An Evaluation of Wildfire Vulnerability in the Wildland–Urban Interfaces of Central Portugal Using the Analytic Network Process
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Area
2.2. Variables and Data Collection
Components | ID | Variables | Source/Year | Unit/Scale | Previous References |
---|---|---|---|---|---|
Exposure | 1 | Population density (no. of people/ km2) | BGRI, 2011 (Statistics Portugal) | Subsection | [23,49,50,64,65,66] |
2 | Building density (no. buildings/km2) | BGRI, 2011 (Statistics Portugal) | Subsection | [17,23,50,64,65,66,67] | |
3 * | Percentage of buildings with 1 or 2 floors | BGRI, 2011 (Statistics Portugal) | Subsection | [17] | |
Sensitivity | 4 | Youth index (% Population < 14 years) | BGRI, 2011 (Statistics Portugal) | Subsection | [23,49,50,65] |
5 | Ageing Index (% of Population > 64 years) | BGRI, 2011 (Statistics Portugal) | Subsection | [17,23,49,50,57,64,65,67,68] | |
6 | Unemployment Rate (%) | BGRI, 2011 (Statistics Portugal) | Subsection | [49,57,65,68] | |
7 | Fuel in direct contact with built-up areas (km/subsection) | Statistics Portugal, 2018; DGT, 2018 | Subsection | [15] | |
Response capacity | 8 | Accessibility/ Firefighters’ travel time (minutes) | ESRI, with adaptations based on OSM | 10 × 10 m | [23,57,64,65] |
9 | Ratio of firefighters to fuel in direct contact with built-up areas (no. Firefighters/ km) | Statistics Portugal, 2018; DGT, 2018 | Municipality | [7,17,18] |
2.3. Weighting Different Thematic Layers Using AHP
2.4. Assignment of the Weighted Sum Method for the Wildfire Vulnerability Map
3. Results
3.1. Weighting Wildfire Vulnerability by Criteria
3.2. Spatial Variability of Selected Criteria
3.3. Wildfire Vulnerability at Landscape and at WUI Scale
4. Discussion
5. Conclusions and Limitations
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
PD | BD | PB12F | YI | AI | UnR | FDCBA | FFTT | RFDC | Interactions | Scaling | |
---|---|---|---|---|---|---|---|---|---|---|---|
Population density (PD) | 1.0 | 2.0 | 2.6 | 4.3 | 1.5 | 5.5 | 0.7 | 1.1 | 1.6 | 2.03 | 0.94 |
Building density (BD) | 0.5 | 1.0 | 2.5 | 1.8 | 0.6 | 4.3 | 0.5 | 0.7 | 1.1 | 1.30 | 0.56 |
Percentage of buildings with 1 or 2 floors (PB12F) | 0.4 | 0.4 | 1.0 | 1.0 | 0.4 | 2.0 | 0.5 | 0.4 | 0.3 | 0.63 | 0.30 |
Youth index (YI) | 0.2 | 0.5 | 1.0 | 1.0 | 0.2 | 2.5 | 0.2 | 0.3 | 0.4 | 0.63 | 0.25 |
Ageing index (AI) | 0.6 | 1.8 | 2.6 | 5.2 | 1.0 | 5.4 | 0.5 | 0.9 | 1.3 | 1.93 | 0.81 |
Unemployment rate (UnR) | 0.2 | 0.2 | 0.5 | 0.4 | 0.2 | 1.0 | 0.2 | 0.2 | 0.2 | 0.30 | 0.14 |
Fuel in direct contact with build-up areas (FDCBA) | 1.5 | 2.0 | 2.2 | 5.0 | 1.9 | 6.1 | 1.0 | 0.8 | 1.1 | 2.15 | 1.00 |
Firefighters’ travel time (FFTT) | 0.9 | 1.4 | 2.5 | 3.8 | 1.1 | 5.6 | 1.3 | 1.0 | 1.8 | 1.94 | 0.91 |
Ratio of firefighters to fuel in direct contact (RFDC) | 0.6 | 0.9 | 3.8 | 2.3 | 0.8 | 6.1 | 0.9 | 0.6 | 1.0 | 1.70 | 0.69 |
Total | 6.0 | 10.2 | 18.7 | 24.8 | 7.7 | 38.4 | 5.7 | 5.9 | 8.7 | 0.10 | 5.60 |
PD | BD | PB12F | YI | AI | UnR | FDCBA | FFTT | RFDC | Normalised Weight | |
---|---|---|---|---|---|---|---|---|---|---|
Population density (PD) | 0.17 | 0.20 | 0.14 | 0.17 | 0.20 | 0.14 | 0.12 | 0.18 | 0.19 | 0.168 |
Building density (BD) | 0.08 | 0.10 | 0.13 | 0.07 | 0.07 | 0.11 | 0.09 | 0.12 | 0.13 | 0.101 |
Percentage of buildings with 1 or 2 floors (PB12F) | 0.07 | 0.04 | 0.05 | 0.04 | 0.05 | 0.05 | 0.08 | 0.07 | 0.03 | 0.052 |
Youth index (YI) | 0.04 | 0.05 | 0.05 | 0.04 | 0.03 | 0.06 | 0.03 | 0.04 | 0.05 | 0.044 |
