Quantitative Assessment of the Relationship between Land Use/Land Cover Changes and Wildfires in Southern Europe
Abstract
:1. Introduction
2. Materials and Methods
2.1. Land Use/Land Cover Changes Dataset
2.2. European Burnt Area Dataset
2.3. Indicators to Assess Land Use/Land Cover Changes
- CLCC Lost Area (CLCCLA), defined as the area lost in each CLC class between two consecutive CLC inventories.
- CLCC Gained Area (CLCCGA), defined as the area gained in each CLC class between two consecutive CLC inventories.
- Relative Total Lost Area (RTLA), defined as the CLCCLA evaluated for each period and each CLC class, divided by the total CLCC area (TCLCC) for the same period:
- Relative Total Gained Area (RTGA), defined as the CLCCGA evaluated for each period and each CLC class, divided by the total CLCC area (TCLCC) for the same period:
- Net Changed Area (NCA), defined for each CLC class as the difference between CLCCGA and CLCCLA:
2.4. Land Use/Land Cover Change Characterization within Burnt Areas
3. Results
3.1. Quantitative Assessment of Land Use/Land Cover Changes in Europe
3.2. Quantitative Assessment of Land Use/Land Cover Changes within Burnt Areas
4. Discussion
4.1. Justification and Validation of the Databases Used
4.2. Quantitative Assessment of Land Use/Land Cover Changes in Europe
4.3. Quantitative Assessment of Land Use/Land Cover Changes within Burnt Areas
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tedim, F.; Leone, V. The Dilemma of Wildfire Definition: What It Reveals and What It Implies. Front. For. Glob. Chang. 2020, 3, 134. [Google Scholar] [CrossRef]
- Tedim, F.; Leone, V.; Amraoui, M.; Bouillon, C.; Coughlan, M.R.; Delogu, G.M.; Fernandes, P.M.; Ferreira, C.; McCaffrey, S.; McGee, T.K.; et al. Defining Extreme Wildfire Events: Difficulties, Challenges, and Impacts. Fire 2018, 10, 9. [Google Scholar] [CrossRef]
- Parente, J.; Pereira, M.G.; Amraoui, M.; Tedim, F. Negligent and Intentional Fires in Portugal: Spatial Distribution Characterization. Sci. Total Environ. 2018, 624, 424–437. [Google Scholar] [CrossRef] [PubMed]
- NWCG. Glossary of Wildland Fire Terminology; National Wildfire Coordinating Group: Potomac, MD, USA, 2012. [Google Scholar]
- Sullivan, A.; Baker, E.; Kurvits, T. Spreading Like Wildfire: The Rising Threat of Extraordinary Landscape Fires; UNEP: Nairobi, Kenya, 2022. [Google Scholar]
- Campos-Ruiz, R.; Parisien, M.-A.; Flannigan, M. Temporal Patterns of Wildfire Activity in Areas of Contrasting Human Influence in the Canadian Boreal Forest. Forests 2018, 9, 159. [Google Scholar] [CrossRef]
- Nunes, A.N.; Lourenço, L.; Meira, A.C.C. Exploring Spatial Patterns and Drivers of Forest Fires in Portugal (1980–2014). Sci. Total Environ. 2016, 573, 1190–1202. [Google Scholar] [CrossRef]
- Parente, J.; Pereira, M.G. Structural Fire Risk: The Case of Portugal. Sci. Total Environ. 2016, 573, 883–893. [Google Scholar] [CrossRef]
- Mateus, P.; Fernandes, P.M. Forest Fires in Portugal: Dynamics, Causes and Policies. In Forest Context and Policies in Portugal: Present and Future Challenges; Springer: Cham, Switzerland, 2014; pp. 97–115. [Google Scholar]
- Rogers, B.M.; Balch, J.K.; Goetz, S.J.; Lehmann, C.E.R.; Turetsky, M. Focus on Changing Fire Regimes: Interactions with Climate, Ecosystems, and Society. Environ. Res. Lett. 2020, 15, 30201. [Google Scholar] [CrossRef]
