wildfire Impact and the “Fire Paradox” in a Natural and Endemic Pine Forest Stand and Shrubland. Fire 2018, 1, 44. [Google Scholar] [CrossRef]
- Fernandes, P. FIRE PARADOX: A European initiative on Integrated Wildland Fire Management. In Proceedings of the Fire Environment and Society: From Research into Practice, The International Bushfire Research Conference, Incorporating the 15th AFAC Conference’, Adelaide, SA, Australia, 1–3 September 2008. [Google Scholar]
- Silva, J.; Rego, F.; Fernandes, P.; Rigolot, E. Towards Integrated Fire Management—Outcomes of the European Project Fire Paradox; European Forest Institute: Joensuu, Finland, 2010. [Google Scholar]
- Calkin, D.E.; Thompson, M.P.; Finney, M.A. Negative consequences of positive feedbacks in US wildfire management. For. Ecosyst. 2015, 2, 9. [Google Scholar] [CrossRef]
- Arno, S.F.; Brown, J.K. Overcoming the Paradox in Managing Wildland Fire; National Emergency Training Center: Emmitsburg, MD, USA, 1991.
- Hunter, M.E.; Robles, M.D. Tamm review: The effects of prescribed fire on wildfire regimes and impacts: A framework for comparison. For. Ecol. Manag. 2020, 475, 118435. [Google Scholar] [CrossRef]
- Parisien, M.-A.; Barber, Q.E.; Hirsch, K.G.; Stockdale, C.A.; Erni, S.; Wang, X.; Arseneault, D.; Parks, S.A. Fire deficit increases wildfire risk for many communities in the Canadian boreal forest. Nat. Commun. 2020, 11, 2121. [Google Scholar] [CrossRef]
- Alvarado, S.T.; Freire Silva, T.S.; Archibald, S. Management impacts on fire occurrence: A comparison of fire regimes of African and South American tropical savannas in different protected areas. J. Environ. Manag. 2018, 218, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.; He, H.S.; Bishop, I.; Hu, Y.; Bu, R.; Xu, C.; Li, X. Long-term forest landscape responses to fire exclusion in the Great Xing’an Mountains, China. Int. J. Wildland Fire 2007, 16, 34–44. [Google Scholar] [CrossRef]
- Parks, S.A.; Holsinger, L.M.; Miller, C.; Nelson, C.R. Wildland fire as a self-regulating mechanism: The role of previous burns and weather in limiting fire progression. Ecol. Appl. 2015, 25, 1478–1492. [Google Scholar] [CrossRef] [PubMed]
- Loepfe, L.; Martinez-Vilalta, J.; Pinol, J. Management alternatives to offset climate change effects on Mediterranean fire regimes in NE Spain. Clim. Change 2012, 115, 693–707. [Google Scholar] [CrossRef]
- Brotons, L.; Aquilue, N.; de Caceres, M.; Fortin, M.-J.; Fall, A. How Fire History, Fire Suppression Practices and Climate Change Affect Wildfire Regimes in Mediterranean Landscapes. PLoS ONE 2013, 8, 62392. [Google Scholar] [CrossRef] [PubMed]
- Hurteau, M.D.; Liang, S.; Westerling, A.L.; Wiedinmyer, C. Vegetation-fire feedback reduces projected area burned under climate change. Sci. Rep. 2019, 9, 2838. [Google Scholar] [CrossRef] [PubMed]
- Harvey, B.J.; Donato, D.C.; Turner, M.G. Burn me twice, shame on who? Interactions between successive forest fires across a temperate mountain region. Ecology 2016, 97, 2272–2282. [Google Scholar] [CrossRef] [PubMed]
- Mitsopoulos, I.; Mallinis, G. A data-driven approach to assess large fire size generation in Greece. Nat. Hazards 2017, 88, 1591–1607. [Google Scholar] [CrossRef]
- Bowman, D.M.J.S.; Balch, J.K.; Artaxo, P.; Bond, W.J.; Carlson, J.M.; Cochrane, M.A.; D’Antonio, C.M.; DeFries, R.S.; Doyle, J.C.; Harrison, S.P.; et al. Fire in the Earth System. Science 2009, 324, 481–484. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Group, P. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. Ann. Intern. Med. 2009, 151, 264–269. [Google Scholar] [CrossRef]
- Lortie, C.J. Formalized synthesis opportunities for ecology: Systematic reviews and meta-analyses. Oikos 2014, 123, 897–902. [Google Scholar] [CrossRef]
- Fule, P.Z.; Crouse, J.E.; Roccaforte, J.P.; Kalies, E.L. Do thinning and/or burning treatments in western USA ponderosa or Jeffrey pine-dominated forests help restore natural fire behavior? For. Ecol. Manag. 2012, 269, 68–81. [Google Scholar] [CrossRef]