Ageing index (AI) | 0.11 | 0.17 | 0.14 | 0.21 | 0.13 | 0.14 | 0.09 | 0.15 | 0.15 | 0.144 |
Unemployment rate (UnR) | 0.03 | 0.02 | 0.03 | 0.02 | 0.02 | 0.03 | 0.03 | 0.03 | 0.02 | 0.025 |
Fuel in direct contact with built-up areas (in km) (FDCBA) | 0.25 | 0.19 | 0.12 | 0.20 | 0.25 | 0.16 | 0.17 | 0.13 | 0.12 | 0.178 |
Firefighters’ travel time (FFTT) | 0.15 | 0.13 | 0.14 | 0.15 | 0.14 | 0.15 | 0.22 | 0.17 | 0.20 | 0.162 |
Ratio of firefighters to fuel in direct contact (RFDC) | 0.10 | 0.09 | 0.20 | 0.09 | 0.10 | 0.16 | 0.16 | 0.10 | 0.11 | 0.123 |
References
- Buyyani, L.; Padmaja, B. A Novel Approach for Identification of Forest Fires using Land Surface Temperature Images. IOSR J. Comput. Eng. 2014, 16, 78–83. [Google Scholar]
- Doerr, S.H.; Santin, C. Global trends in wildfire and its impacts: Perceptions versus realities in a changing world. Philos. Trans. R. Soc. B Biol. Sci. 2016, 371, 20150345. [Google Scholar] [CrossRef] [PubMed]
- Garbolino, E.; Sanseverino-Godfrin, V.; Hinojos-Mendoza, G. Describing and predicting of the vegetation development of Corsica due to expected climate change and its impact on forest fire risk evolution. Saf. Sci. 2017, 97, 81–87. [Google Scholar] [CrossRef]
- Naderpour, N.; Rizeei, H.M.; Khakzad, N.; Pradhan, B. Forest fire induced Natech risk assessment: Survey of geospatial technologies. Reliab. Eng. Syst. Saf. 2019, 191, 106558. [Google Scholar] [CrossRef]
- San-Miguel-Ayanz, J.; Durrant, T.; Boca, R.; Libertà, G.; Branco, A.; de Rigo, D.; Ferrari, D.; Maianti, P.; Artes Vivancos, T.; Costa, H.; et al. Forest Fires in Europe, Middle East and North Africa 2017; EUR 29318 EN; Publications Office of the European Union: Luxembourg, 2017. [Google Scholar] [CrossRef]
- Urbieta, I.R.; Franquesa, M.; Viedma, O.; Moreno, J.M. Fire activity and burned forest lands decreased during the last three decades in Spain. Ann. For. Sci. 2019, 76, 90. [Google Scholar] [CrossRef]
- Moreira, F.; Vaz, P.; Catry, F.; Silva, J.S. Regional variations in wildfire susceptibility of land-cover types in Portugal: Implications for landscape management to minimize fire hazard. Int. J. Wildland Fire 2009, 18, 563–574. [Google Scholar] [CrossRef]
- Nunes, A.N.; Lourenço, L.; Meira Castro, A.C. Exploring spatial patterns and drivers of forest fires in Portugal (1980–2014). Sci. Total Environ. 2016, 573, 1190–1202. [Google Scholar] [CrossRef]
- San-Miguel-Ayanz, J.; Moreno, J.M.; Camia, A. Analysis of large fires in European Mediterranean landscapes: Lessons learned and perspectives. For. Ecol. Manag. 2013, 294, 11–22. [Google Scholar] [CrossRef]
- Wu, M.; Knorr, W.; Thonicke, K.; Schurgers, G.; Camia, A.; Arneth, A. Sensitivity of burned area in Europe to climate change, atmospheric CO2 levels, and demography: A comparison of two fire-vegetation models. J. Geophys. Res. Biogeosci. 2015, 120, 2256–2272. [Google Scholar] [CrossRef]
- Shukla, P.R.; Skea, J.; Slade, R.; van Diemen, R.; Haughey, E.; Malley, J.; Pathak, M.; Pereira, J. (Eds.) Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and greenhouse Gas Fluxes in Terrestrial Ecosystems. 2019; Available online: https://www.ipcc.ch/site/assets/uploads/2019/11/SRCCL-Full-Report-Compiled-191128.pdf (accessed on 30 January 2020).
- Jones, M.W.; Smith, A.; Betts, R.; Canadell, J.G.; Prentice, I.C.; Le Quéré, C. Climate Change Increases the Risk of Wildfires. 2020. Available online: https://www.preventionweb.net/files/73797_wildfiresbriefingnote.pdf (accessed on 1 December 2022).
