Characterization of Medium-Scale Accidental Releases of LNG
Abstract
:1. Introduction
2. Methodology
2.1. Dispersion Test
2.2. Pool Fire
3. Results and Discussion
3.1. Evaporation
3.2. Pool Fire
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Symbol | Definition | Symbol | Definition |
k | Absorption-extinction coefficient | Flame length | |
Ambient temperature | m″ | Mass burning rate per unit area | |
β | Correction for beam length | Mass burning rate per unit area for large pools | |
Evaporation rate per unit area | Pool diameter | ||
Flame area | δ | Tilt angle | |
Flame diameter | Wind speed | ||
Flame height |
References
- Chen, Z.; Zhang, F.; Xu, B.; Zhang, Q.; Liu, J. Influence of methane content on a LNG heavy-duty engine with high compression ratio. Energy 2017, 128, 329–336. [Google Scholar] [CrossRef]
- Osorio-Tejada, J.L.; Llera-Sastresa, E.; Scarpellini, S. Liquefied natural gas: Could it be a reliable option for road freight transport in the EU? Renew. Sustain. Energy Rev. 2017, 71, 785–795. [Google Scholar] [CrossRef] [Green Version]
- Kalghatgi, G.; Levinsky, H.; Colket, M. Future transportation fuels. Prog. Energy Combust. Sci. 2018, 69, 103–105. [Google Scholar] [CrossRef]
- Crippa, M.; Janssens-Maenhout, G.; Guizzardi, D.; Galmarini, S. EU effect: Exporting emission standards for vehicles through the global market economy. J. Environ. Manag. 2016, 183, 959–971. [Google Scholar] [CrossRef]
- Yin, F.; Gangoli, A.; Bhat, A.; Chen, M. Performance assessment of a multi-fuel hybrid engine for future aircraft. Aerosp. Sci. Technol. 2018, 77, 217–227. [Google Scholar] [CrossRef] [Green Version]
- Carboni, M.; Pio, G.; Mocellin, P.; Vianello, C.; Maschio, G.; Salzano, E. Accidental release in the bunkering of LNG: Phenomenological aspects and safety zone. Ocean Eng. 2022, 252, 111163. [Google Scholar] [CrossRef]
- Carboni, M.; Pio, G.; Mocellin, P.; Vianello, C.; Maschio, G.; Salzano, E. On the flash fire of stratified cloud of liquefied natural gas. J. Loss Prev. Process Ind. 2022, 75, 104680. [Google Scholar] [CrossRef]
- Fy, G.; Wand, J.; Yan, M. Anatomy of Tianjin Port Fire and Explosion: Process and Caused. Proc. Saf. Prog. 2016, 35, 216–220. [Google Scholar]
- Mocellin, P.; Vianello, C.; Maschio, G. Facing emerging risks in carbon sequestration networks. A comprehensive source modelling approach. Chem. Eng. Trans. 2018, 67, 295–300. [Google Scholar]
- Chang, Y.T.; Park, H. The impact of vessel speed reduction on port accidents. Accid. Anal. Prev. 2019, 123, 422–432. [Google Scholar] [CrossRef]
- Aneziris, O.; Koromila, I.; Nivolianitou, Z. A systematic literature review on LNG safety at ports. Saf. Sci. 2020, 124, 104595. [Google Scholar] [CrossRef]
- Pio, G.; Salzano, E. The effect of ultra-low temperature on the flammability limits of a methane/air/diluent mixtures. J. Hazard. Mater. 2019, 362, 224–229. [Google Scholar] [CrossRef]
- Masum Jujuly, M.; Rahman, A.; Ahmed, S.; Khan, F. LNG pool fire simulation for domino effect analysis. Reliab. Eng. Syst. Saf. 2015, 143, 19–29. [Google Scholar] [CrossRef]