- Aponte, C.; de Groot, W.J.; Wotton, B.M. Forest Fires and Climate Change: Causes, Consequences and Management Options. Int. J. Wildl. Fire 2016, 25, i–ii. [Google Scholar] [CrossRef]
- Liu, Z.; Wimberly, M.C. Direct and Indirect Effects of Climate Change on Projected Future Fire Regimes in the Western United States. Sci. Total Environ. 2016, 542, 65–75. [Google Scholar] [CrossRef]
- Halofsky, J.E.; Peterson, D.L.; Harvey, B.J. Changing Wildfire, Changing Forests: The Effects of Climate Change on Fire Regimes and Vegetation in the Pacific Northwest, USA. Fire Ecol. 2020, 16, 4. [Google Scholar] [CrossRef]
- San-Miguel-Ayanz, J.; Rodrigues, M.; de Oliveira, S.S.; Pacheco, C.K.; Moreira, F.; Duguy, B.; Camia, A. Land Cover Change and Fire Regime in the European Mediterranean Region. In Post-Fire Management and Restoration of Southern European Forests; Springer: Dordrecht, The Netherlands, 2012; pp. 21–43. [Google Scholar]
- Chergui, B.; Fahd, S.; Santos, X.; Pausas, J.G. Socioeconomic Factors Drive Fire-Regime Variability in the Mediterranean Basin. Ecosystems 2018, 21, 619–628. [Google Scholar] [CrossRef]
- Vilar, L.; Herrera, S.; Tafur-García, E.; Yebra, M.; Martínez-Vega, J.; Echavarría, P.; Martín, M.P. Modelling Wildfire Occurrence at Regional Scale from Land Use/Cover and Climate Change Scenarios. Environ. Model. Softw. 2021, 145, 105200. [Google Scholar] [CrossRef]
- Syphard, A.D.; Rustigian-Romsos, H.; Mann, M.; Conlisk, E.; Moritz, M.A.; Ackerly, D. The Relative Influence of Climate and Housing Development on Current and Projected Future Fire Patterns and Structure Loss across Three California Landscapes. Glob. Environ. Chang. 2019, 56, 41–55. [Google Scholar] [CrossRef]
- Abram, N.J.; Henley, B.J.; Sen Gupta, A.; Lippmann, T.J.R.; Clarke, H.; Dowdy, A.J.; Sharples, J.J.; Nolan, R.H.; Zhang, T.; Wooster, M.J.; et al. Connections of Climate Change and Variability to Large and Extreme Forest Fires in Southeast Australia. Commun. Earth Environ. 2021, 2, 8. [Google Scholar] [CrossRef]
- Abatzoglou, J.T.; Williams, A.P.; Barbero, R. Global Emergence of Anthropogenic Climate Change in Fire Weather Indices. Geophys. Res. Lett. 2019, 46, 326–336. [Google Scholar] [CrossRef]
- Flannigan, M.D.; Amiro, B.D.; Logan, K.A.; Stocks, B.J.; Wotton, B.M. Forest Fires and Climate Change in the 21st Century. Mitig. Adapt. Strateg. Glob. Chang. 2006, 11, 847–859. [Google Scholar] [CrossRef]
- Pereira, M.G.; Calado, T.J.; DaCamara, C.C.; Calheiros, T. Effects of Regional Climate Change on Rural Fires in Portugal. Clim. Res. 2013, 57, 187–200. [Google Scholar] [CrossRef]
- Verburg, P.H.; Neumann, K.; Nol, L. Challenges in Using Land Use and Land Cover Data for Global Change Studies. Glob. Chang. Biol. 2011, 17, 974–989. [Google Scholar] [CrossRef]
- Parente, J.; Amraoui, M.; Menezes, I.; Pereira, M.G. Drought in Portugal: Current Regime, Comparison of Indices and Impacts on Extreme Wildfires. Sci. Total Environ. 2019, 685, 150–173. [Google Scholar] [CrossRef]
- Parente, J.; Pereira, M.G.; Amraoui, M.; Fischer, E.M. Heat Waves in Portugal: Current Regime, Changes in Future Climate and Impacts on Extreme Wildfires. Sci. Total Environ. 2018, 631–632, 534–549. [Google Scholar] [CrossRef]
