Visibility Evaluation and Suitability Analysis of Fire Lookout Towers in Mediterranean Region, Southwest Anatolia/Türkiye
Abstract
:1. Introduction
- -
- Visibility covering the entire work area (general area);
- -
- Visibility only in forest areas;
- -
- Visibility of towers for 2504 forest fires that occurred between 2008 and 2021;
- -
- The analysis conducted for the study takes into account the Forest Management Directorates, considering the three aforementioned objectives);
- -
- A location suitability analysis has been conducted for the six towers with the lowest visibility.
2. Materials and Methods
2.1. Study Area
2.2. Dataset
2.3. Mapping Process
3. Results
3.1. General and Forest Area Visibility Analysis of Forest Fire Lookout Towers
3.2. Vulnerability Analysis of Forest Fires Occurring in General and Forest Areas between 2008 and 2021
3.3. Visibility Status of Forestry Management Chiefships in Antalya Regional Directorate of Forestry
3.4. Suitability Analysis for Alternative Tower Locations
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Scott, A.C.; Glasspool, I.J. The diversification of Paleozoic fire systems and fluctuations in atmospheric oxygen concentration. Proc. Natl. Acad. Sci. USA 2006, 103, 10861–10865. [Google Scholar] [CrossRef] [PubMed]
- Bowman, D.M.J.S.; Balch, J.K.; Artaxo, P.; Bond, W.J.; Carlson, J.M.; Cochrane, M.A.; D’Antonio, C.M.; DeFries, R.S.; Doyle, J.C.; Harrison, S.P.; et al. Fire in the earth system. Science 2009, 324, 481–484. [Google Scholar] [CrossRef] [PubMed]
- Colombaroli, D.; Vannière, B.; Emmanuel, C.; Magny, M.; Tinner, W. Fire-vegetation interactions during the Mesolithic-Neolithic transition at Lago dell’Accesa, Tuscany, Italy. Holocene 2008, 18, 679–692. [Google Scholar] [CrossRef]
- Vannière, B.; Colombaroli, D.; Chapron, E.; Leroux, A.; Tinner, W.; Magny, M. Climate versus human-driven fire regimes in Mediterranean landscapes: The Holocene record of Lago dell’Accesa (Tuscany, Italy). Quat. Sci. Rev. 2008, 27, 1181–1196. [Google Scholar] [CrossRef] [Green Version]
- Naveh, Z. The evolutionary significance of fire in the mediterranean region. Vegetatio 1975, 29, 199–208. [Google Scholar] [CrossRef]
- Gill, A.M.; Groves, R.H.; Noble, I.R. Fire and the Australian Biota; Australian Academy of Science: Canberra, Australia, 1981; Volume viii, 582, ISBN 0858470578. [Google Scholar]
- Keeley, J.E.; Keeley, S.C. Chaparral. In North American Terrestrial Vegetation; Cambridge University Press: New York, NY, USA, 1988; pp. 165–207. [Google Scholar]
- Richardson, D.M.; van Wilgen, B.W. Ecosystem, Community and Species Response to Fire in Mountain Fynbos: Conclusions from the Swartboskloof Experiment. In Fire in South African Mountain Fynbos: Ecosystem, Community and Species Response at Swartboskloof; van Wilgen, B.W., Richardson, D.M., Kruger, F.J., van Hensbergen, H.J., Eds.; Springer: Berlin/Heidelberg, Germany, 1992; pp. 273–284. ISBN 978-3-642-76174-4. [Google Scholar]