- Casal, J. Evaluation of the Effects and Consequences of Major Accidents in Industrial Plants; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar]
- American Petroleum Institute. Risk-Based Inspection Technology; American Petroleum Institute: Washington, DC, USA, 2008. [Google Scholar]
- Baalisampang, T.; Abbassi, R.; Garaniya, V.; Khan, F.; Dadashzadeh, M. Modelling an integrated impact of fire, explosion and combustion products during transitional events caused by an accidental release of LNG. Process Saf. Environ. Prot. 2019, 128, 259–272. [Google Scholar] [CrossRef]
- Palacios, A.; Rengel, B. Flame shapes and thermal flux of vertical hydrocarbon flames. Fuel 2020, 276, 118046. [Google Scholar] [CrossRef]
- Ji, J.; Li, F.; Lu, W.; Sun, R.; Wang, K.; Cao, Y. An experimental study on flame geometry in wind-blown pool fires and a new dimensionless parameter. Case Stud. Therm. Eng. 2022, 30, 101782. [Google Scholar] [CrossRef]
- Betteridge, S. Modelling large LNG pool fires on water. J. Loss Prev. Process Ind. 2018, 56, 46–56. [Google Scholar] [CrossRef]
- Raj, P.K. LNG fires: A review of experimental results, models and hazard prediction challenges. J. Hazard. Mater. 2007, 140, 444–464. [Google Scholar] [CrossRef]
- Thomas, P.H. The size of flames from natural fires. Symp. Int. Combust. 1963, 9, 844–859. [Google Scholar] [CrossRef]
- Hottel, H.C.; Noble, J.J.; Sarofim, A.F.; Silcox, G.D.; Wankat, P.C.; Knaebel, K.S. Heat and Mass Transfer. 2008. Available online: http://library.navoiy-uni.uz/files/hottel%20h.c.,%20noble%20j.j.,%20sarofim%20a.f.%20-%20perry%27s%20chemical%20engineers%27%20handbook.%20section%205%20(8th%20edition)(2008)(85s).pdf (accessed on 17 May 2023).
- Babrauskas, V. Estimating large pool fire burning rates. Fire Technol. 1983, 19, 251–261. [Google Scholar] [CrossRef]
- Beyler, C.L. Industrial Fire Protection Engineering, 1st ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2004. [Google Scholar]
- Eddings, E.G.; Yan, S.; Ciro, W.; Sarofim, A.F. Formulation of a Surrogate for the Simulation of Jet Fuel Pool Fires. Combust. Sci. Technol. 2005, 177, 715–739. [Google Scholar] [CrossRef]
- Puttock, J.S.; Colenbrander, G.W.; Blackmore, D.R. Maplin Sands Experiments 1980: Dispersion Results from Continuous Releases of Refrigerated Liquid Propane. In Proceedings of the Heavy Gas Risk Assess—II, Frankfurt am Main, Germany, 25–26 May 1982; Springer: Dordrecht, The Netherlands, 1983. [Google Scholar]
- Fay, J.A. Model of large pool fires. J. Hazard. Mater. 2006, 136, 219–232. [Google Scholar] [CrossRef]
- Zhang, B.; Laboureur, D.M.; Liu, Y.; Gopalaswami, N.; Mannan, M.S. Experimental Study of a Liquefied Natural Gas Pool Fire on Land in the Field. Ind. Eng. Chem. Res. 2018, 57, 14297–14306. [Google Scholar] [CrossRef]
- Chen, J.; Sung, K.; Wang, Z.; Tam, W.C.; Lee, K.Y.; Hamins, A. The evolving temperature field in a 1-m methanol pool fire. J. Fire Sci. 2021, 39, 309–323. [Google Scholar] [CrossRef]
- Yang, R.; Khan, F.; Yang, M.; Kong, D.; Xu, C. A numerical fire simulation approach for effectiveness analysis of fire safety measures in floating liquefied natural gas facilities. Ocean Eng. 2018, 157, 219–233. [Google Scholar] [CrossRef]