- Harrison, P.; Gray, C. The ethical and policy implications of profiling ‘vulnerable’ customers. Int. J. Consum. Stud. 2010, 34, 437–442. [Google Scholar] [CrossRef]
- Vacca, P.; Caballero, D.; Pastor, E.; Planas, E. WUI fire risk mitigation in Europe: A performance-based design approach at home-owner level. J. Saf. Sci. Resil. 2020, 1, 97–105. [Google Scholar] [CrossRef]
- Badia, A.; Pallares-Barbera, M.; Valldeperas, N.; Gisbert, M. Wildfires in the wildland-urban interface in Catalonia: Vulnerability analysis based on land use and land cover change. Sci. Total Environ. 2019, 673, 184–196. [Google Scholar] [CrossRef]
- Bento-Gonçalves, A.; Vieira, A. Wildfires in the wildland-urban interface: Key concepts and evaluation methodologies. Sci. Total Environ. 2020, 707, 135592. [Google Scholar] [CrossRef]
- Bergonse, R.; Oliveira, S.; Santos, P.; Zêzere, J.L. Wildfire Risk Levels at the Local Scale: Assessing the Relative Influence of Hazard, Exposure, and Social Vulnerability. Fire 2022, 5, 166. [Google Scholar] [CrossRef]
- Chas-Amil, M.L.; Nogueira-Moure, E.; Prestemon, J.P.; Touza, J. Spatial patterns of social vulnerability in relation to wildfire risk and wildland-urban interface presence. Landsc. Urban Plan. 2022, 228, 2046. [Google Scholar] [CrossRef]
- Independent Technical Commission (ITC) 2017. Análise e Apuramento dos Factos Relativos aos Incêndios que Ocorreram em Pedrogão Grande, Castanheira de Pera, Ansião, Alvaiázere, Figueiró dos Vinhos, Arganil, Góis, Penela, Pampilhosa da Serra, Oleiros e Sertã, Entre 17 e 24 de Junho de 2017. Final Report, Assembly of the Portuguese Republic, Portugal. 2017. Available online: https://www.parlamento.pt/Documents/2017/Outubro/Relat%C3%B3rioCTI_VF%20.pdf (accessed on 21 September 2020).
- Independent Technical Commission (ICT). Avaliação dos Incêndios Ocorridos Entre 14 e 16 de Outubro de 2017 em Portugal Continental, Relatório Final; Comissão Técnica Independente; Assembleia da República: Lisboa, Portugal, 2018; p. 274. Available online: https://www.parlamento.pt/Documents/2018/Marco/RelatorioCTI190318N.pdf (accessed on 21 September 2020).
- Ciurean, R.L.; Schroter, D.; Glade, T. Conceptual frameworks of vulnerability assessments for natural disasters reduction. In Approaches to Disaster Management—Examining the Implications of Hazards, Emergencies and Disasters; INTECH Open Access Publisher: London, UK, 2013; pp. 3–32. [Google Scholar] [CrossRef]
- Costa, L.; Kropp, J.P. Linking components of vulnerability in theoretic frameworks and case studies. Sustain. Sci. 2013, 8, 1–9. [Google Scholar] [CrossRef]
- Oliveira, S.; Félix, F.; Nunes, A.; Lourenço, L.; Laneve, G.; Sebastian-Lopez, A. Mapping wildfire vulnerability in Mediterranean Europe. Testing a stepwise approach for operational purposes. Environ. Manag. 2018, 206, 156–159. [Google Scholar] [CrossRef]
- Tapsell, S.; Mccarthy, S.; Faulkner, H.; Alexander, M.; Kuhlicke, C.; Brown, S.; Walker, G.; Scolobig, A.; De Marchi, B.; Bianchizza, C. Social Vulnerability to Natural Hazards; CapHaz-Net—WP4 Report; Middlesex University: London, UK, 2010. [Google Scholar]
- Neary, D.G.; Leonard, J.M. Physical Vulnerabilities from Wildfires: Flames, Floods, and Debris Flows. IntechOpen 2019. [Google Scholar] [CrossRef]
- Hamidi, A.R.; Zeng, Z.; Khan, M.A. Household vulnerability to floods and cyclones in Khyber Pakhtunkhwa, Pakistan. Int. J. Disaster Risk Reduct. 2020, 46, 101496. [Google Scholar] [CrossRef]
- Otto, I.M.; Reckien, D.; Reyer, C.P.O.; Marcus, R.; Le Masson, V.; Norton, A.; Serdeczny, O. Social vulnerability to climate change: A review of concepts and evidence. Reg. Environ. Chang. 2017, 17, 1651–1662. [Google Scholar] [CrossRef]
- Siagian, T.H.; Purhadi, P.; Suhartono, S.; Ritonga, H. Social vulnerability to natural hazards in Indonesia: Driving factors and policy implications. Nat. Hazards 2014, 70, 1603–161729. [Google Scholar] [CrossRef]
- Coughlan, M.R.; Ellison, A.; Cavanaugh, A.H. Social Vulnerability and Wildfire in the Wildland-Urban Interface: Literature Synthesis. EWP Working Papers, Ecosystem Working Program, University of Oregon. 2019. Available online: https://scholarsbank.uoregon.edu/xmlui/handle/1794/25359 (accessed on 23 February 2022).