- Mohajane, M.; Costache, R.; Karimi, F.; Bao Pham, Q.; Essahlaoui, A.; Nguyen, H.; Laneve, G.; Oudija, F. Application of remote sensing and machine learning algorithms for forest fire mapping in a Mediterranean area. Ecol. Indic. 2021, 129, 107869. [Google Scholar] [CrossRef]
- Abujayyab, S.K.M.; Kassem, M.M.; Khan, A.A.; Wazirali, R.; Coşkun, M.; Taşoğlu, E.; Öztürk, A.; Toprak, F. Wildfire Susceptibility Mapping Using Five Boosting Machine Learning Algorithms: The Case Study of the Mediterranean Region of Turkey. Adv. Civ. Eng. 2022, 2022, 3959150. [Google Scholar] [CrossRef]
- Johnson, E.A. Fire and Vegetation Dynamics: Studies from the North American Boreal Forest; Cambridge Studies in Ecology; Cambridge University Press: Cambridge, UK, 1992. [Google Scholar]
- Ganteaume, A.; Camia, A.; Jappiot, M.; San-Miguel-Ayanz, J.; Long-Fournel, M.; Lampin, C. A review of the main driving factors of forest fire ignition over Europe. Environ. Manag. 2013, 51, 651–662. [Google Scholar] [CrossRef] [Green Version]
- Ruffault, J.; Mouillot, F. Contribution of human and biophysical factors to the spatial distribution of forest fire ignitions and large wildfires in a French Mediterranean region. Int. J. Wildl. Fire 2017, 26, 498–508. [Google Scholar] [CrossRef] [Green Version]
- Romero-Calcerrada, R.; Barrio-Parra, F.; Millington, J.D.A.; Novillo, C.J. Spatial modelling of socioeconomic data to understand patterns of human-caused wildfire ignition risk in the SW of Madrid (central Spain). Ecol. Model. 2010, 221, 34–45. [Google Scholar] [CrossRef]
- San-Miguel-Ayanz, J.; Camia, A. Forest Fires. In Mapping the İmpacts of Natural Hazards and Technological Accidents in Europe an Overview of the Last Decade; EEA Tech. Rep. N13/2010; European Environment Agency (EEA): Copenhagen, Denmark, 2010; ISBN 978-92-9213-168-5. [Google Scholar] [CrossRef]
- Nyamadzawo, G.; Gwenzi, W.; Kanda, A.; Kundhlande, A.; Masona, C. Understanding the causes, socio-economic and environmental impacts, and management of veld fires in tropical Zimbabwe. Fire Sci. Rev. 2013, 2, 2. [Google Scholar] [CrossRef] [Green Version]
- OGM Ormancılık İstatistikleri, Orman Varlığı 2021. Tarım ve Orman Bakanlığı Orman Genel Müdürlüğü. 2022. Available online: https://www.ogm.gov.tr/tr/e-kutuphane/resmi-istatistikler (accessed on 16 November 2022).
- GM 2021 Yılı Orman Yangınları Değerlendirme Raporu. Tarım ve Orman Bakanlığı Orman Genel Müdürlüğü Muğla Orman Bölge Müdürlüğü, Orman Yangınlarıyla Mücadele Şube Müdürlüğü. 2021. Available online: www.ogm.gov.tr/tr/e-kutuphane-sitesi/Pages/Yangin-Yonetim-Planlari.aspx (accessed on 16 November 2022).
- Partheepan, S.; Sanati, F.; Hassan, J. Autonomous Unmanned Aerial Vehicles in Bushfire Management: Challenges and Opportunities. Drones 2023, 7, 47. [Google Scholar] [CrossRef]
- NPS. Handbook for Fire Lookots; United States Department International National Park Servare: Washington, WA, USA, 1958.
