The Role of Fuel Characteristics and Heat Release Formulations in Coupled Fire-Atmosphere Simulation
Abstract
:1. Introduction
2. Methods
2.1. Study Area
2.1.1. Camp Fire as a Wind-Driven Fire
2.1.2. Caldor Fire as a Plume-Driven Fire
2.2. WRF-Fire and Model Setup
2.3. Fire Heat Representation in WRF-Fire
2.4. Canopy Heat Parametrization
2.5. Canopy Mass Loss Rate
2.6. Heat Release Scheme in WRF-Fire
2.6.1. Original Heat Release Scheme
2.6.2. Proposed Heat Release Scheme
2.7. Smoke Emission in WRF-Fire
2.8. Sensitivity Studies
3. Results
3.1. Camp Fire
3.1.1. Fire Progression
3.1.2. Plume
3.1.3. Buoyancy Analysis
3.2. Caldor Fire
3.2.1. Fire Progression
3.2.2. Plume
4. Conclusions
- A new parametrization to calculate the heat from the combustion of thermally thin canopy fuels was developed for the WRF-Fire using canopy burn experiments and physics-based simulations in the literature;
- An improved formulation to distribute fire-generated heat fluxes into the atmosphere was developed using a Truncated Gaussian (TG) functional form to overcome the heat conservation issue of the original heat distribution scheme of WRF-Fire;
- The proposed TG heat distribution scheme was also used to release fire smoke tracers in the atmosphere to account for the effects of fuel height, which can vary significantly depending on the fuel structure (i.e., various combinations of surface and canopy fuels).
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thomas, D.S.; Butry, D.T.; Gilbert, S.W.; Webb, D.H.; Fung, J.F. The Costs and Losses of Wildfires. NIST Spec. Publ. 2017, 1215. [Google Scholar] [CrossRef]
- Burke, M.; Driscoll, A.; Heft-Neal, S.; Xue, J.; Burney, J.; Wara, M. The Changing Risk and Burden of Wildfire in the United States. Proc. Natl. Acad. Sci. USA 2021, 118, e2011048118. [Google Scholar] [CrossRef]
- Westerling, A.L.R. Increasing Western US Forest Wildfire Activity: Sensitivity to Changes in the Timing of Spring. Philos. Trans. R. Soc. B Biol. Sci. 2016, 371, 20150178. [Google Scholar] [CrossRef] [Green Version]
- Westerling, A.L.; Hidalgo, H.G.; Cayan, D.R.; Swetnam, T.W. Warming and Earlier Spring Increase Western U.S. Forest Wildfire Activity. Science 2006, 313, 940–943. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Littell, J.S.; Mckenzie, D.; Peterson, D.L.; Westerling, A.L. Climate and Wildfire Area Burned in Western U.S. Ecoprovinces, 1916–2003. Ecol. Appl. 2009, 19, 1003–1021. [Google Scholar] [CrossRef] [PubMed]
- Abatzoglou, J.T.; Williams, A.P. Impact of Anthropogenic Climate Change on Wildfire across Western US Forests. Proc. Natl. Acad. Sci. USA 2016, 113, 11770–11775. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, R.; Krueger, S.K.; Jenkins, M.A.; Zulauf, M.A.; Charney, J.J. The Importance of Fire–Atmosphere Coupling and Boundary-Layer Turbulence to Wildfire Spread. Int. J. Wildl. Fire 2009, 18, 50–60. [Google Scholar] [CrossRef]
- Clark, T.L.; Jenkins, M.A.; Coen, J.; Packham, D. A Coupled Atmosphere Fire Model: Convective Feedback on Fire-Line Dynamics. J. Appl. Meteorol. Climatol. 1996, 35, 875–901. [Google Scholar] [CrossRef]
- Bakhshaii, A.; Johnson, E.A. A Review of a New Generation of Wildfire–Atmosphere Modeling. Can. J. For. Res. 2019, 49, 565–574. [Google Scholar] [CrossRef] [Green Version]
- Rothermel, R.C. A Mathematical Model for Predicting Fire Spread in Wildland Fuels; USDA Forest Service Research Paper INT; Intermountain Forest & Range Experiment Station, Forest Service, U.S. Department of Agriculture: Ogden, UT, USA, 1972.