- Griffiths, A.D.; Brook, B.W. Effect of fire on small mammals: A systematic review. Int. J. Wildland Fire 2014, 23, 1034–1043. [Google Scholar] [CrossRef]
- Kalies, E.L.; Kent, L.L.Y. Tamm Review: Are fuel treatments effective at achieving ecological and social objectives? A systematic review. For. Ecol. Manag. 2016, 375, 84–95. [Google Scholar] [CrossRef]
- Peppin, D.; Fule, P.Z.; Sieg, C.H.; Beyers, J.L.; Hunter, M.E. Post-wildfire seeding in forests of the western United States: An evidence-based review. For. Ecol. Manag. 2010, 260, 573–586. [Google Scholar] [CrossRef]
- Wright, R.W.; Brand, R.A.; Dunn, W.; Spindler, K.P. How to write a systematic review. Clin. Orthop. Relat. Res. 2007, 455, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ-Br. Med. J. 2021, 372, n71. [Google Scholar] [CrossRef]
- Tedim, F.; Leone, V.; McGee, T.K. Extreme Wildfire Events and Disasters: Root Causes and New Management Strategies; Elsevier: San Diego, CA, USA, 2019. [Google Scholar]
- Hesseln, H. Wildland Fire Prevention: A Review. Curr. For. Rep. 2018, 4, 178–190. [Google Scholar] [CrossRef]
- Valdecantos, A.; Baeza, M.J.; Vallejo, V.R. Vegetation Management for Promoting Ecosystem Resilience in Fire-Prone Mediterranean Shrublands. Restor. Ecol. 2009, 17, 414–421. [Google Scholar] [CrossRef]
- Moya, D.; Heras, J.D.l.; Lopez-Serrano, F.R.; Leone, V. Optimal intensity and age of management in young Aleppo pine stands for post-fire resilience. For. Ecol. Manag. 2008, 255, 3270–3280. [Google Scholar] [CrossRef]
- Stephens, S.L. Evaluation of the effects of silvicultural and fuels treatments on potential fire behaviour in Sierra Nevada mixed-conifer forests. For. Ecol. Manag. 1998, 105, 21–35. [Google Scholar] [CrossRef]
- Ganteaume, A.; Camia, A.; Jappiot, M.; San-Miguel-Ayanz, J.; Long-Fournel, M.; Lampin, C. A Review of the Main Driving Factors of Forest Fire Ignition Over Europe. Environ. Manag. 2013, 51, 651–662. [Google Scholar] [CrossRef]
- Archibald, S.; Lehmann, C.E.R.; Gomez-Dans, J.L.; Bradstock, R.A. Defining pyromes and global syndromes of fire regimes. Proc. Natl. Acad. Sci. USA 2013, 110, 6442–6447. [Google Scholar] [CrossRef]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Koppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef]
- Olson, D.M.; Dinerstein, E.; Wikramanayake, E.D.; Burgess, N.D.; Powell, G.V.N.; Underwood, E.C.; D’Amico, J.A.; Itoua, I.; Strand, H.E.; Morrison, J.C.; et al. Terrestrial ecoregions of the worlds: A new map of life on Earth. Bioscience 2001, 51, 933–938. [Google Scholar] [CrossRef]
- Majid, U. Research Fundamentals: Study Design, Population, and Sample Size. Undergrad. Res. Nat. Clin. Sci. Technol. URNCST J. 2018, 2, 1–12. [Google Scholar] [CrossRef]
- Ranganathan, P.; Aggarwal, R. Study designs: Part 1—An overview and classification. Perspect. Clin. Res. 2018, 9, 184–186. [Google Scholar] [CrossRef]
- Calef, M.P.; Varvak, A.; McGuire, A.D.; Chapin, F.S., III; Reinhold, K.B. Recent Changes in Annual Area Burned in Interior Alaska: The Impact of Fire Management. Earth Interact. 2015, 19, 1–17. [Google Scholar] [CrossRef]
- Chapin, F.S.; Rupp, T.S.; Starfield, A.M.; DeWilde, L.O.; Zavaleta, E.S.; Fresco, N.; Henkelman, J.; McGuire, A.D. Planning for resilience: Modeling change in human-fire interactions in the Alaskan boreal forest. Front. Ecol. Environ. 2003, 1, 255–261. [Google Scholar] [CrossRef]
- Cumming, S.G. Effective fire suppression in boreal forests. Can. J. For. Res. 2005, 35, 772–786. [Google Scholar] [CrossRef]
- Curt, T.; Frejaville, T. Wildfire Policy in Mediterranean France: How Far is it Efficient and Sustainable? Risk Anal. 2018, 38, 472–488. [Google Scholar] [CrossRef] [PubMed]
- DeWilde, L.O.; Chapin, F.S., III. Human impacts on the fire regime of interior Alaska: Interactions among fuels, ignition sources, and fire suppression. Ecosystems 2006, 9, 1342–1353. [Google Scholar] [CrossRef]