- Wotton, B.M.; Flannigan, M.D.; Marshall, G.A. Potential climate change impacts on fire intensity and key wildfire suppression thresholds in Canada. Environ. Res. Lett. 2017, 12, 095003. [Google Scholar] [CrossRef]
- Di Virgilio, G.; Evans, J.P.; Blake, S.A.P.; Armstrong, M.; Dowdy, A.J.; Sharples, J.; McRae, R. Climate Change Increases the Potential for Extreme Wildfires. Geophys. Res. Lett. 2019, 46, 8517–8526. [Google Scholar] [CrossRef]
- Dowdy, A.J.; Ye, H.; Pepler, A.; Thatcher, M.; Osbrough, S.L.; Evans, J.P.; Di Virgilio, G.; McCarthy, N. Future changes in extreme weather and pyroconvection risk factors for Australian wildfires. Sci. Rep. 2019, 9, 7166. [Google Scholar] [CrossRef] [Green Version]
- Ruffault, J.; Curt, T.; Martin-Stpaul, N.K.; Moron, V.; Trigo, R.M. Extreme wildfire events are linked to global-change-type droughts in the northern Mediterranean. Nat. Hazards Earth Syst. Sci. 2018, 18, 847–856. [Google Scholar] [CrossRef] [Green Version]
- Xu, G.; Zhong, X. Real-time wildfire detection and tracking in Australia using geostationary satellite: Himawari-8. Remote Sens. Lett. 2017, 8, 1052–1061. [Google Scholar] [CrossRef]
- Zhao, Y.; Ma, J.; Li, X.; Zhang, J. Saliency detection and deep learning-based wildfire identification in UAV imagery. Sensors 2018, 18, 712. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sousa, M.J.; Moutinho, A.; Almeida, M. Wildfire detection using transfer learning on augmented datasets. Expert Syst. Appl. 2020, 142, 112975. [Google Scholar] [CrossRef]
- Mistick, K.A.; Dennison, P.E.; Campbell, M.J.; Thompson, M.P. Using Geographic Information to Analyze Wildland Firefighter Situational Awareness: Impacts of Spatial Resolution on Visibility Assessment. Fire 2022, 5, 151. [Google Scholar] [CrossRef]
- Alkhatib, A.A.A. A review on forest fire detection techniques. Int. J. Distrib. Sens. Netw. 2014, 10, 597368. [Google Scholar] [CrossRef] [Green Version]
- Kucuk, O.; Topaloglu, O.; Altunel, A.O.; Cetin, M. Visibility analysis of fire lookout towers in the Boyabat State Forest Enterprise in Turkey. Environ. Monit. Assess. 2017, 189, 329. [Google Scholar] [CrossRef]
- Sakellariou, S.; Samara, F.; Tampekis, S.; Christopoulou, O.; Sfougaris, A. Optimal number and location of watchtowers for immediate detection of forest fires in a small island. Int. J. Agric. Environ. Inf. Syst. 2017, 8, 1–19. [Google Scholar] [CrossRef]
- Shi, X.; Xue, B. Deriving a minimum set of viewpoints for maximum coverage over any given digital elevation model data. Int. J. Digit. Earth 2016, 9, 1153–1167. [Google Scholar] [CrossRef]
- Zhang, F.; Zhao, P.; Thiyagalingam, J.; Kirubarajan, T. Terrain-influenced incremental watchtower expansion for wildfire detection. Sci. Total Environ. 2019, 654, 164–176. [Google Scholar] [CrossRef]
- Eugenio, F.C.; Rosa dos Santos, A.; Fiedler, N.C.; Ribeiro, G.A.; da Silva, A.G.; Juvanhol, R.S.; Schettino, V.R.; Marcatti, G.E.; Domingues, G.F.; Alves dos Santos, G.M.A.D.; et al. GIS applied to location of fires detection towers in domain area of tropical forest. Sci. Total Environ. 2016, 562, 542–549. [Google Scholar] [CrossRef]
- Bao, S.; Xiao, N.; Lai, Z.; Zhang, H.; Kim, C. Optimizing watchtower locations for forest fire monitoring using location models. Fire Saf. J. 2015, 71, 100–109. [Google Scholar] [CrossRef]
- Franklin, R. Siting Observers on Terrain. In Advances in Spatial Data Handling: 10th International Symposium on Spatial Data Handling; Springer: Berlin/Heidelberg, Germany, 2002; pp. 109–120. [Google Scholar] [CrossRef]