- Cutter, S.L.; Boruf, B.J.; Shirley, W.L. Social vulnerability to environmental hazards. Soc. Sci. Q. 2003, 84, 242–261. [Google Scholar] [CrossRef]
- Wisner, B. Vulnerability as Concept, Model, Metric and Tool in a Hazardous World. In Oxford Encyclopedia of Natural Hazard Science; Cutter, S., Ed.; Oxford University Press: New York, NY, USA, 2016. [Google Scholar]
- Birkmann, J. Measuring Vulnerability to Natural Hazards: Towards Disaster Resilient Societies, 2nd ed.; United Nation University Press: Tokyo, Japan; New York, NY, USA, 2013. [Google Scholar]
- Frigerio, I.; Carnelli, F.; Cabinio, M.; De Amicis, M. Spatiotemporal Pattern of Social Vulnerability in Italy. Int. J. Disaster Risk Sci. 2018, 9, 249–262. [Google Scholar] [CrossRef]
- Birkmann, J.; Cardona, O.D.; Carreño, M.L.; Barbat, A.H.; Pelling, M.; Schneiderbauer, S.; Kienberger, S.; Keiler, M.; Alexander, D.; Zeil, P.; et al. Framing vulnerability, risk and societal responses: The MOVE framework. Nat. Hazards 2013, 67, 193–211. [Google Scholar] [CrossRef]
- Cutter, S.L.; Emrich, C.T.; Webb, J.J.; Morath, D. Social vulnerability to climate variability hazards: A review of the literature. Final Rep. Oxfam Am. 2009, 5, 1–44. [Google Scholar]
- Cardona, O.O.D.; van Aalst, M.K.; Birkmann, J.; Fordham, M.; McGregor, G.; Perez, R.; Pulwarty, R.S.; Schipper, E.L.F.; Sinh, B.T.; Décamps, H.; et al. Determinants of risk: Exposure and vulnerability. In Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation—A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change (IPCC); Field, C.B., Barros, V., Stocker, T.F., Qin, D., Dokken, D.J., Ebi, K.L., Mastrandrea, M.D., Mach, K.J., Plattner, G.-K., Allen, S.K., et al., Eds.; Cambridge University Press: Cambridge, UK, 2012; pp. 65–108. [Google Scholar] [CrossRef]
- Spielman, E.; Tuccillo, J.; Folch, D.C.; Schweikert, A.; Davies, R.; Wood, N.; Tate, E. Evaluating social vulnerability indicators: Criteria and their application to the Social Vulnerability Index. Nat. Hazards 2020, 100, 417–436. [Google Scholar] [CrossRef]
- Ford, J.D.; Keskitalo, E.C.H.; Smith, T.; Pearce, T.; Berrang-Ford, L.; Duerden, F.; Smit, B. Case study and analogue methodologies in climate change vulnerability research. WIREs Clim. Change 2010, 1, 374–392. [Google Scholar] [CrossRef]
- Sword-Daniels, V.; Christine Eriksen, C.; Hudson-Doyle, E.E.; Alaniz, R.; Adler, C.; Schenk, T.; Vallance, S. Embodied uncertainty: Living with complexity and natural hazards. J. Risk Res. 2018, 21, 290–307. [Google Scholar] [CrossRef]
- Aubrecht, C.; Fuchs, S.; Neuhold, C. Spatio-temporal aspects and dimensions in integrated disaster risk management. Nat. Hazards 2013, 68, 1205–1216. [Google Scholar] [CrossRef]
- Gallina, V.; Torresan, S.; Critto, A.; Sperotto, A.; Glade, T.; Marcomini, A. A review of multi-risk methodologies for natural hazards: Consequences and challenges for a climate change impact assessment. J. Environ. Manag. 2016, 168, 123–132. [Google Scholar] [CrossRef]
- UNISDR. UNISDR Terminology on Disaster Risk Reduction; United Nations International Strategy for Disaster Reduction (UNISDR): Geneva, Switzerland, 2009. [Google Scholar]
- Tedim, F.; Remelgado, R.; Borges, C.; Carvalho, S.; Martins, J. Exploring the occurrence of mega-fires in Portugal. For. Ecol. Manag. 2013, 294, 86–96. [Google Scholar] [CrossRef]
- Fischer, A.P.; Frazier, T.G. Social vulnerability to climate change in temperate forest areas: New measures of exposure, sensitivity, and adaptive capacity. Ann. Am. Assoc. Geogr. 2018, 108, 658–678. [Google Scholar] [CrossRef]
- Norris, F.H.; Stevens, S.P.; Pfefferbaum, B.; Wyche, K.F.; Pfefferbaum, R.L. Community Resilience as a Metaphor, Theory, Set of Capacities, and Strategy for Disaster Readiness. Am. J. Community Psychol. 2008, 41, 127–150. [Google Scholar] [CrossRef]
- Turner, B.L.; Kasperson, R.E.; Matson, P.A.; McCarthy, J.J.; Corell, R.W.; Christensen, L.; Eckley, N.; Kasperson, J.X.; Luers, A.; Martello, M.L.; et al. A framework for vulnerability analysis in sustainability science. Proc. Natl. Acad. Sci. USA 2003, 100, 8074–8079. [Google Scholar] [CrossRef]
- Cutter, S.; Finch, C. Temporal and spatial changes in social vulnerability to natural hazards. Environ. Sci. 2008, 105, 2301–2306. [Google Scholar] [CrossRef]
- Khan, A.M. Climate Change Vulnerabilities of South Asia and Future Options: A Governance Perspective. Glob. Soc. Policy 2010, 10, 12–15. [Google Scholar] [CrossRef]
- Farinha, J.; Cunha, L.; Dimuccio, L.A. Exploratory Spatial Analysis of Social Vulnerability and Forest Fire Risk in the Pinhal Interior Sul (Central Portugal). Sustainability 2022, 14, 3010. [Google Scholar] [CrossRef]
- Oliveira, S.; Gonçalves, A.; Benali, A.; Sá, A.; Zêzere, J.L.; Pereira, J.M. Assessing risk and prioritizing safety interventions in human settlements affected by large wildfires. Forests 2020, 11, 859. [Google Scholar] [CrossRef]
- Caballero, D.; Giroud, F.; Picard, C.; Xanthopoulos, G. EUFIRELAB/EuroMediterranean Wildland Fire Laboratory, a “Wall-Less” Laboratory for Wildland Fire Sciences and Technologies in the Euro-Mediterranean Region—Deliverable D-10-01- Wildland-Urban Interface Management: A State of the Art, 2004. Available online: http://www.eufirelab.org/deliverable.php?unit=10 (accessed on 10 January 2020).