- Raj, P.K.; Moussa, A.; Aravamidan, K.; Messrs, P.; Von Thuna, P.; Marchessault, P.J.; Drake, E.M.; Collona, G.; Parnarouskis, M.; Schneider, A.; et al. Experiments Involving Pool and Vapor Fires from Spills of Liquefied Natural Gas on Water; LITTLE (ARTHUR D) Inc.: Cambridge, MA, USA, 1979. [Google Scholar]
- Falkenstein-Smith, R.L.; Sung, K.; Hamins, A. Characterization of Medium-Scale Propane Pool Fires. Fire Technol. 2023, 1–18. [Google Scholar] [CrossRef]
- Chen, J.; Zhao, Y.; Bi, Y.; Li, C.; Kong, D.; Lu, S. Effect of initial pressure on the burning behavior of ethanol pool fire in the closed pressure vessel. Process Saf. Environ. Prot. 2021, 153, 159–166. [Google Scholar] [CrossRef]
- Pio, G.; Salzano, E. Laminar Burning Velocity of Methane, Hydrogen and Their Mixtures at Extremely Low Temperature Conditions. Energy Fuels 2018, 32, 8830–8836. [Google Scholar] [CrossRef]
- Schneider, A.L. Liquefied natural gas spills on water: Fire modelling. J. Fire Flamm. 1980, 12, 302–313. [Google Scholar]
- Hirst, W.J.S.; Eyre, J.A. Maplin Sands Experiments 1980: Combustion of Large LNG and Refrigerated Liquid Propane Spills on the Sea. In Proceedings of the Heavy Gas Risk Assess—II, Frankfurt am Main, Germany, 25–26 May 1982; Hartwig, S., Ed.; Springer: Dordrecht, The Netherlands, 1983. [Google Scholar]
- Nizner, G.A.; Eyre, J.A. Radiation From Liquefied Gas Fires On Water. Combust. Sci. Technol. 1983, 35, 33–57. [Google Scholar] [CrossRef]
- Mizner, G.A.; Eyre, J.A. Large-Scale LNG and LPG Pool Fires; EFCE Publication Series; European Federation of Chemical Engineering: Frankfurt am Main, Germany, 1982. [Google Scholar]
- Gomez, C.H. Experiments for the Measurement of LNG Mass Burning Rates. Ph.D. Thesis, Texas A & M University, College Station, TX, USA, 2011. [Google Scholar]
- Nedelka, D.; Moorhous, J.; Trucker, R.F. The Montoir 35m diameter LNG pool fire experiments. Int. Conf. Liq. Nat. Gas. 1989, 2. Available online: https://www.google.pt/books/edition/The_Montoir_35m_Diameter_LNG_Pool_Fire_E/J3q8HAAACAAJ?hl=it (accessed on 17 May 2023).
- American Gas Association. LNG Safety Program: Interim Report on Phase II Work; Project IS-3-1; American Gas Association: Columbus, OH, USA, 1974. [Google Scholar]
- Moorhouse, J.; Croce, P.A. Thermal radiation from LNG trench fires. Ann. Phys. 1984. [Google Scholar] [CrossRef]
- Luketa-Hanlin, A. A review of large-scale LNG spills: Experiments and modeling. J. Hazard. Mater. 2006, 132, 119–140. [Google Scholar] [CrossRef]
- Boyle, G.J.; Kneebone, A. Laboratory Investigations into the Characteristics of LNG Spills on Water. Evaporation, Spreading and Vapor Dispersion; Report 6-32; Shell Research Ltd., Thornton Research Centre: Thornton, UK, 1973. [Google Scholar]
- Burgess, D.S.; Biordi, J.; Murphy, J. Hazards Associated with the Spillage of LNG on Water; Report 7448; Bureau of Mines: Pittsburgh, PA, USA, 1970.
- Burgess, D.S.; Murphy, J.N.; Zabetakis, M.G. Hazards of LNG Spillage in Marine Transportation; SRS Report No. S4105; U.S. Department of Interior, Bureau of Mines: Pittsburgh, PA, USA, 1970.