- Coen, J.L.; Cameron, M.; Michalakes, J.; Patton, E.G.; Riggan, P.J.; Yedinak, K.M. WRF-Fire: Coupled Weather–Wildland Fire Modeling with the Weather Research and Forecasting Model. J. Appl. Meteorol. Climatol. 2013, 52, 16–38. [Google Scholar] [CrossRef]
- Mandel, J.; Beezley, J.D.; Kochanski, A.K. Coupled Atmosphere-Wildland Fire Modeling with WRF-Fire. Geosci. Model Dev. 2011, 4, 591–610. [Google Scholar] [CrossRef] [Green Version]
- Cansler, C.A.; Swanson, M.E.; Furniss, T.J.; Larson, A.J.; Lutz, J.A. Fuel Dynamics after Reintroduced Fire in an Old-Growth Sierra Nevada Mixed-Conifer Forest. Fire Ecol. 2019, 15, 16. [Google Scholar] [CrossRef] [Green Version]
- Stephens, S.L.; Bernal, A.A.; Collins, B.M.; Finney, M.A.; Lautenberger, C.; Saah, D. Mass Fire Behavior Created by Extensive Tree Mortality and High Tree Density Not Predicted by Operational Fire Behavior Models in the Southern Sierra Nevada. For. Ecol. Manag. 2022, 518, 120258. [Google Scholar] [CrossRef]
- Albini, F.A.; Brown, J.K.; Reinhardt, E.D.; Ottmar, R.D. Calibration of a Large Fuel Burnout Model. Int. J. Wildl. Fire 1995, 5, 173–192. [Google Scholar] [CrossRef]
- Monsanto, P.G.; Agee, J.K. Long-Term Post-Wildfire Dynamics of Coarse Woody Debris after Salvage Logging and Implications for Soil Heating in Dry Forests of the Eastern Cascades, Washington. For. Ecol. Manag. 2008, 255, 3952–3961. [Google Scholar] [CrossRef]
- Accary, G.; Sutherland, D.; Frangieh, N.; Moinuddin, K.; Shamseddine, I.; Meradji, S.; Morvan, D. Physics-Based Simulations of Flow and Fire Development Downstream of a Canopy. Atmosphere 2020, 11, 683. [Google Scholar] [CrossRef]
- Kiefer, M.T.; Zhong, S.; Heilman, W.E.; Charney, J.J.; Bian, X. A Numerical Study of Atmospheric Perturbations Induced by Heat From a Wildland Fire: Sensitivity to Vertical Canopy Structure and Heat Source Strength. J. Geophys. Res. Atmos. 2018, 123, 2555–2572. [Google Scholar] [CrossRef]
- Hoffman, C.M.; Linn, R.; Parsons, R.; Sieg, C.; Winterkamp, J. Modeling Spatial and Temporal Dynamics of Wind Flow and Potential Fire Behavior Following a Mountain Pine Beetle Outbreak in a Lodgepole Pine Forest. Agric. For. Meteorol. 2015, 204, 79–93. [Google Scholar] [CrossRef]
- Shamsaei, K.; Juliano, T.W.; Roberts, M.; Ebrahimian, H.; Kosovic, B.; Lareau, N.P.; Taciroglu, E. Coupled Fire-Atmosphere Simulation of the 2018 Camp Fire Using WRF-Fire. Int. J. Wildl. Fire 2023, 32, 195–221. [Google Scholar] [CrossRef]
- Juliano, T.W.; Lareau, N.; Frediani, M.E.; Shamsaei, K.; Eghdami, M.; Kosiba, K.; Wurman, J.; DeCastro, A.; Kosović, B.; Ebrahimian, H. Toward a Better Understanding of Wildfire Behavior in the Wildland-Urban Interface: A Case Study of the 2021 Marshall Fire. Geophys. Res. Lett. 2023, 50, e2022GL101557. [Google Scholar] [CrossRef]
- Decastro, A.L.; Juliano, T.W.; Kosović, B.; Ebrahimian, H.; Balch, J.K. A Computationally Efficient Method for Updating Fuel Inputs for Wildfire Behavior Models Using Sentinel Imagery and Random Forest Classification. Remote Sens. 2022, 14, 1447. [Google Scholar] [CrossRef]
- Jiménez, P.A.; Muñoz-Esparza, D.; Kosović, B. A High Resolution Coupled Fire–Atmosphere Forecasting System to Minimize the Impacts of Wildland Fires: Applications to the Chimney Tops II Wildland Event. Atmosphere 2018, 9, 197. [Google Scholar] [CrossRef] [Green Version]