- Drury, S.A.; Grissom, P.J. Fire history and fire management implications in the Yukon Flats National Wildlife Refuge, interior Alaska. For. Ecol. Manag. 2008, 256, 304–312. [Google Scholar] [CrossRef]
- Evin, G.; Curt, T.; Eckert, N. Has fire policy decreased the return period of the largest wildfire events in France? A Bayesian assessment based on extreme value theory. Nat. Hazards Earth Syst. Sci. 2018, 18, 2641–2651. [Google Scholar] [CrossRef]
- Fernandes, P.M.; Pacheco, A.P.; Almeida, R.; Claro, J. The role of fire-suppression force in limiting the spread of extremely large forest fires in Portugal. Eur. J. For. Res. 2016, 135, 253–262. [Google Scholar] [CrossRef]
- Frejaville, T.; Curt, T. Seasonal changes in the human alteration of fire regimes beyond the climate forcing. Environ. Res. Lett. 2017, 12, 035006. [Google Scholar] [CrossRef]
- Hanan, E.J.; Ren, J.; Tague, C.L.; Kolden, C.A.; Abatzoglou, J.T.; Bart, R.R.; Kennedy, M.C.; Liu, M.; Adam, J.C. How climate change and fire exclusion drive wildfire regimes at actionable scales. Environ. Res. Lett. 2021, 16, 024051. [Google Scholar] [CrossRef]
- Hansen, W.D.; Abendroth, D.; Rammer, W.; Seidl, R.; Turner, M.G. Can wildland fire management alter 21st-century subalpine fire and forests in Grand Teton National Park, Wyoming, USA? Ecol. Appl. 2020, 30, e02030. [Google Scholar] [CrossRef]
- He, H.; Chang, Y.; Liu, Z.H.; Xiong, Z.P.; Zhao, L.J. Evaluations on the Consequences of Fire Suppression and the Ecological Effects of Fuel Treatment Scenarios in a Boreal Forest of the Great Xing’an Mountains, China. Forests 2023, 14, 85. [Google Scholar] [CrossRef]
- Luciano Batista, E.K.; Russell-Smith, J.; Franca, H.; Cortes Figueira, J.E. An evaluation of contemporary savanna fire regimes in the Canastra National Park, Brazil: Outcomes of fire suppression policies. J. Environ. Manag. 2018, 205, 40–49. [Google Scholar] [CrossRef] [PubMed]
- Martell, D.L.; Sun, H. The impact of fire suppression, vegetation, and weather on the area burned by lightning-caused forest fires in Ontario. Can. J. For. Res. Rev. Can. Rech. For. 2008, 38, 1547–1563. [Google Scholar] [CrossRef]
- Minnich, R.A. Fire Mosaics in Southern-California and Northern Baja California. Science 1983, 219, 1287–1294. [Google Scholar] [CrossRef]
- Moritz, M.A. Analyzing extreme disturbance events: Fire in Los Padres National Forest. Ecol. Appl. 1997, 7, 1252–1262. [Google Scholar] [CrossRef]
- Moritz, M.A. Spatiotemporal analysis of controls on shrubland fire regimes: Age dependency and fire hazard. Ecology 2003, 84, 351–361. [Google Scholar] [CrossRef]
- Parks, S.A.; Miller, C.; Parisien, M.A.; Holsinger, L.M.; Dobrowski, S.Z.; Abatzoglou, J. Wildland fire deficit and surplus in the western United States, 1984–2012. Ecosphere 2015, 6, 1–13. [Google Scholar] [CrossRef]
- Pinol, J.; Beven, K.; Viegas, D. Modelling the effect of fire-exclusion and prescribed fire on wildfire size in Mediterranean ecosystems. Ecol. Model. 2005, 183, 397–409. [Google Scholar] [CrossRef]
- Pinol, J.; Castellnou, M.; Beven, K.J. Conditioning uncertainty in ecological models: Assessing the impact of fire management strategies. Ecol. Model. 2007, 207, 34–44. [Google Scholar] [CrossRef]
- Podur, J.J.; Martell, D.L. A simulation model of the growth and suppression of large forest fires in Ontario. Int. J. Wildland Fire 2007, 16, 285–294. [Google Scholar] [CrossRef]
- Reimer, J.; Thompson, D.K.; Povak, N. Measuring Initial Attack Suppression Effectiveness through Burn Probability. Fire 2019, 2, 60. [Google Scholar] [CrossRef]
- Riley, K.L.; Thompson, M.P.; Scott, J.H.; Gilbertson-Day, J.W. A Model-Based Framework to Evaluate Alternative Wildfire Suppression Strategies. Resources 2018, 7, 4. [Google Scholar] [CrossRef]
- Roos, C.I.; Rittenour, T.M.; Swetnam, T.W.; Loehman, R.A.; Hollenback, K.L.; Liebmann, M.J.; Rosenstein, D.D. Fire Suppression Impacts on Fuels and Fire Intensity in the Western US: Insights from Archaeological Luminescence Dating in Northern New Mexico. Fire 2020, 3, 32. [Google Scholar] [CrossRef]