- Libonati, R.; Geirinhas, J.L.; Silva, P.S.; Russo, A.; Rodrigues, J.A.; Belém, L.B.C.; Nogueira, J.; Roque, F.O.; Dacamara, C.C.; Nunes, A.M.B.; et al. Assessing the Role of Compound Drought and Heatwave Events on Unprecedented 2020 Wildfires in the Pantanal. Environ. Res. Lett. 2022, 17, 15005. [Google Scholar] [CrossRef]
- Littell, J.S.; Peterson, D.L.; Riley, K.L.; Liu, Y.; Luce, C.H. A Review of the Relationships between Drought and Forest Fire in the United States. Glob. Chang. Biol. 2016, 22, 2353–2369. [Google Scholar] [CrossRef] [PubMed]
- Turco, M.; Von Hardenberg, J.; Aghakouchak, A.; Llasat, M.C.; Provenzale, A.; Trigo, R.M. On the Key Role of Droughts in the Dynamics of Summer Fires in Mediterranean Europe OPEN. Sci. Rep. 2017, 7, 81. [Google Scholar] [CrossRef] [PubMed]
- Sutanto, S.J.; Vitolo, C.; Di Napoli, C.; D’Andrea, M.; Van Lanen, H.A.J. Heatwaves, Droughts, and Fires: Exploring Compound and Cascading Dry Hazards at the Pan-European Scale. Environ. Int. 2020, 134, 105276. [Google Scholar] [CrossRef] [PubMed]
- Conedera, M.; Tonini, M.; Oleggini, L.; Vega Orozco, C.; Leuenberger, M.; Pezzatti, G.B. Geospatial Approach for Defining the Wildland-Urban Interface in the Alpine Environment. Comput. Environ. Urban Syst. 2015, 52, 10–20. [Google Scholar] [CrossRef]
- Tonini, M.; Parente, J.; Pereira, M.G. Global Assessment of Rural-Urban Interface in Portugal Related to Land Cover Changes. Nat. Hazards Earth Syst. Sci. 2018, 18, 1647–1664. [Google Scholar] [CrossRef]
- Büttner, G. CORINE Land Cover and Land Cover Change Products. In Land Use and Land Cover Mapping in Europe; Remote Sensing and Digital Image Processing; Springer International Publishing: Dordrecht, The Netherlands, 2014; Volume 18, pp. 55–74. [Google Scholar]
- Büttner, G.; Feranec, J.; Jaffrain, G.; Mari, L.; Maucha, G.; Soukup, T. The Corine Land Cover 2000 Project; Springer: Dordrecht, The Netherlands, 2004; Volume 3. [Google Scholar] [CrossRef]
- EEA. CORINE Land Cover 2020; EEA: Copenhagen, Denmark, 2020. [Google Scholar]
- Büttner, G.; Kosztra, B.; Maucha, G.; Pataki, R.; Kleeschulte, S.; Hazeu, G.W.; Vittek, M.; Schroder, C.; Littkopf, A. Copernicus Land Monitoring Service—CORINE Land Cover. In User Manual; Copernicus Publications: Göttingen, Germany, 2021. [Google Scholar]
- Kosztra, B.; Büttner, G.; Hazeu, G.; Arnold, S. Updated CLC Illustrated Nomenclature Guidelines; Service Contract No 3436/R0-Copernicus/EEA. 57441 Task 3, D3. 1—Part; European Environment Agency: Copenhagen, Denmark, 2017. [Google Scholar]
- Heymann, Y.; Steenmans, C.; Croissille, G.; Bossard, M. CORINE Land Cover Technical Guide; EUR 12585; Office for Official Publications of the European Communities: Luxembourg, 1993; pp. 14–15. [Google Scholar]
- Büttner, G.; Soukup, T.; Sousa, A. CLC2006 Technical Guidelines; Technical Report No. 17/2007; European Environment Agency: Luxembourg, 2007. [Google Scholar]
- Feranec, J.; Hazeu, G.; Kosztra, B.; Arnold, S. CORINE Land Cover Nomenclature. In European Landscape Dynamics; CRC Press: Boca Raton, FL, USA, 2016; pp. 47–56. [Google Scholar]
- Maucha, G.; Büttner, G. Others Validation of the European Corine Land Cover 2000 Database. In Proceedings of the 25th EARSeL Symposium on Global Developments in Environmental Earth Observation from Space, Porto, Portugal, 6–11 June 2005; pp. 449–457. [Google Scholar]