- Kim, Y.H.; Rana, S.; Wise, S. Exploring multiple viewshed analysis using terrain features and optimisation techniques. Comput. Geosci. 2004, 30, 1019–1032. [Google Scholar] [CrossRef] [Green Version]
- Franklin, W.R.; Vogt, C. Tradeoffs when multiple observer siting on large terrain cells. In Progress in Spatial Data Handling: 12th İnternational Symposium on Spatial Data Handling; Springer: Berlin/Heidelberg, Germany, 2006; pp. 845–861. [Google Scholar] [CrossRef]
- Magalhães, S.V.G.; Andrade, M.V.A.; Franklin, W.R. An optimization heuristic for siting observers in huge terrains stored in external memory. In Proceedings of the 2010 10th International Conference on Hybrid Intelligent Systems, Atlanta, GA, USA, 23–25 August 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 135–140. [Google Scholar] [CrossRef]
- Ferreira, C.R.; Andrade, M.V.A.; Magalhães, S.V.G.; Franklin, W.R.; Pena, G.C. A Parallel Algorithm for Viewshed Computation on Grid Terrains. J. Inf. Data Manag. 2014, 5, 171–180. [Google Scholar]
- Kudu, U.M.; Bugday, E. Yangın Gözetleme Kuleleri Konumlarının Uygunluğunun Değerlendirilmesi (Ilgaz Orman İşletme Müdürlüğü Örneği). Bartın Orman Fakültesi Derg. 2019, 21, 550–559. [Google Scholar]
- Akay, A.E.; Wing, M.; Büyüksakalli, H.; Malkoçoǧlu, S. Evaluation of fire lookout towers using GIS-based spatial visibility and suitability analyzes. Sumar. List 2020, 144, 279–288. [Google Scholar] [CrossRef]
- Akay, A.E. Assessment of the visibility capabilities of forest fire lookout towers: The case of gemlik, bursa, Turkey. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.-ISPRS Arch. 2021, 46, 27–32. [Google Scholar] [CrossRef]
- OGM. Orman Yangınlarının önlenmesi ve Söndürülmesinde Uygulama Esasları: Tebliğ No: 285. 1995. Available online: https://www.ogm.gov.tr/tr/e-kutuphane/mevzuat (accessed on 21 October 2022).
- OGM. Koordinatlı Yangın İstatistik Verisi. Orman Genel Müdürlüğü Orman Bilgi Sistemi (ORBİS). 2022. Available online: https://orbis.ogm.gov.tr/orbis/ (accessed on 9 March 2022).
- Korale, P.D.; Pade, A.S.; Varghese, A.O.; Joshi, A.K. Mapping of forest fire risk zones and identification of suitable sites for fire watchtowers using remote sensing and GIS. In Proceedings of the ISRS Symposium on Advances in Geo-Spatial Technologies with Special Emphasis on Sustainable Rainfed Agriculture, Nagpur, India, 17–19 September 2009. [Google Scholar] [CrossRef]
- Zhang, F.; Zhao, P.; Xu, S.; Wu, Y.; Yang, X.; Zhang, Y. Integrating multiple factors to optimize watchtower deployment for wildfire detection. Sci. Total Environ. 2020, 737, 139561. [Google Scholar] [CrossRef] [PubMed]
- Sakellariou, S.; Sfoungaris, G.; Christopoulou, O. Territorial Resilience through Visibility Analysis for Immediate Detection of Wildfires Integrating Fire Susceptibility, Geographical Features, and Optimization Methods. Int. J. Disaster Risk Sci. 2022, 13, 621–635. [Google Scholar] [CrossRef]
- Rezaei, J. Best-worst multi-criteria decision-making method. Omega 2015, 53, 49–57. [Google Scholar] [CrossRef]
- Badri Ahmadi, H.; Kusi-Sarpong, S.; Rezaei, J. Assessing the social sustainability of supply chains using Best Worst Method. Resour. Conserv. Recycl. 2017, 126, 99–106. [Google Scholar] [CrossRef]
- Pamucar, D.; Gigovic, L.; Bajic, Z.; Janoševic, M. Location selection for wind farms using GIS multi-criteria hybrid model: An approach based on fuzzy and rough numbers. Sustainability 2017, 9, 1315. [Google Scholar] [CrossRef] [Green Version]