- Kochanski, A.K.; Jenkins, M.A.; Mandel, J.; Beezley, J.D.; Krueger, S.K. Real Time Simulation of 2007 Santa Ana Fires. For. Ecol. Manag. 2013, 294, 136–149. [Google Scholar] [CrossRef] [Green Version]
- Kochanski, A.K.; Jenkins, M.A.; Mandel, J.; Beezley, J.D.; Clements, C.B.; Krueger, S. Evaluation of WRF-Sfire Performance with Field Observations from the FireFlux Experiment. Geosci. Model Dev. Discuss. 2012, 6, 121–169. [Google Scholar] [CrossRef] [Green Version]
- Lai, S.; Chen, H.; He, F.; Wu, W. Sensitivity Experiments of the Local Wildland Fire with WRF-Fire Module. Asia-Pac. J. Atmos. Sci. 2020, 56, 533–547. [Google Scholar] [CrossRef] [Green Version]
- Eghdami, M.; Juliano, T.W.; Jiménez, P.A.; Kosovic, B.; Castellnou, M.; Kumar, R.; Vila-Guerau de Arellano, J. Characterizing the Role of Moisture and Smoke on the 2021 Santa Coloma de Queralt Pyroconvective Event Using WRF-Fire. J. Adv. Model. Earth Syst. 2023, 15, e2022MS003288. [Google Scholar] [CrossRef]
- Mallia, D.V.; Kochanski, A.K.; Urbanski, S.P.; Mandel, J.; Farguell, A.; Krueger, S.K. Incorporating a Canopy Parameterization within a Coupled Fire-Atmosphere Model to Improve a Smoke Simulation for a Prescribed Burn. Atmosphere 2020, 11, 832. [Google Scholar] [CrossRef]
- Maranghides, A.; Link, E.; Mell, W.; Hawks, S.; Wilson, M.; Brewer, W.; Brown, C.; Vihnaneck, B.; Walton, W.D. A Case Study of the Camp Fire–Fire Progression Timeline; NIST: Gaithersburg, MD, USA, 2021.
- LANDFIRE (LF) Program: Products–Overview. Available online: https://www.landfire.gov/data_overviews.php (accessed on 1 April 2023).
- Lareau, N.P.; Donohoe, A.; Roberts, M.; Ebrahimian, H. Tracking Wildfires with Weather Radars. J. Geophys. Res. Atmos. 2022, 127, e2021JD036158. [Google Scholar] [CrossRef]
- Schmidt, J. The Effects of Vegetation, Structure Density, and Wind on Structure Loss Rates in Recent Northern California Wildfires. 2022. Available online: https://mpra.ub.uni-muenchen.de/112191/ (accessed on 16 May 2023).
- Caldor Fire|CAL FIRE. Available online: https://www.fire.ca.gov/incidents/2021/8/14/caldor-fire/ (accessed on 16 May 2023).
- Sisson, M. Facing the Fire-Challenges and Triumphs of Western Firefighters in a Changing Climate; University of Montana: Missoula, MT, USA, 2022. [Google Scholar]
- Cadman, T.; Morgan, E.; Baker, B.C.; Hanson, C.T. Cumulative Tree Mortality from Commercial Thinning and a Large Wildfire in the Sierra Nevada, California. Land 2022, 11, 995. [Google Scholar] [CrossRef]
- Muñoz-Esparza, D.; Kosović, B.; Jiménez, P.A.; Coen, J.L. An Accurate Fire-Spread Algorithm in the Weather Research and Forecasting Model Using the Level-Set Method. J. Adv. Model. Earth Syst. 2018, 10, 908–926. [Google Scholar] [CrossRef] [Green Version]
- Scott, J.H.; Burgan, R.E. Standard Fire Behavior Fuel Models: A Comprehensive Set for Use with Rothermel’s Surface Fire Spread Model; US Department of Agriculture, Forest Service, Rocky Mountain Research Station: Bozeman, MT, USA, 2005; Volume 153, pp. 1–76. [CrossRef]
- MesoWest Data. Available online: https://mesowest.utah.edu/ (accessed on 4 May 2023).