- Ruffault, J.; Mouillot, F. How a new fire-suppression policy can abruptly reshape the fire-weather relationship. Ecosphere 2015, 6, 1–19. [Google Scholar] [CrossRef]
- Scheller, R.; Kretchun, A.; Hawbaker, T.J.; Henne, P.D. A landscape model of variable social-ecological fire regimes. Ecol. Model. 2019, 401, 85–93. [Google Scholar] [CrossRef]
- Starrs, C.F.; Butsic, V.; Stephens, C.; Stewart, W. The impact of land ownership, firefighting, and reserve status on fire probability in California. Environ. Res. Lett. 2018, 13, 034025. [Google Scholar] [CrossRef]
- Tian, X.R.; Cui, W.B.; Shu, L.F. Evaluating fire management effectiveness with a burn probability model in Daxing’anling, China. Can. J. For. Res. 2020, 50, 670–679. [Google Scholar] [CrossRef]
- Urbieta, I.R.; Franquesa, M.; Viedma, O.; Moreno, J.M. Fire activity and burned forest lands decreased during the last three decades in Spain. Ann. For. Sci. 2019, 76, 90. [Google Scholar] [CrossRef]
- Wang, X.; He, H.S.; Li, X. The long-term effects of fire suppression and reforestation on a forest landscape in Northeastern China after a catastrophic wildfire. Landsc. Urban Plan. 2007, 79, 84–95. [Google Scholar] [CrossRef]
- Levin, K.A. Study design I. Evid. Based Dent. 2005, 6, 78–79. [Google Scholar] [CrossRef] [PubMed]
- Steelman, T.A.; Burke, C.A. Is wildfire policy in the United States sustainable? J. For. 2007, 105, 67–72. [Google Scholar] [CrossRef]
- Littell, J.S.; McKenzie, D.; Peterson, D.L.; Westerling, A.L. Climate and wildfire area burned in western U. S. ecoprovinces, 1916–2003. Ecol. Appl. 2009, 19, 1003–1021. [Google Scholar] [CrossRef]
- Moritz, M.A.; Parisien, M.A.; Batllori, E.; Krawchuk, M.A.; Van Dorn, J.; Ganz, D.J.; Hayhoe, K. Climate change and disruptions to global fire activity. Ecosphere 2012, 3, 1–22. [Google Scholar] [CrossRef]
- Archibald, S.; Roy, D.P.; van Wilgen, B.W.; Scholes, R.J. What limits fire? An examination of drivers of burnt area in Southern Africa. Glob. Change Biol. 2009, 15, 613–630. [Google Scholar] [CrossRef]
- Krawchuk, M.A.; Moritz, M.A.; Parisien, M.A.; Van Dorn, J.; Hayhoe, K. Global Pyrogeography: The Current and Future Distribution of Wildfire. PLoS ONE 2009, 4, 0005102. [Google Scholar] [CrossRef] [PubMed]
- Holsinger, L.; Parks, S.A.; Miller, C. Weather, fuels, and topography impede wildland fire spread in western US landscapes. For. Ecol. Manag. 2016, 380, 59–69. [Google Scholar] [CrossRef]
- Moreira, F.; Viedma, O.; Arianoutsou, M.; Curt, T.; Koutsias, N.; Rigolot, E.; Barbati, A.; Corona, P.; Vaz, P.; Xanthopoulos, G.; et al. Landscape—Wildfire interactions in southern Europe: Implications for landscape management. J. Environ. Manag. 2011, 92, 2389–2402. [Google Scholar] [CrossRef]
- Balch, J.K.; Bradley, B.A.; Abatzoglou, J.T.; Nagy, R.C.; Fusco, E.J.; Mahood, A.L. Human-started wildfires expand the fire niche across the United States. Proc. Natl. Acad. Sci. USA 2017, 114, 2946–2951. [Google Scholar] [CrossRef]
- Aldersley, A.; Murray, S.J.; Cornell, S.E. Global and regional analysis of climate and human drivers of wildfire. Sci. Total Environ. 2011, 409, 3472–3481. [Google Scholar] [CrossRef]
- Miyanishi, K.; Johnson, E.A. Comment—A re-examination of the effects of fire suppression in the boreal forest. Can. J. For. Res. 2001, 31, 1462–1466. [Google Scholar] [CrossRef]
- Mitsopoulos, I.; Mallinis, G.; Zibtsev, S.; Yavuz, M.; Saglam, B.; Kucuk, O.; Bogomolov, V.; Borsuk, A.; Zaimes, G. An integrated approach for mapping fire suppression difficulty in three different ecosystems of Eastern Europe. J. Spat. Sci. 2017, 62, 139–155. [Google Scholar] [CrossRef]
- Krawchuk, M.A.; Moritz, M.A. Constraints on global fire activity vary across a resource gradient. Ecology 2011, 92, 121–132. [Google Scholar] [CrossRef] [PubMed]