- Martínez-Fernández, J.; Ruiz-Benito, P.; Bonet, A.; Gómez, C. Methodological Variations in the Production of CORINE Land Cover and Consequences for Long-Term Land Cover Change Studies. The Case of Spain. Int. J. Remote Sens. 2019, 40, 8914–8932. [Google Scholar] [CrossRef]
- García Álvarez, D.; Camacho Olmedo, M.T. Analysing the Inconsistencies of CORINE Status Layers (CLC) and Layers of Changes (CHA) (1990–2018) for a Spanish Case Study. Ann. GIS 2023, 1–18. [Google Scholar] [CrossRef]
- San-Miguel-Ayanz, J.; Schulte, E.; Schmuck, G.; Camia, A.; Strobl, P.; Liberta, G.; Giovando, C.; Boca, R.; Sedano, F.; Kempeneers, P.; et al. Comprehensive Monitoring of Wildfires in Europe: The European Forest Fire Information System (EFFIS). In Approaches to Managing Disaster—Assessing Hazards, Emergencies and Disaster Impacts; InTech: London, UK, 2012. [Google Scholar]
- Salvador, R.; San-Miguel-Ayanz, J. An Extension of a Nonparametric Clustering Algorithm to Derive Radiometrically Homogeneous Objects Pointed by Seeds. Int. J. Remote Sens. 2002, 23, 1197–1205. [Google Scholar] [CrossRef]
- Boschetti, L.; Roy, D.; Barbosa, P.; Boca, R.; Justice, C. A MODIS Assessment of the Summer 2007 Extent Burnt in Greece. Int. J. Remote Sens. 2008, 29, 2433–2436. [Google Scholar] [CrossRef]
- Achour, H.; Toujani, A.; Trabelsi, H.; Jaouadi, W. Evaluation and Comparison of Sentinel-2 MSI, Landsat 8 OLI, and EFFIS Data for Forest Fires Mapping. Illustrations from the Summer 2017 Fires in Tunisia. Geocarto Int. 2021, 37, 7021–7040. [Google Scholar] [CrossRef]
- Artés, T.; Oom, D.; de Rigo, D.; Durrant, T.H.; Maianti, P.; Libertà, G.; San-Miguel-Ayanz, J. A Global Wildfire Dataset for the Analysis of Fire Regimes and Fire Behaviour. Sci. Data 2019, 6, 296. [Google Scholar] [CrossRef] [PubMed]
- Basias, N.; Pollalis, Y. Quantitative and Qualitative Research in Business & Technology: Justifying a Suitable Research Methodology. Rev. Integr. Bus. Econ. Res. 2018, 7, 91–105. [Google Scholar]
- Saaty, T.L. What Is Relative Measurement? The Ratio Scale Phantom. Math. Comput. Model. 1993, 17, 1–12. [Google Scholar] [CrossRef]
- Reinhart, V.; Fonte, C.C.; Hoffmann, P.; Bechtel, B.; Rechid, D.; Boehner, J. Comparison of ESA Climate Change Initiative Land Cover to CORINE Land Cover over Eastern Europe and the Baltic States from a Regional Climate Modeling Perspective. Int. J. Appl. Earth Obs. Geoinf. 2021, 94, 102221. [Google Scholar] [CrossRef]
- Pflugmacher, D.; Rabe, A.; Peters, M.; Hostert, P. Mapping Pan-European Land Cover Using Landsat Spectral-Temporal Metrics and the European LUCAS Survey. Remote Sens. Environ. 2019, 221, 583–595. [Google Scholar] [CrossRef]
- Vilar, L.; Garrido, J.; Echavarría, P.; Martínez-Vega, J.; Martín, M.P. Comparative Analysis of CORINE and Climate Change Initiative Land Cover Maps in Europe: Implications for Wildfire Occurrence Estimation at Regional and Local Scales. Int. J. Appl. Earth Obs. Geoinf. 2019, 78, 102–117. [Google Scholar] [CrossRef]
- Fonte, C.C.; See, L.; Lesiv, M.; Fritz, S. A Preliminary Quality Analysis of the Climate Change Initiative Land Cover Products for Continental Portugal. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, 42, 1213–1220. [Google Scholar] [CrossRef]
- Bielecka, E.; Jenerowicz, A. Jenerowicz Intellectual Structure of CORINE Land Cover Research Applications in Web of Science: A Europe-Wide Review. Remote Sens. 2019, 11, 2017. [Google Scholar] [CrossRef]