- Feldbauer, G.F.; Heigl, J.J.; McQueen, W.; Whipp, R.H.; May, W.G. Spills of LNG on Water Vaporization and Downwind Drift of Combustible Mixtures; American Petroleum Institute: Washington, DC, USA, 1972. [Google Scholar]
- May, W.G.; McQueen, W.; Whipp, R.H. Spills of LNG on Water, Paper 73-D-9; Operation Section Proceedings; American Gas Association: Washington, DC, USA, 1973. [Google Scholar]
- Puttock, J.S.; Blackmore, D.R.; Colenbrander, G.W. Field experiments on dense gas dispersion. J. Hazard. Mater. 1982, 6, 13–41. [Google Scholar] [CrossRef]
- Colenbrander, G.W.; Puttock, J.S. Dense gas dispersion behavior experimental observations and model developments. Fourth Int. Sym. Loss Prev. Saf. 1983, 90, F66–F76. [Google Scholar]
- Koopman, R.P. Data and Calculations on 5m3 LNG Spill Tests, UCRL-52976; Lawrence Livermore Laboratory: Livermore, CA, USA, 1978.
- Baalisampang, T.; Abbassi, R.; Garaniya, V.; Khan, F.; Dadashzadeh, M. Accidental release of Liquefied Natural Gas in a processing facility: Effect of equipment congestion level on dispersion behaviour of the flammable vapour. J. Loss Prev. Process Ind. 2019, 61, 237–248. [Google Scholar] [CrossRef]
- Sun, B.; Guo, K.; Pareek, V.K. Hazardous consequence dynamic simulation of LNG spill on water for ship-to-ship bunkering. Process Saf. Environ. Prot. 2017, 107, 402–413. [Google Scholar] [CrossRef]
- ISO 20519:2017; Ships and Marine Technology—Specification for Bunkering of Liquefied Natural Gas Fuelled Vessels. ISO: Geneva, Switzerland, 2017.
- Society for Gas as a Marine Fuel (SGMF). BASiL—Bunkering Area Safety Information LNG User Guide, Version 6; Available online: https://www.sgmf.info/ (accessed on 1 February 2023).
- Uijt de Haag, P.A.M.; Ale, B.J.M. Purple Book—Guidelines for Quantitative Risk Assessment; Purple Book; RIVM: Hague, The Netherlands, 2005.
- Proust, C.; Jamois, D.; Studer, E. High pressure hydrogen fires. Int. J. Hydrogen Energy 2011, 36, 2367–2373. [Google Scholar] [CrossRef]
- Mocellin, P.; Pio, G.; Carboni, M.; Pilo, F.; Vianello, C.; Salzano, E. On the effectiveness of mitigation strategies for cryogenic applications. J. Loss Prev. Process Ind. 2023, 84, 105123. [Google Scholar] [CrossRef]
- Lee, W.H. Pressure Iteration Scheme for Two-Phase Flow Modeling, 1st ed.; Hemisphere Publishing: Washington, DC, USA, 1980. [Google Scholar]
- Ponchaut, N.F.; Kytömaa, H.K.; Morrison, D.R.; Chernovsky, M.K. Modeling the vapor source term associated with the spill of LNG into a sump or impoundment area. J. Loss Prev. Process Ind. 2011, 24, 870–878. [Google Scholar] [CrossRef]
- Nguyen, L.D.; Kim, M.; Choi, B. An experimental investigation of the evaporation of cryogenic-liquid-pool spreading on concrete ground. Appl. Therm. Eng. 2017, 123, 196–204. [Google Scholar] [CrossRef]
- Gerbec, M.; Vidmar, P.; Pio, G.; Salzano, E. A comparison of dispersion models for the LNG dispersion at port of Koper, Slovenia. Saf. Sci. 2021, 144, 105467. [Google Scholar] [CrossRef]
- Cook, J.; Woodward, J.L. A New Integrated Model for Pool Spreading, Evaporation, and Solution on Land and in Water. In Proceedings of the International Conference on Safety, Health and LP in the Oil, Chemical and Process Industries, Singapore, 15–19 February 1993. [Google Scholar]
- Pitblado, R.M.; Baik, J.; Hughes, G.J.; Ferro, C.; Shaw, S.J. Consequences of LNG Marine Incidents. In Proceedings of the CCPS Conference, Orlando, FL, USA, 29 June–1 July 2004; pp. 1–20. [Google Scholar]
- Suardin, J.A.; Qi, R.; Cormier, B.R.; Rana, M.; Zhang, Y.; Mannan, M.S. Application of fire suppression materials on suppression of LNG pool fires. J. Loss Prev. Process Ind. 2011, 24, 63–75. [Google Scholar] [CrossRef]
- Luketa, A.; Blanchat, T. The phoenix series large-scale methane gas burner experiments and liquid methane pool fires experiments on water. Combust. Flame 2015, 162, 4497–4513. [Google Scholar] [CrossRef] [Green Version]
- BS EN ISO 23306; 2020 BSI Standards Publication Specification of Liquefied Natural Gas as a Fuel for Marine Applications. The British Standards Institution: London, UK, 2020.