- Nakanishi, M.; Niino, H. An Improved Mellor–Yamada Level-3 Model: Its Numerical Stability and Application to a Regional Prediction of Advection Fog. Bound.-Layer Meteorol. 2006, 119, 397–407. [Google Scholar] [CrossRef]
- Deardorff, J.W. Stratocumulus-Capped Mixed Layers Derived from a Three-Dimensional Model. Bound.-Layer Meteorol. 1980, 18, 495–527. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 Global Reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Shamsaei, K.; Juliano, T.W.; Igrashkina, N.; Ebrahimian, H.; Kosovic, B.; Taciroglu, E. WRF-Fire Wikipage. Available online: https://Unr-Wrf-Fire.Rtfd.Io (accessed on 17 April 2023).
- Brown, J.K.; Oberheu, R.D.; Johnston, C.M. Handbook for Inventorying Surface Fuels and Biomass in the Interior West; Forest Service, Intermountain Forest and Range Experiment Station: Ogden, UT, USA, 1982; Volume 129. [CrossRef] [Green Version]
- Parsons, R.A. Spatial Variability in Forest Fuels: Simulation Modeling and Effects on Fire Behavior; University of Montana: Missoula, MT, USA, 2007; ISBN 0549321586. [Google Scholar]
- Reinhardt, E.; Lutes, D.; Scott, J. FuelCalc: A Method for Estimating Fuel Characteristics. In Proceedings of the Fuels Management-How to Measure Success: Conference Proceedings: USDA Forest Service, Rocky Mountain Research Station, Portland, OR, USA, 28–30 March 2006; pp. 273–282. [Google Scholar]
- Scott, J.H.; Reinhardt, E.D. Estimating Canopy Fuels in Conifer Forests. Fire Manag. Today 2002, 62, 45–50. [Google Scholar]
- Reinhardt, E.; Scott, J.; Gray, K.; Keane, R. Estimating Canopy Fuel Characteristics in Five Conifer Stands in the Western United States Using Tree and Stand Measurements. Can. J. For. Res. 2006, 36, 2803–2814. [Google Scholar] [CrossRef]
- Cruz, M.G.; Alexander, M.E.; Wakimoto, R.H. Assessing Canopy Fuel Stratum Characteristics in Crown Fire Prone Fuel Types of Western North America. Int. J. Wildl. Fire 2003, 12, 39–50. [Google Scholar] [CrossRef] [Green Version]
- Contreras, M.A.; Parsons, R.A.; Chung, W. Modeling Tree-Level Fuel Connectivity to Evaluate the Effectiveness of Thinning Treatments for Reducing Crown Fire Potential. For. Ecol. Manag. 2012, 264, 134–149. [Google Scholar] [CrossRef]
- Albini, F.A.; Reinhardt, E.D. Improved Calibration of a Large Fuel Burnout Model. Int. J. Wildl. Fire 1997, 7, 21–28. [Google Scholar] [CrossRef]
- Mell, W.; Maranghides, A.; McDermott, R.; Manzello, S.L. Numerical Simulation and Experiments of Burning Douglas Fir Trees. Combust. Flame 2009, 156, 2023–2041. [Google Scholar] [CrossRef]
- Mell, W.; Jenkins, M.A.; Gould, J.; Cheney, P.; Mell, W.; Jenkins, M.A.; Gould, J.; Cheney, P. A Physics-Based Approach to Modelling Grassland Fires. Int. J. Wildl. Fire 2007, 16, 1–22. [Google Scholar] [CrossRef]
- Parsons, R.A.; Mell, W.; McCauley, P. Modeling the Spatial Distribution of Forest Crown Biomass and Effects on Fire Behavior with FUEL3D and WFDS. In Proceedings of the 6th International Conference on Forest Fire Research, Coimbra, Portugal, 11–18 November 2022; pp. 15–18. [Google Scholar]