- Collins, R.D.; de Neufville, R.; Claro, J.; Oliveira, T.; Pacheco, A.P. Forest fire management to avoid unintended consequences: A case study of Portugal using system dynamics. J. Environ. Manag. 2013, 130, 1–9. [Google Scholar] [CrossRef] [PubMed]
- de Groot, W.J.; Flannigan, M.D.; Cantin, A.S. Climate change impacts on future boreal fire regimes. For. Ecol. Manag. 2013, 294, 35–44. [Google Scholar] [CrossRef]
- Taylor, A.H.; Skinner, C.N. Spatial patterns and controls on historical fire regimes and forest structure in the Klamath Mountains. Ecol. Appl. 2003, 13, 704–719. [Google Scholar] [CrossRef]
- Baker, W.L. Spatially Heterogeneous Multiscale Response of Landscapes to Fire Suppression. Oikos 1993, 66, 66–71. [Google Scholar] [CrossRef]
- Ryan, K.C. Dynamic interactions between forest structure and fire behavior in boreal ecosystems. Silva Fenn. 2002, 36, 13–39. [Google Scholar] [CrossRef]
- Lamounier Moura, A.; Negreiros, D.; Fernandes, G.W. Effects of Fire Frequency Regimes on Flammability and Leaf Economics of Non-Graminoid Vegetation. Fire 2023, 6, 265. [Google Scholar] [CrossRef]
- Donovan, V.M.; Twidwell, D.; Uden, D.R.; Tadesse, T.; Wardlow, B.D.; Bielski, C.H.; Jones, M.O.; Allred, B.W.; Naugle, D.E.; Allen, C.R. Resilience to Large, “Catastrophic” Wildfires in North America’s Grassland Biome. Earths Future 2020, 8, e2020EF001487. [Google Scholar] [CrossRef]
- Frelich, L.E.; Reich, P.B. Neighborhood Effects, Disturbance, and Succession in Forests of the Western Great-Lakes Region. Ecoscience 1995, 2, 148–158. [Google Scholar] [CrossRef]
- Agee, J.K.; Bahro, B.; Finney, M.A.; Omi, P.N.; Sapsis, D.B.; Skinner, C.N.; van Wagtendonk, J.W.; Weatherspoon, C.P. The use of shaded fuelbreaks in landscape fire management. For. Ecol. Manag. 2000, 127, 55–66. [Google Scholar] [CrossRef]
- Meyer, C.L.; Sisk, T.D.; Covington, W.W. Microclimatic changes induced by ecological restoration of ponderosa pine forests in northern Arizona. Restor. Ecol. 2001, 9, 443–452. [Google Scholar] [CrossRef]
- Schoennagel, T.; Veblen, T.T.; Romme, W.H. The interaction of fire, fuels, and climate across rocky mountain forests. Bioscience 2004, 54, 661–676. [Google Scholar] [CrossRef]
- Mouillot, F.; Ratte, J.P.; Joffre, R.; Moreno, J.M.; Rambal, S. Some determinants of the spatio-temporal fire cycle in a mediterranean landscape (Corsica, France). Landsc. Ecol. 2003, 18, 665–674. [Google Scholar] [CrossRef]
- Pausas, J.G.; Fernandez-Munoz, S. Fire regime changes in the Western Mediterranean Basin: From fuel-limited to drought-driven fire regime. Clim. Change 2012, 110, 215–226. [Google Scholar] [CrossRef]
- Cui, W.; Perera, A.H. What do we know about forest fire size distribution, and why is this knowledge useful for forest management? Int. J. Wildland Fire 2008, 17, 234–244. [Google Scholar] [CrossRef]
- Boer, M.M.; Sadler, R.J.; Wittkuhn, R.S.; McCaw, L.; Grierson, P.F. Long-term impacts of prescribed burning on regional extent and incidence of wildfires—Evidence from 50 years of active fire management in SW Australian forests. For. Ecol. Manag. 2009, 259, 132–142. [Google Scholar] [CrossRef]
- Griffiths, A.D.; Garnett, S.T.; Brook, B.W. Fire frequency matters more than fire size: Testing the pyrodiversity–biodiversity paradigm for at-risk small mammals in an Australian tropical savanna. Biol. Conserv. 2015, 186, 337–346. [Google Scholar] [CrossRef]
- Furlaud, J.M.; Williamson, G.J.; Bowman, D.M.J.S. Mechanical treatments and prescribed burning can reintroduce low-severity fire in southern Australian temperate sclerophyll forests. J. Environ. Manag. 2023, 344, 118301. [Google Scholar] [CrossRef]
- Collins, L.; Trouvé, R.; Baker, P.J.; Cirulus, B.; Nitschke, C.R.; Nolan, R.H.; Smith, L.; Penman, T.D. Fuel reduction burning reduces wildfire severity during extreme fire events in south-eastern Australia. J. Environ. Manag. 2023, 343, 118171. [Google Scholar] [CrossRef] [PubMed]
- Fisher, R.; Lewis, B.; Price, O.; Pickford, A. Barriers to fire spread in northern Australian tropical savannas, deriving fire edge metrics from long term high-frequency fire histories. J. Environ. Manag. 2022, 301, 113864. [Google Scholar] [CrossRef] [PubMed]