- Pio, G.; Ruocco, C.; Palma, V.; Salzano, E. Detailed kinetic mechanism for the hydrogen production via the oxidative reforming of ethanol. Chem. Eng. Sci. 2021, 237, 116591. [Google Scholar] [CrossRef]
- Pio, G.; Dong, X.; Salzano, E.; Green, W.H. Automatically generated model for light alkene combustion. Combust. Flame 2022, 241, 112080. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency. Handbook of Chemical Hazard Analysis Procedures; Federal Emergency Management Agency Publications Office: Washington, DC, USA, 1988.
- Cozzani, V.; Gubinelli, G.; Salzano, E. Escalation thresholds in the assessment of domino accidental events. J. Hazard. Mater. 2006, 129, 1–21. [Google Scholar] [CrossRef]
- Muñoz, M.; Planas, E.; Ferrero, F.; Casal, J. Predicting the emissive power of hydrocarbon pool fires. J. Hazard. Mater. 2007, 144, 725–729. [Google Scholar] [CrossRef]
- Carboni, M.; Pio, G.; Vianello, C.; Maschio, G.; Salzano, E. Large eddy simulation for the rapid phase transition of LNG. Saf. Sci. 2021, 133, 105001. [Google Scholar] [CrossRef]
- Kim, B.K.; Ng, D.; Mentzer, R.A.; Sam Mannan, M. Key parametric analysis on designing an effective forced mitigation system for LNG spill emergency. J. Loss Prev. Process Ind. 2013, 26, 1670–1678. [Google Scholar] [CrossRef]
Scenario | Diameter | Results | Reference | Year |
---|---|---|---|---|
Pool fire on water | 15 | m″ = 0.180 *; 0.495 * kg s−1 m−2 Lf/Dp = 2.8; 4.4 | [31,35] | 1979 |
30 | Lf/Dp = 2.6 | [36,37] | 1980 | |
Pool fire on insulated concrete | 20 | Lf/Dp = 2.15 m″ = 0.106 kg s−1 m−2 | [38] | 1982 |
1.13 ** | Lf/Dp = 3.54 m″ = 0.065 kg s−1 m−2 | [39] | 2011 | |
Pool fire on soil | 35 | Lf/Dp = 2.2 m″ = 0.140 kg s−1 m−2 | [40] | 1989 |
1.8, 6.1 | Lf/Dp ϵ [1.84—3.05] m″ ϵ [0.052—0.104] kg s−1 m−2 | [41] | 1974 | |
7.4 ** | m″ = 0.054 kg s−1 m−2 | [42,43] | 1984 | |
Pool evaporationon water (no fire) | 1.97, 3.63 | m″ = 0.029 kg s−1 m−2 | [44] | 1973 |
0.75, 6.06 | m″ = 0.181 kg s−1 m−2 | [45,46] | 1970 | |
7, 14 | m″ = 0.195 kg s−1 m−2 | [47,48] | 1972 | |
10 | m″ = 0.085 kg s−1 m−2 | [49,50] | 1982 | |
6.82, 7.22 | m″ = 0.120 kg s−1 m−2 | [51] | 1978 | |
Trench fire | 0.22—6.8 | m″ ϵ [0.022—0.13] kg s−1 m−2 | [23] | 1983 |
Transfer System | Size [in] | Pressure (P) [bar] | Substrate | Pool Diameter (Dp) [m] | Mass (m) [kg] |