- Cole, B.; Smith, G.; Balzter, H. Acceleration and Fragmentation of CORINE Land Cover Changes in the United Kingdom from 2006–2012 Detected by Copernicus IMAGE2012 Satellite Data. Int. J. Appl. Earth Obs. Geoinf. 2018, 73, 107–122. [Google Scholar] [CrossRef]
- Kucsicsa, G.; Popovici, E.A.; Bălteanu, D.; Grigorescu, I.; Dumitraşcu, M.; Mitrică, B. Future Land Use/Cover Changes in Romania: Regional Simulations Based on CLUE-S Model and CORINE Land Cover Database. Landsc. Ecol. Eng. 2019, 15, 75–90. [Google Scholar] [CrossRef]
- Hysa, A.; Başkaya, F.A.T. A GIS Based Method for Indexing the Broad-Leaved Forest Surfaces by Their Wildfire Ignition Probability and Wildfire Spreading Capacity. Model. Earth Syst. Environ. 2019, 5, 71–84. [Google Scholar] [CrossRef]
- Damianidis, C.; Santiago-Freijanes, J.J.; den Herder, M.; Burgess, P.; Mosquera-Losada, M.R.; Graves, A.; Papadopoulos, A.; Pisanelli, A.; Camilli, F.; Rois-Díaz, M.; et al. Agroforestry as a Sustainable Land Use Option to Reduce Wildfires Risk in European Mediterranean Areas. Agrofor. Syst. 2021, 95, 919–929. [Google Scholar] [CrossRef]
- Pereira, M.G.; Aranha, J.; Amraoui, M. Land Cover Fire Proneness in Europe. For. Syst. 2014, 23, 598–610. [Google Scholar] [CrossRef]
- Moritz, M.A.; Morais, M.E.; Summerell, L.A.; Carlson, J.M.; Doyle, J. Wildfires, Complexity, and Highly Optimized Tolerance. Proc. Natl. Acad. Sci. USA 2005, 102, 17912–17917. [Google Scholar] [CrossRef] [PubMed]
- Pereira, M.G.; Malamud, B.D.; Trigo, R.M.; Alves, P.I. The History and Characteristics of the 1980–2005 Portuguese Rural Fire Database. Nat. Hazards Earth Syst. Sci. 2011, 11, 3343–3358. [Google Scholar] [CrossRef]
- Vetrita, Y.; Cochrane, M.A. Fire Frequency and Related Land-Use and Land-Cover Changes in Indonesia’s Peatlands. Remote Sens. 2019, 12, 5. [Google Scholar] [CrossRef]
- Arvela, A.; Panagopoulos, T.; Cakula, A.; Ferreira, V.; Azevedo, J. Analysis of Landscape Change Following the Construction of the Alqueva Dam, Southern Portugal: Approach and Methods. In Proceedings of the 5th WSEAS International Conference on Landscape Architecture (LA’12); Proceedings of the 1st International Conference on Lakes, Rivers, Groundwater and Sea (LARIGS’12); Proceedings of the 1st International Conference on Sustainable Citi, Faro, Portugal, 2–4 May 2012; pp. 42–47. [Google Scholar]
- Jerry Williams, B.; Leonard, M.; San Miguel-ayanz, J. Findings and Implications from a coarse-scale global assessment of recent selected mega-fires. In Proceedings of the 5th International Wildland Fire Conference, Sun City, South Africa, 9–13 May 2011; pp. 9–13. [Google Scholar]
- Paris, P.; Camilli, F.; Rosati, A.; Mantino, A.; Mezzalira, G.; Dalla Valle, C.; Franca, A.; Seddaiu, G.; Pisanelli, A.; Lauteri, M.; et al. What Is the Future for Agroforestry in Italy? Agrofor. Syst. 2019, 93, 2243–2256. [Google Scholar] [CrossRef]
- Jiang, L.; Jiapaer, G.; Bao, A.; Kurban, A.; Guo, H.; Zheng, G.; De Maeyer, P. Monitoring the Long-Term Desertification Process and Assessing the Relative Roles of Its Drivers in Central Asia. Ecol. Indic. 2019, 104, 195–208. [Google Scholar] [CrossRef]