- Addington, R.N.; Hudson, S.J.; Hiers, J.K.; Hurteau, M.D.; Hutcherson, T.F.; Matusick, G.; Parker, J.M. Relationships among wildfire, prescribed fire, and drought in a fire-prone landscape in the south-eastern United States. Int. J. Wildland Fire 2015, 24, 778–783. [Google Scholar] [CrossRef]
- Ryan, K.C.; Knapp, E.E.; Varner, J.M. Prescribed fire in North American forests and woodlands: History, current practice, and challenges. Front. Ecol. Environ. 2013, 11, E15–E24. [Google Scholar] [CrossRef]
- Andela, N.; van der Werf, G.R. Recent trends in African fires driven by cropland expansion and El Nino to La Nina transition. Nat. Clim. Change 2014, 4, 791–795. [Google Scholar] [CrossRef]
- Parks, S.A.; Parisien, M.-A.; Miller, C.; Holsinger, L.M.; Baggett, L.S. Fine-scale spatial climate variation and drought mediate the likelihood of reburning. Ecol. Appl. 2018, 28, 573–586. [Google Scholar] [CrossRef] [PubMed]
ID | Authors | Source | Location | Main Biome | Temporal Range (yr) | Spatial Range (103 km2) | Outcome |
---|---|---|---|---|---|---|---|
1 | Alvarado et al., 2018 [36] | Journal of Environmental Management | Ibity and Itremo Protected Area, Madagascar Serra do Cipo National Park, Brazil | TSMBF TSGSS | 25–50 | 0–1 | Fire suppression resulted in a change in the fire size distribution, longer fire return periods, and a seasonal shift in burning toward later fires. |
2 | Brotons et al., 2013 [40] | PLoS ONE | Catalonia, Spain | MFWS | 25–50 | 10–50 | Active fire suppression had a large potential for compensation of the effects of climate change. |
3 | Calef, Varvak, McGuire, Chapin, and Reinhold, 2015 [64] | Earth Interactions | Interior Alaska, USA | BF | 25–50 | 10–50 | Fire suppression reduced the area burned over the past several decades and raised the burning rate of the burned area. |
4 | Chang et al., 2007 [37] | International Journal of Wildland Fire | Great Xing’an Mountains, China | TCF | >100 | 1–10 | Fire suppression resulted in decreased fire frequency and increased fire severity, leading to catastrophic fires with return intervals ranging from 50 to 120 years. |
5 | Chapin et al., 2003 [65] | Frontiers in Ecology and the Environment | Alaskan boreal forest, USA | BF | >100 | 10–50 | Short-term effectiveness of a given level of fire suppression in reducing burned areas declined over time. However, fire suppression areas experienced less fire than those with a natural fire regime even after 70 years. |
6 | Cumming, 2005 [66] | Canadian Journal of Forest Research | Northeastern Alberta boreal mixed wood forest, Canada | TSGSS | 25–50 | 50–100 | Change in fire management strategy resulted in a significant reduction in escape probability. |
7 * | Curt and Frejaville, 2018 [67] | Risk Analysis | Southeastern France | MFWS | 25–50 | 50–100 | Fire suppression resulted in considerably decreased fire activity during the two following decades. |
8 * | DeWilde and Chapin, 2006 [68] | Ecosystems | Interior Alaska, USA | BF | 0–25 | >100 | Fire suppression resulted in smaller areas being burned. |
9 | Drury and Grissom, 2008 [69] | Forest Ecology and Management | Yukon Flats National Wildlife Refuge, USA | BF | 0–25 | 10–50 | Aggressive fire suppression did not result in significant fire return interval change. |
10 * | Evin, Curt, and Eckert, 2018 [70] | Natural Hazards and Earth System Sciences | Southeastern France | MFWS | 25–50 | 50–100 | Despite aggressive fire suppression policy, massive fires could still occur. |
11 * | Fernandes et al., 2016 [71] | European Journal of Forest Research | Portugal | MFWS | 0–25 | 50–100 | Allocating higher levels of fire-suppression resources did not considerably decrease fire size. |
12 * | Frejaville and Curt, 2017 [72] | Environmental Research Letters | Southeastern France | MFWS | 25–50 | 50–100 | Fire suppression resulted in reducing fire activity. |