- Vedder, J.D. Simple Approximations for the Error Function and Its Inverse. Am. J. Phys. 1987, 55, 762–763. [Google Scholar] [CrossRef]
- Kochanski, A.K.; Mallia, D.V.; Fearon, M.G.; Mandel, J.; Souri, A.H.; Brown, T. Modeling Wildfire Smoke Feedback Mechanisms Using a Coupled Fire-Atmosphere Model With a Radiatively Active Aerosol Scheme. J. Geophys. Res. Atmos. 2019, 124, 9099–9116. [Google Scholar] [CrossRef]
- Mallia, D.V.; Kochanski, A.K.; Kelly, K.E.; Whitaker, R.; Xing, W.; Mitchell, L.E.; Jacques, A.; Farguell, A.; Mandel, J.; Gaillardon, P.E.; et al. Evaluating Wildfire Smoke Transport Within a Coupled Fire-Atmosphere Model Using a High-Density Observation Network for an Episodic Smoke Event Along Utah’s Wasatch Front. J. Geophys. Res. Atmos. 2020, 125, e2020JD032712. [Google Scholar] [CrossRef]
- McCarthy, N.; Guyot, A.; Dowdy, A.; McGowan, H. Wildfire and Weather Radar: A Review. J. Geophys. Res. Atmos. 2019, 124, 266–286. [Google Scholar] [CrossRef] [Green Version]
- Dbz—Glossary of Meteorology. Available online: https://glossary.ametsoc.org/wiki/Dbz (accessed on 27 January 2023).
- Potter, B.E.; Potter, B.E. Atmospheric Interactions with Wildland Fire Behaviour—II. Plume and Vortex Dynamics. Int. J. Wildl. Fire 2012, 21, 802–817. [Google Scholar] [CrossRef]
- Clements, C.B.; Kochanski, A.K.; Seto, D.; Davis, B.; Camacho, C.; Lareau, N.P.; Contezac, J.; Restaino, J.; Heilman, W.E.; Krueger, S.K.; et al. The FireFlux II Experiment: A Model-Guided Field Experiment to Improve Understanding of Fire–Atmosphere Interactions and Fire Spread. Int. J. Wildl. Fire 2019, 28, 308–326. [Google Scholar] [CrossRef] [Green Version]
- Moody, M.J.; Gibbs, J.A.; Krueger, S.; Mallia, D.; Pardyjak, E.R.; Kochanski, A.K.; Bailey, B.N.; Stoll, R.; Moody, M.J.; Gibbs, J.A.; et al. QES-Fire: A Dynamically Coupled Fast-Response Wildfire Model. Int. J. Wildl. Fire 2022, 31, 306–325. [Google Scholar] [CrossRef]
- Clements, C.B.; Lareau, N.P.; Seto, D.; Contezac, J.; Davis, B.; Teske, C.; Zajkowski, T.J.; Hudak, A.T.; Bright, B.C.; Dickinson, M.B.; et al. Fire Weather Conditions and Fire–Atmosphere Interactions Observed during Low-Intensity Prescribed Fires–RxCADRE 2012. Int. J. Wildl. Fire 2015, 25, 90–101. [Google Scholar] [CrossRef]
- Butler, B.; Teske, C.; Jimenez, D.; O’Brien, J.; Sopko, P.; Wold, C.; Vosburgh, M.; Hornsby, B.; Loudermilk, E.; Butler, B.; et al. Observations of Energy Transport and Rate of Spreads from Low-Intensity Fires in Longleaf Pine Habitat–RxCADRE 2012. Int. J. Wildl. Fire 2015, 25, 76–89. [Google Scholar] [CrossRef] [Green Version]
- O’Brien, J.J.; Loudermilk, E.L.; Hornsby, B.; Hudak, A.T.; Bright, B.C.; Dickinson, M.B.; Hiers, J.K.; Teske, C.; Ottmar, R.D.; O’Brien, J.J.; et al. High-Resolution Infrared Thermography for Capturing Wildland Fire Behaviour: RxCADRE 2012. Int. J. Wildl. Fire 2015, 25, 62–75. [Google Scholar] [CrossRef]