- Adger, W.N. Vulnerability. Glob. Environ. Change 2006, 16, 268–281. [Google Scholar] [CrossRef]
- Khan, S. Vulnerability assessments and their planning implications: A case study of the Hutt Valley, New Zealand. Nat. Hazards 2012, 64, 1587–1607. [Google Scholar] [CrossRef]
- Galiana-Martin, L.; Karlsson, O. Development of a methodology for the assessment of vulnerability related to wildland fires using a multi-criteria evaluation. Geogr. Res. 2011, 50, 304–319. [Google Scholar] [CrossRef]
- Fuchs, S.; Thaler, T. Vulnerability and Resilience to Natural Hazard; Cambridge University Press: Cambridge, UK, 2018. [Google Scholar]
- Andersen, L.; Sugg, M.; Margaret, M. Geographic multi-criteria evaluation and validation: A case study of wildfire vulnerability in Western North Carolina, USA following the 2016 wildfires. Int. J. Disaster Risk Reduct. 2019, 39, 101123. [Google Scholar] [CrossRef]
- Ganteaume, A.; Barbero, R.; Jappiot, M.; Maillé, E. Understanding future changes to fires in southern Europe and their impacts on the wildland-urban interface. J. Saf. Sci. Resil. 2021, 2, 20–29. [Google Scholar] [CrossRef]
- Direção Geral do Território. Áreas Edificadas e Interface Urbano-Rural. Available online: https://www.dgterritorio.gov.pt/Areas-edificadas-e-interface-urbano-rural (accessed on 3 January 2022).
- Nunes, N.; Figueiredo, A.; Pinto, C.; Lourenço, L. Assessing wildfire hazard in the wildland-urban interfaces (WUIs) of Central Portugal. Nat. Hazards, 2023; submitted. [Google Scholar]
- Instituto Nacional de Estatística (Statistics Portugal). Censos—Importação dos Principais Dados Alfanuméricos e Geográficos (BGRI e GRID). Available online: https://mapas.ine.pt/download/index2021.phtml (accessed on 10 January 2022).
- Dormann, C.F.; Elith, J.; Bacher, S.; Buchmann, C.; Carl, G.; Carré, G.; Marquéz, J.R.G.; Gruber, B.; Lafourcade, B.; Leitão, P.J.; et al. Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography 2013, 36, 27–46. [Google Scholar] [CrossRef]
- Oliveira, S.; Pereira, J.M.C.; San-Miguel-Ayanz, J.; Lourenço, L. Exploring the spatial patterns of fire density in Southern Europe using Geographically Weighted Regression. Appl. Geogr. 2014, 51, 143–157. [Google Scholar] [CrossRef]
- Pereira, S.N.; Preißler, J.; Guerrero-Rascado, J.L.; Silva, A.M.; Wagner, F. Forest fire smoke layers observed in the free troposphere over Portugal with a multiwavelength Raman lidar: Optical and microphysical properties. Sci. World J. 2014, 2014, 421838. [Google Scholar] [CrossRef]
- Bento-Gonçalves, A.; Vieira, A.; Nunes, A.; Lourenço, L.; Oliveira, S.; Félix, F. Análise de vulnerabilidade a incêndios florestais na região do Minho, Portugal. In III Congresso Internacional, I Simpósio Ibero-Americano, VII Encontro Nacional de Riscos, Guimarães; Associação Portuguesa de Riscos, Prevenção e Segurança: Coimbra, Portugal, 2014; pp. 721–725. [Google Scholar]
- Nunes, A.; Oliveira, S.; Lourenço, L.; Gonçalves, A.B.; Vieira, A.; Félix, F. Vulnerabilidade a incêndios na Europa Mediterrânea: Abordagem conceptual e a utilização de dados de satélite. Imprensa Da Univ. De Coimbra 2015, 1–13. Available online: https://digitalisdsp.uc.pt/jspui/handle/10316.2/37071 (accessed on 30 June 2021).