- Zhang, G.; Biradar, C.M.; Xiao, X.; Dong, J.; Zhou, Y.; Qin, Y.; Zhang, Y.; Liu, F.; Ding, M.; Thomas, R.J. Exacerbated Grassland Degradation and Desertification in Central Asia during 2000–2014. Ecol. Appl. 2018, 28, 442–456. [Google Scholar] [CrossRef]
- Gouveia, C.M.; Bastos, A.; Trigo, R.M.; Dacamara, C.C. Drought Impacts on Vegetation in the Pre- and Post-Fire Events over Iberian Peninsula. Nat. Hazards Earth Syst. Sci. 2012, 12, 3123–3137. [Google Scholar] [CrossRef]
- Gouveia, C.M.; Trigo, R.M.; Beguería, S.; Vicente-Serrano, S.M. Drought Impacts on Vegetation Activity in the Mediterranean Region: An Assessment Using Remote Sensing Data and Multi-Scale Drought Indicators. Glob. Planet. Chang. 2017, 151, 15–27. [Google Scholar] [CrossRef]
- Salvia, R.; Egidi, G.; Vinci, S.; Salvati, L. Desertification Risk and Rural Development in Southern Europe: Permanent Assessment and Implications for Sustainable Land Management and Mitigation Policies. Land 2019, 8, 191. [Google Scholar] [CrossRef]
- Bajocco, S.; Pezzatti, G.B.; Mazzoleni, S.; Ricotta, C. Wildfire Seasonality and Land Use: When Do Wildfires Prefer to Burn? Environ. Monit. Assess. 2010, 164, 445–452. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, S.; Moreira, F.; Boca, R.; San-Miguel-Ayanz, J.; Pereira, J.M.C. Assessment of Fire Selectivity in Relation to Land Cover and Topography: A Comparison between Southern European Countries. Int. J. Wildl. Fire 2013, 23, 620–630. [Google Scholar] [CrossRef]
- Badia, A.; Pallares-Barbera, M.; Valldeperas, N.; Gisbert, M. Wildfires in the Wildland-Urban Interface in Catalonia: Vulnerability Analysis Based on Land Use and Land Cover Change. Sci. Total Environ. 2019, 673, 184–196. [Google Scholar] [CrossRef]
Spatial Dataset | Source | Resolution |
---|---|---|
CORINE Land Cover Changes (CLCC) | European Environment Agency/Copernicus (https://land.copernicus.eu/pan-european/corine-land-cover, accessed on 1 September 2022). | 250 × 103 m2 |
European Forest Fire Information System Burnt Area Dataset (EFFISBA) | European Commission/Joint Research Center (https://effis.jrc.ec.europa.eu/applications/data-and-services, accessed on 1 September 2022) | 62.5 × 103 m2 |
Area | CLCC 2000–2006 | CLCC 2006–2012 | CLCC 2012–2018 | ΣCLCC 2000–2018 |
---|---|---|---|---|
TCLCC (ha) | 7,162,902.2 | 9,374,694.2 | 7,305,670.1 | 23,843,266.5 |
TCLCC/ΣCLCC (%) | 30% | 39% | 31% | 100% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parente, J.; Tonini, M.; Stamou, Z.; Koutsias, N.; Pereira, M. Quantitative Assessment of the Relationship between Land Use/Land Cover Changes and Wildfires in Southern Europe. Fire 2023, 6, 198. https://doi.org/10.3390/fire6050198
Parente J, Tonini M, Stamou Z, Koutsias N, Pereira M. Quantitative Assessment of the Relationship between Land Use/Land Cover Changes and Wildfires in Southern Europe. Fire. 2023; 6(5):198. https://doi.org/10.3390/fire6050198
Chicago/Turabian StyleParente, Joana, Marj Tonini, Zoi Stamou, Nikos Koutsias, and Mário Pereira. 2023. "Quantitative Assessment of the Relationship between Land Use/Land Cover Changes and Wildfires in Southern Europe" Fire 6, no. 5: 198. https://doi.org/10.3390/fire6050198
APA StyleParente, J., Tonini, M., Stamou, Z., Koutsias, N., & Pereira, M. (2023). Quantitative Assessment of the Relationship between Land Use/Land Cover Changes and Wildfires in Southern Europe. Fire, 6(5), 198. https://doi.org/10.3390/fire6050198