13 * | Hanan et al., 2021 [73] | Environmental Research Letters | Johnson Creek, Idaho, USA Trail Creek, Idaho, USA | TBMF, TGSS | >100 | 0–1 | Fire suppression increased larger fires early in the assessment period yet decreased mean wildfire size, frequency, and burned area throughout the entire assessment period. |
14 | Hansen et al., 2020 [74] | Ecological Applications | Grand Teton National Park, USA | DXS | >100 | 0–1 | Strategies that emphasize managing wildfire use rather than suppressing it would not change climate-induced fire and forest change. |
15 | He et al., 2023 [75] | Forests | Great Xing’an Mountains, China | TCF | >100 | 0–1 | Fire suppression resulted in higher fire intensity with less total burned area. |
16 * | Keeley, Fotheringham, and Morais, 1999 [16] | Science | Brushland in California, USA | MFWS | 50–100 | 10–50 | Fire suppression did not result in more large fires. |
17 | Loepfe et al., 2012 [39] | Climatic Change | 3 sites in Spain | MFWS | >100 | 0–10 | Aggressive fire suppression reduced the burned area, resulting in a higher percentage of area burned in large fires. |
18 * | Luciano Batista et al., 2018 [76] | Journal of Environmental Management | The Canastra National Park, Brazil | TSGSS | 0–25 | 1–10 | Strategies that emphasize managing wildfire use rather than suppressing it will not change climate-induced fire and forest change. |
19 | Martell and Sun, 2008 [77] | Canadian Journal of Forest Research | Ontario, Canada | BF | 0–25 | >100 | Fire suppression resulted in a significant reduction in the area burned. |
20 * | Minnich, 1983 [78] | Science | Southern California to Baja California, USA | DXS | 0–25 | 0–1 | Fire suppression resulted in a decrease in fire numbers. However, fires consequently increased in size, spread rate, and intensity and became uncontrollable in severe weather conditions. |
21 * | Ioannis Mitsopoulos and Mallinis, 2017 [43] | Landscape and Urban Planning | Greece | MFWS | 0–25 | >100 | Once a fire occurs, large fire size generation is primarily affected by fire suppression. |
22 | Moritz, 1997 [79] | Ecological Applications | Los Padres National Forest, USA | MFWS | >100 | 1–10 | Fire suppression did not change the distribution of extensive fires, resulting in fewer fires smaller than 4000 ha. |
23 * | Moritz, 2003 [80] | Ecology | Los Padres National Forest, USA | MFWS | 50–100 | 1–10 | Fire suppression affected the characteristics of smaller fires much more than those of larger fires, resulting in a decrease in size and an increase in the number of smaller fires. |
24 | Parisien et al., 2020 [35] | Nature Communications | Boreal biomes, Canada | BF | 25–50 | >100 | Fire suppression policies increased flammability in the wildland–urban interface. |
25 | Parks et al., 2015 [81] | Ecosphere | Western USA | MFWS | 25–50 | >100 | Fire suppression reduced fire activity. |
26 | Pinol, Beven, and Viegas, 2005 [82] | Ecological Modelling | Tarragona, Spain Coimbra, Portugal | MFWS | >100 | 0–1 | Increased firefighting capacity resulted in higher areas burned in large fires. |
27 | Pinol, Castellnou, and Beven, 2007 [83] | Ecological Modelling | 2 sites in USA, 2 sites in France, 2 sites Spain | MFWS | 0–25 25–50 | 0–1 1–10 | The total area burned was the same whether suppression or prescribed fire policies were used or not; however, fire suppression enhanced fire intensity, and prescribed burning reduced it. |
28 | Podur and Martell, 2007 [84] | International Journal of Wildland Fire | Ontario, Canada | BF | 25–50 | >105 | Fire suppression impacted areas burned, especially during severe fire weather years. Despite the impact of suppression, exceptionally severe weather would lead to high-area burns regardless of fire suppression efforts. |
29 | Reimer et al., 2019 [85] | Fire-Switzerland | Vermilion Valley of Kootenay National Park, Canada | TCF | 50–100 | 0–1 | Fire suppression resulted in an average burn probability reduction. |