- Clements, C.B.; Clements, C.B. Thermodynamic Structure of a Grass Fire Plume. Int. J. Wildl. Fire 2010, 19, 895–902. [Google Scholar] [CrossRef]
- Coen, J.; Mahalingam, S.; Daily, J. Infrared Imagery of Crown-Fire Dynamics during FROSTFIRE. J. Appl. Meteorol. 2004, 43, 1241–1259. [Google Scholar] [CrossRef]
- Alipour, M.; Puma, I.L.; Picotte, J.; Shamsaei, K.; Rowell, E.; Watts, A.; Kosovic, B.; Ebrahimian, H.; Taciroglu, E. A Multimodal Data Fusion and Deep Learning Framework for Large-Scale Wildfire Surface Fuel Mapping. Fire 2023, 6, 36. [Google Scholar] [CrossRef]
Fire | Case Name | Surface Fuel | Canopy Fuel | Heat Release Scheme | Extinction Depth (m) | Peak Heat Release (m) |
---|---|---|---|---|---|---|
Camp Fire | CampBase | LF 2014 | N/A | Exponential Decay | 100 | N/A |
CampCan | LF 2014 | LF 2014 | Exponential Decay | 100 | N/A | |
CampTGH1 | LF 2014 | LF 2014 | Truncated Gaussian | 100 | 0 | |
CampTGH2 | LF 2014 | LF 2014 | Truncated Gaussian | 100 | 25 | |
Caldor Fire | CalBase | LF 2021 Capable | N/A | Exponential Decay | 100 | N/A |
CalCan | LF 2021 Capable | LF 2021 Capable | Exponential Decay | 100 | N/A | |
CalTGH1 | LF 2021 Capable | LF 2021 Capable | Truncated Gaussian | 100 | 0 | |
CalTGH2 | LF 2021 Capable | LF 2021 Capable | Truncated Gaussian | 100 | 25 |
Fire | Case | Maximum Plume Depth (km) | Average Plume Depth (km) | Maximum Temperature (K) | Maximum Updraft (m s−1) |
---|---|---|---|---|---|
Camp Fire | NEXRAD | 6.57 | 4.08 | N/A | N/A |
CampBase | 4.61 | 3.45 | 310 | 12 | |
CampCan | 7.61 | 4.55 | 395 | 32.8 | |
CampTGH1 | 8 | 6.53 | 380 | 25.8 | |
CampTGH2 | 8.59 | 6.61 | 383 | 27 | |
Caldor Fire | NEXRAD | 12.34 | 6.66 | N/A | N/A |
CalBase | 4.79 | 3.52 | 310 | 17.1 | |
CalCan | 8.89 | 6.4 | 368 | 35.3 | |
CalTGH1 | 8 | 5.98 | 357 | 33.5 | |
CalTGH2 | 9.17 | 6.18 | 361 | 34.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shamsaei, K.; Juliano, T.W.; Roberts, M.; Ebrahimian, H.; Lareau, N.P.; Rowell, E.; Kosovic, B. The Role of Fuel Characteristics and Heat Release Formulations in Coupled Fire-Atmosphere Simulation. Fire 2023, 6, 264. https://doi.org/10.3390/fire6070264
Shamsaei K, Juliano TW, Roberts M, Ebrahimian H, Lareau NP, Rowell E, Kosovic B. The Role of Fuel Characteristics and Heat Release Formulations in Coupled Fire-Atmosphere Simulation. Fire. 2023; 6(7):264. https://doi.org/10.3390/fire6070264
Chicago/Turabian StyleShamsaei, Kasra, Timothy W. Juliano, Matthew Roberts, Hamed Ebrahimian, Neil P. Lareau, Eric Rowell, and Branko Kosovic. 2023. "The Role of Fuel Characteristics and Heat Release Formulations in Coupled Fire-Atmosphere Simulation" Fire 6, no. 7: 264. https://doi.org/10.3390/fire6070264
APA StyleShamsaei, K., Juliano, T. W., Roberts, M., Ebrahimian, H., Lareau, N. P., Rowell, E., & Kosovic, B. (2023). The Role of Fuel Characteristics and Heat Release Formulations in Coupled Fire-Atmosphere Simulation. Fire, 6(7), 264. https://doi.org/10.3390/fire6070264