- Alexandre, P.M.; Stewart, S.I.; Mockrin, M.H.; Keuler, N.S.; Syphard, A.D.; Bar-Massada, A.; Clayton, M.K.; Radeloff, V.C. The relative impacts of vegetation, topography and spatial arrangement on building loss to wildfires in case studies of California and Colorado. Landsc. Ecol. 2016, 31, 415–430. [Google Scholar] [CrossRef]
- De Diego, J.; Rúa, A.; Fernández, M. Vulnerability Variables and Their Effect on Wildfires in Galicia (Spain). A Panel Data Analysis. Land 2021, 10, 1004. [Google Scholar] [CrossRef]
- Nunes, A.N.; Lourenço, L. Spatial association between forest fires incidence and socioeconomic vulnerability in Portugal at Municipal Level. In Integrating Disaster Science and, Management. Global Case Studies in Mitigation and Recovery; Samui, P., Kim, D., Ghosh, C., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 83–97. [Google Scholar] [CrossRef]
- Samora-Arvela, A.; Aranha, J.; Correia, F.; Pinto, D.M.; Magalhães, C.; Tedim, F. Understanding Building Resistance to Wildfires: A Multi-Factor Approach. Fire 2023, 6, 32. [Google Scholar] [CrossRef]
- Wu, R.M.X.; Zhang, Z.; Yan, W.; Fan, J.; Gou, J.; Liu, B.; Gide, E.; Soar, J.; Shen, B.; Liu, Z.; et al. A comparative analysis of the principal component analysis and entropy weight methods to establish the indexing measurement. PLoS ONE 2022, 17, e0262261. [Google Scholar] [CrossRef] [PubMed]
- Sinha, R.; Bapalu, G.V.; Singh, L.K.; Rath, B. Flood risk analysis in the Kosi river basin, north Bihar using multi-parametric approach of Analytical Hierarchy Process (AHP). J. Indian Soc. Remote Sens. 2008, 36, 335–349. [Google Scholar] [CrossRef]
- Ghosh, A.; Kar, S.K. Application of analytical hierarchy process (AHP) for flood risk assessment: A case study in Malda district of West Bengal, India. Nat. Hazards 2018, 94, 349–368. [Google Scholar] [CrossRef]
- Pradeep, G.S.; Krishnan, M.V.; Vijith, H. Identification of critical soil erosion prone areas and annual average soil loss in an upland agricultural watershed of Western Ghats, using analytical hierarchy process (AHP) and RUSLE techniques. Arab. J. Geosci. 2014, 8, 3697–3711. [Google Scholar] [CrossRef]
- Vijith, H.; Dodge-Wan, D. Modelling terrain erosion susceptibility of logged and regenerated forested region in northern Borneo through the Analytical Hierarchy Process (AHP) and GIS techniques. Geoenv. Disasters 2019, 6, 8. [Google Scholar] [CrossRef]
- Pourghasemi, H.R.; Pradhan, B.; Gokceoglu, C. Application of fuzzy logic and analytical hierarchy process (AHP) to landslide susceptibility mapping at Haraz watershed, Iran. Nat. Hazards 2012, 63, 965–996. [Google Scholar] [CrossRef]
- Vadrevu, K.P.; Eaturu, A.; Badarinath, K.V.S. Fire risk evaluation using multi-criteria analysis—A case study. Environ. Monit. Assess. 2010, 166, 223–239. [Google Scholar] [CrossRef]
- Sharma, N.R.; Fernandes, P.J.F.; Pokarel, J.R. Methodological development for forest fire hazard in Nepal. Rev. Bras. Cartogr. 2014, 66, 1551–1566. [Google Scholar] [CrossRef]
- Lamat, R.; Kumar, M.; Kundu, A.; Lal, D. Forest fire risk mapping using analytical hierarchy process (AHP) and earth observation datasets: A case study in the mountainous terrain of Northeast India. SN Appl. Sci. 2021, 3, 425. [Google Scholar] [CrossRef]
- Sivrikaya, F.; Küçük, Ö. Modeling forest fire risk based on GIS-based analytical hierarchy process and statistical analysis in Mediterranean region. Ecol. Inform. 2022, 68, 101537. [Google Scholar] [CrossRef]
- Saaty, T.L. A Scaling Method for Priorities in Hierarchical Structures. J. Math. Psychol. 1977, 15, 234–281. [Google Scholar] [CrossRef]
- Saaty, T.L. The Analytic Hierarchy Process: Planning, Priority Setting and Resource Allocation; McGraw-Hill: New York, NY, USA, 1980; pp. 1–287. [Google Scholar]
- Alonso, J.; Lamata, M. Consistency in the Analytic Hierarchy Process: A New Approach. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 2006, 14, 445–459. [Google Scholar] [CrossRef]
- Goepel, K. Implementing the analytic hierarchy process as a standard method for multi-criteria decision making in corporate enterprises—A new ahp excel template with multiple inputs. In Proceedings of the International Symposium on the Analytic Hierarchy Process, Kuala Lumpur, Malaysia, 23–26 June 2013; pp. 1–10. [Google Scholar] [CrossRef]
- Fishburn, P.C. Additive utilities with finite sets: Applications in the management sciences. Nav. Res. Logist. 1967, 14, 1–13. [Google Scholar] [CrossRef]