30 | Riley, Thompson, Scott, and Gilbertson-Day, 2018 [86] | Resources-Basel | Sierra National Forest, USA | TGSS | 0–25 | 1–10 | No-suppression strategy produced large increases in the number, median size, and burn probability of large fires. |
31 | Roos et al., 2020 [87] | Fire-Switzerland | Wabakwa, USA | TCF | >100 | 0–1 | Aggressive fire suppression resulted in higher fire intensity even in mild weather conditions. |
32 | Ruffault and Mouillot, 2015 [88] | Ecosphere | Southeastern France | MFWS | 25–50 | 10–50 | Active fire suppression resulted in a significant shift and abrupt decrease in fire activity. |
33 | Scheller et al., 2019 [89] | Ecological Modelling | Lake Tahoe Basin, USA | TGSS | >100 | 1–10 | Active fire suppression resulted in a higher proportion of low-intensity fires and a lower total area burned. |
34 * | Starrs et al., 2018 [90] | Environmental Research Letters | California, USA | MFWS | 50–100 | 10–50 | Aggressive fire suppression reduced fire probability. |
35 | Tian et al., 2020 [91] | Canadian Journal of Forest Research | Great Xing’an Mountains, China | TCF | 25–50 | >100 | The improved fire suppression strategy greatly decreased the mean burn probability and affected the spatial distribution of fires. |
36 | Urbieta et al., 2019 [92] | Annals of Forest Science | Spain | MFWS | 25–50 | 50–100 | Fire suppression reduced fire activity. |
37 | Wang et al., 2007 [93] | Landscape and Urban Planning | Great Xing’an Mountains, China | TCF | >100 | 1–10 | Compared with low fire suppression, high fire suppression would create a landscape with lower frequency and higher intensity wildfires. |
Research Design | Research Method | Strength | Weakness | ||
---|---|---|---|---|---|
Observational study | Difference analysis | Comparison of wildfire data in different fire suppression contexts | Wilcoxon signed-rank test (1), one-way ANOVA (3, 9, 16), bootstrapping (7), Friedman’s test (18), permutation test (18), Bhattacharyya coefficient (10), chi-square test (18), sequential F-test (32), OLS-based CUSUM test (32), Fisher’s exact test (36) | Low reliance on fire suppression data | Difficult to control multiple sources of spatial and temporal variation in wildfire data |
Regression analysis | Quantify the extent to which fire suppression variables explain wildfire data | Logistic regression (6, 21), regression tree analysis (11), ordinary least-squares regression (19), random forest (21), boosted classification trees (21), random effects panel model (34) | Clarification of the relative contribution of fire suppression | High dependence on fire suppression data | |
Experimental study | Scenario modeling | Comparison of wildfire simulation data for different suppression scenarios | MEDFIRE model (2), LANDIS model (4, 37), ALFRESCO model (5), RHESSys-WMFIre framework (13), iLand model (14), LANDIS PRO 7.0 model (15), boosted regression tree model (25), logistic regression model (28), Burn-P3 small-frei containment model (29), SCRPPLE model (33), BP model (35), FBP model (35) | Elucidating the mechanism of fire suppression effects on wildfire characteristics | Research processes are complex |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hai, J.; Zhang, L.; Gao, C.; Wang, H.; Wu, J. How Does Fire Suppression Alter the Wildfire Regime? A Systematic Review. Fire 2023, 6, 424. https://doi.org/10.3390/fire6110424
Hai J, Zhang L, Gao C, Wang H, Wu J. How Does Fire Suppression Alter the Wildfire Regime? A Systematic Review. Fire. 2023; 6(11):424. https://doi.org/10.3390/fire6110424
Chicago/Turabian StyleHai, Jiaying, Ling Zhang, Cong Gao, Han Wang, and Jiansheng Wu. 2023. "How Does Fire Suppression Alter the Wildfire Regime? A Systematic Review" Fire 6, no. 11: 424. https://doi.org/10.3390/fire6110424
APA StyleHai, J., Zhang, L., Gao, C., Wang, H., & Wu, J. (2023). How Does Fire Suppression Alter the Wildfire Regime? A Systematic Review. Fire, 6(11), 424. https://doi.org/10.3390/fire6110424