---|---|---|---|---|---|
Loading arm | 6 | 5.55 | Concrete | 0.80 | 8.4 |
Water | 1.40 | 5.4 | |||
Loading arm | 12 | 7.55 | Concrete | 0.44 | 1.95 |
Water | 0.89 | 2.38 | |||
Flexible hose | 2 | 12.0 | Concrete | 0.35 | 2.55 |
Water | 0.75 | 3.34 |
Test # | Ambient Temperature (Ta) [°C] | Humidity [%] | Wind Velocity (uw) [m s−1] | Wind Direction [°] |
---|---|---|---|---|
Test A | 6.6 | 32 | 0.7 | 96 |
Test B | 3.7 | 44 | 0.5 | 322 |
Test C | 7.0 | 32 | 1.0 | 286 |
Test D | 7.2 | 31 | 1.7 | 22 |
Test E | 6.9 | 31 | 1.4 | 307 |
V1 | V2 | V3 | V4 | H5 | H6 | H7 | H8 | |
---|---|---|---|---|---|---|---|---|
x [m] | 0 | 0 | 0 | 0 | 0.375 | 1.375 | 2.375 | 3.375 |
y [m] | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
z [m] | 4 | 3 | 2 | 1 | 2 | 2 | 2 | 2 |
Hf [m] | Df [m] | Af [m] | [°] | m″ [kg s−1 m−2] | T [°C] (# Thermocouple) | ||
---|---|---|---|---|---|---|---|
Test B | Max | 1.68 | 1.13 | 1.09 | 55 | 0.042 | 173 (V4) |
Average | 1.06 | 0.71 | 0.63 | 33 | - | ||
Min | 0.61 | 0.46 | 0.29 | 3 | - | ||
Test C | Max | 2.39 | 1.31 | 1.88 | 42 | 0.093 | 780 (V4) |
Average | 1.59 | 0.85 | 1.15 | 13 | - | ||
Min | 0.59 | 0.53 | 0.48 | 0 | - | ||
Test D | Max | 2.43 | 1.00 | 1.20 | 50 | 0.119 | 780 (V4) |
Average | 1.39 | 0.62 | 0.54 | 12 | - | ||
Min | 0.31 | 0.23 | 0.01 | 1 | - | ||
Test E | Max | 2.43 | 0.96 | 1.29 | 19 | 0.099 | 790 (V4) |
Average | 1.62 | 0.57 | 0.70 | 6 | - | ||
Min | 0.35 | 0.14 | 0.03 | 0 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mocellin, P.; Pio, G.; Carboni, M.; Pilo, F.; Vianello, C.; Salzano, E. Characterization of Medium-Scale Accidental Releases of LNG. Fire 2023, 6, 257. https://doi.org/10.3390/fire6070257
Mocellin P, Pio G, Carboni M, Pilo F, Vianello C, Salzano E. Characterization of Medium-Scale Accidental Releases of LNG. Fire. 2023; 6(7):257. https://doi.org/10.3390/fire6070257
Chicago/Turabian StyleMocellin, Paolo, Gianmaria Pio, Mattia Carboni, Francesco Pilo, Chiara Vianello, and Ernesto Salzano. 2023. "Characterization of Medium-Scale Accidental Releases of LNG" Fire 6, no. 7: 257. https://doi.org/10.3390/fire6070257
APA StyleMocellin, P., Pio, G., Carboni, M., Pilo, F., Vianello, C., & Salzano, E. (2023). Characterization of Medium-Scale Accidental Releases of LNG. Fire, 6(7), 257. https://doi.org/10.3390/fire6070257