- Lourenço, L. Lumes na interface urbano-florestal. In Unha Nova Xeración de Lumes? Actas do Coloquio Galaico-Portugués sobre Incendios Forestais; Consello da Cultura Galega: Santiago de Compostela, Espana, 2021; pp. 205–232. [Google Scholar] [CrossRef]
- Tonini, M.; Parente, J.; Pereira, M.G. Global assessment of rural–urban interface in Portugal related to land cover changes. Nat. Hazards Earth Syst. Sci. 2018, 18, 1647–1664. [Google Scholar] [CrossRef]
- Chas-Amil, M.-L.; Touza, J.; García-Martínez, E. Forest fires in the wildland–urban interface: A spatial analysis of forest fragmentation and human impacts. Appl. Geogr. 2013, 43, 127–137. [Google Scholar] [CrossRef]
- Pereira, J.; Alexandre, P.; Campagnolo, M.; Bar-Massada, A.; Radeloff, V.; Silva, P. Defining and mapping the wildland-urban interface in Portugal. In Proceedings of the 8th International Conference on Forest Fire Research, Coimbra, Portugal, 10–16 November 2018; pp. 743–749. [Google Scholar]
- Stephens, S.L.; Moghaddas, J.J. Experimental fuel treatment impacts on forest structure, potential fire behavior, and predicted tree mortality in a California mixed conifer forest. For. Ecol. Manag. 2005, 215, 21–36. [Google Scholar] [CrossRef]
- Schmidt, D.; Taylor, A.; Skinner, C. The influence of fuels treatment and landscape arrangement on simulated fire behavior, Southern Cascade range, California. For. Ecol. Manag. 2008, 255, 3170–3184. [Google Scholar] [CrossRef]
- Safford, H.D.; Schmidt, D.A.; Carlson, C.H. Effects of fuel treatments on fire severity in an area of wildland–urban interface, Angora Fire, Lake Tahoe Basin, California. For. Ecol. Manag. 2009, 258, 773–787. [Google Scholar] [CrossRef]
- Syphard, A.D.; Rustigian-Romsos, H.; Keeley, J.E. Multiple-Scale Relationships between Vegetation, the Wildland–Urban Interface, and Structure Loss to Wildfire in California. Fire 2021, 4, 12. [Google Scholar] [CrossRef]
- Syphard, A.D.; Brennan, T.J.; Keeley, J.E. The role of defensible space for residential structure protection during wildfires. Int. J. Wildl. Fire 2014, 23, 1165–1175. [Google Scholar] [CrossRef]
- Syphard, A.D.; Keeley, J.E. Factors associated with structure loss in the 2013–2018 California wildfires. Fire 2019, 2, 49. [Google Scholar] [CrossRef]
- Braziunas, K.H.; Seidl, R.; Rammer, W.; Turner, M.G. Can we manage a future with more fire? Effectiveness of defensible space treatment depends on housing amount and configuration. Landsc. Ecol. 2021, 36, 309–330. [Google Scholar] [CrossRef]
- Alexandre, P.M.; Stewart, S.I.; Keuler, N.S.; Clayton, M.K.; Mockrin, M.H.; Bar-Massada, A.; Syphard, A.D.; Radeloff, V.C. Factors related to building loss due to wildfires in the conterminous United States. Ecol. Appl. 2016, 26, 2323–2338. [Google Scholar] [CrossRef]
- Bodstein, A.; Lima, V.V.; Abreu, D.A.M. The vulnerability of the elderly in disasters: The need for an effective resilience policy. Ambiente Soc. 2014, 17, 157–174. Available online: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1414753X2014000200011&lng=en&nrm=iso (accessed on 25 June 2022). [CrossRef]
- Cutter, S.L.; Mitchell, J.T.; Scott, M.S. Revealing the vulnerability of people and places: A case study of Georgetown, South Carolina. Ann. Assoc. Am. Geogr. 2000, 90, 713–737. [Google Scholar] [CrossRef]
- Cutter, S.L.; Emrich, C.T. Moral Hazard, Social Catastrophe: The Changing Face of Vulnerability along the Hurricane Coasts. Ann. Am. Acad. Political Soc. Sci. 2006, 604, 102–112. [Google Scholar] [CrossRef]
- Palaiologou, P.; Ager, A.A.; Nielsen-Pincus, M.; Evers, C.R.; Day, M.A. Social vulnerability to large wildfires in the western USA. Landsc. Urban Plan. 2019, 189, 99–116. [Google Scholar] [CrossRef]
- Reid, C.E.; Brauer, M.; Johnston, F.H.; Jerrett, M.; Balmes, J.R.; Elliott, C.T. Critical review of health impacts of wildfire smoke exposure. Environ. Health Perspect. 2016, 124, 1334–1343. [Google Scholar] [CrossRef]
- Youssouf, H.; Liousse, C.; Roblou, L.; Assamoi, E.M.; Salonen, R.O.; Maesano, C.N.; Banerjee, S.; Annesi-Maesano, I.I. Quantifying wildfires exposure for investigating health-related effects. Atmos. Environ. 2014, 97, 239–251. [Google Scholar] [CrossRef]
- Cornwall, W. Scientists aim to smoke out wildfire impacts. Science 2018, 360, 948–949. [Google Scholar] [CrossRef]
- Zhang, N.; Huang, H.; Su, B.; Zhao, J. Analysis of Road Vulnerability for Population Evacuation Using Complex Network. Vulnerability, Uncertainty, and Risk: Quantification, Mitigation, and Management. In Second International Conference on Vulnerability and Risk Analysis and Management (ICVRAM2014) & Sixth International Symposium on Uncertainty Modelling and Analysis (ISUMA2014); University of Liverpool: Liverpool, UK, 2014. [Google Scholar]
- Hao-nan, C.; Zhan-li, M. Study on the Failure Probability of Occupant Evacuation with the Method of Monte Carlo Sampling. Procedia Eng. 2018, 211, 55–62. [Google Scholar] [CrossRef]
- Chuvieco, E.; Martínez, S.; Román, M.V.; Hantson, S.; Pettinari, M.L. Integration of ecological and socio-economic factors to assess global vulnerability to wildfire. Glob. Ecol. Biogeogr. 2014, 23, 245–258. [Google Scholar] [CrossRef]
- Castillo, M.; Silva, F. Determining response times for the deployment of terrestrial resources for fighting forest fires: A case study: Mediterranean—Chile. Cien. Inv. Agr. 2015, 42, 97–107. [Google Scholar] [CrossRef]
- Ntaimo, L.; Zeigler, B.P.; Vasconcelos, M.J.; Khargharia, B. Forest Fire Spread and Suppression. Devssimula-Tion 2004, 80, 479–500. [Google Scholar] [CrossRef]
- Hu, X.; Ntaimo, L. Integrated simulation and optimization for wildfire containment. ACM Trans. Model. Comput. Simul. 2009, 19, 1–29. [Google Scholar] [CrossRef]
- Félix, F.; Lourenço, L. The initial attack response time to forest fire in the most sensitive areas of Portugal. Pract. Ex. Lousã Mt. Territ. 2017, 24, 187–211. [Google Scholar] [CrossRef]
- Tedim, T.; Xanthopoulos, G.; Leone, V. Forest Fires in Europe: Facts and Challenges. In Wildfire Hazards, Risks and Disasters; John, F., Douglas Paton, S., Eds.; Elsevier: Amsterdam, The Netherlands, 2015; pp. 77–99. [Google Scholar] [CrossRef]
- Zἴzὄvić, M.; Pamučar, D. New model for determining criteria weights: Level based weight assessment (LBWA) model. Decis. Mak. Appl. Manag. Eng. 2019, 2, 126–137. [Google Scholar] [CrossRef]
- Hartwich, F. Weighting of Agricultural Research Results: Sstrength and Limitations of the Analytic Hierarchy Process (AHP); Universitat Hohenheim: Stuttgart, Germany, 1999. [Google Scholar]
- Alphonce, C.B. Application of the analytic hierarchy process in agriculture in developing countries. Agric. Syst. 1997, 53, 97–112. [Google Scholar] [CrossRef]
- Palese, L.L. A random version of principal component analysis in data clustering. Comput. Biol. Chem. 2018, 73, 57–64. [Google Scholar] [CrossRef]
Scale | Intensity of Importance |
---|---|
1 | Equal importance |
2 | Equal to moderate importance |
3 | Moderate importance |
4 | Moderate to strong importance |
5 | Strong importance |
6 | Strong to very strong importance |
7 | Very strong importance |
8 | Very to extremely strong importance |
9 | Extreme importance |
n | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|
RI | 0 | 0 | 0.53 | 0.90 | 1.12 | 1.24 | 1.32 | 1.41 | 1.45 |
Criteria | AHP Weight (%) | Final Weighting (0–1) | Weighting Sign |
---|---|---|---|
Population density (PD) | 16.8 | 0.191 | + |
Building density (BD) | 10.1 | 0.116 | + |
Percentage of buildings with 1 or 2 floors (PB12F) | 5.3 | ni | |
Youth index (YI) | 4.4 | ni | |
Ageing index (AI) | 14.4 | 0.164 | + |
Unemployment rate (UnR) | 2.5 | ni | |
Fuel in direct contact with built-up areas (in km) (FDCBA) | 17.8 | 0.202 | + |
Ratio of firefighters to fuel in direct contact (RFFDC) | 16.3 | 0.185 | + |
in direct contact with fuel (RFFWUI) | 12.3 | 0.142 | − |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nunes, A.N.; Figueiredo, A.; Pinto, C.D.; Lourenço, L. An Evaluation of Wildfire Vulnerability in the Wildland–Urban Interfaces of Central Portugal Using the Analytic Network Process. Fire 2023, 6, 194. https://doi.org/10.3390/fire6050194
Nunes AN, Figueiredo A, Pinto CD, Lourenço L. An Evaluation of Wildfire Vulnerability in the Wildland–Urban Interfaces of Central Portugal Using the Analytic Network Process. Fire. 2023; 6(5):194. https://doi.org/10.3390/fire6050194
Chicago/Turabian StyleNunes, Adélia N., Albano Figueiredo, Carlos D. Pinto, and Luciano Lourenço. 2023. "An Evaluation of Wildfire Vulnerability in the Wildland–Urban Interfaces of Central Portugal Using the Analytic Network Process" Fire 6, no. 5: 194. https://doi.org/10.3390/fire6050194
APA StyleNunes, A. N., Figueiredo, A., Pinto, C. D., & Lourenço, L. (2023). An Evaluation of Wildfire Vulnerability in the Wildland–Urban Interfaces of Central Portugal Using the Analytic Network Process. Fire, 6(5), 194. https://doi.org/10.3390/fire6050194