- Mi, X.; Tang, M.; Liao, H.; Shen, W.; Lev, B. The state-of-the-art survey on integrations and applications of the best worst method in decision making: Why, what, what for and what’s next? Omega 2019, 87, 205–225. [Google Scholar] [CrossRef]
- Buğday, E. Evaluation of Forest Fire Watch- Towers Location (Çankırı Sample). In Proceedings of the International Congress on Engineering and Life Sciences-ICELIS, Kastamonu, Türkiye, 11–14 April 2019; pp. 518–522. [Google Scholar]
- Aşkın, Y. CBS Kullanarak Kemalpaşa Dağı’ndaki Orman Yangın Gözetleme Kulelerinin Görünürlük Analizlerinin Yapılması ve Alternatif Gözlem Noktalarının Saptanması. In Proceedings of the 3. Coğrafi Bilgi Sistemleri, Bilişim Günleri, İstanbul, Türkiye, 6–9 October 2004. [Google Scholar]
- Pompa-Garcia, M.; Solís-Moreno, R.; Rodríguez-Téllez, E.; Pinedo-Álvarez, A.; Avila-Flores, D.; Hernández-Díaz, C.; Velasco-Bautista, E. Viewshed Analysis for Improving the Effectiveness of Watchtowers, in the North of Mexico. Open For. Sci. J. 2010, 3, 17–22. [Google Scholar] [CrossRef]
- Sringeswara, A.N.; Shivanna, M.B.; Gowda, B. Forest fire and its management in Kudremukh National Park, Western Ghats, India using Remote Sensing and GIS. In Proceedings of the 13th Esri India User Conference, San Diego, CA, USA, 15–19 July 2012; pp. 1–9. [Google Scholar]
- Akay, A.E.; Sivrikaya, F.; Yenilmez, N.; Taylan, H. Yangın Gözetleme Kulelerinin Lokasyonlarının CBS Ortamında Görünürlük Analizi İle Değerlendirilmesi. In Proceedings of the 1. Ulusal Akdeniz Orman ve Çevre Sempozyumu, Kahramanmaraş, Türkiye, 26–28 October 2011; pp. 226–233. [Google Scholar]
- Akay, A.E.; Erdoğan, A. GIS-Based Multi-criteria Decision Analysis for Forest Fire Risk Mapping. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, 4, 25–30. [Google Scholar] [CrossRef] [Green Version]
- Göltaş, M.; Demirel, T.; Çağlayan, İ. Visibility Analysis of Fire Watchtowers Using GIS: A Case Study in Dalaman State Forest Enterprise. Eur. J. For. Eng. 2017, 3, 66–71. [Google Scholar]
- Akbulak, C.; Özdemir, M. The Application of the Visibility Analysis for Fire Observation Towers in the Gelibolu Peninsula (NW Turkey) Using GIS. In Proceedings of the Conference on Water Observation and Information System for Decision Support: BALWOIS (Balkan Water Observation and Information System), Ohrid, North Macedonia, 27–31 May 2008; pp. 1–7. [Google Scholar]
- Çoban, H.O.; Bereket, H. Visibility analysis of fire lookout towers protecting the mediterranean forest ecosystems in Turkey. Sumar. List 2020, 144, 393–407. [Google Scholar] [CrossRef]
- Kavlak, M.Ö.; Kurtipek, A.; Çabuk, S.N. Coğrafi Bilgi Sistemleri İle Orman Yangını Risk Haritası Oluşturulması: Ören Örneği. Resilience 2020, 4, 33–54. [Google Scholar] [CrossRef]
- Asri, İ.; Çorumluoğlu, Ö.; Özdemir, E. Uydu Verilerinden Elde Edilmis Sayısal Yükseklik Modeli ile CBS Ortamında Orman Yangın Gözetleme Kulelerinin Görebilirlik Analizi: İzmir Örnegi. In Proceedings of the Türkiye Ulusal Fotogrametri ve Uzaktan Algılama Birliği (TUFUAB) VIII. Teknik Sempozyumu, Konya, Türkiye, 21–23 May 2015; pp. 358–363. [Google Scholar]
- Akay, A.E.; Erdoğan, A. Assessment of Fire Watch Towers by using Visibility Analysis: The Case of Dursunbey, Balıkesir. In International Symposium on New Horizons in Forestry; Süleyman Demirel University, Faculty of Forestry Publication: Isparta, Türkiye, 2017; pp. 119–125. [Google Scholar]
- Catry, F.X.; Rego, F.C.; Santos, T.; Almeida, J.; Relvas, P. Forest fires prevention in Portugal—Using GIS to help improving early fire detection effectiveness. In Proceedings of the 4th International Wildland Fire Conference, Sevilla, Spain, 14–17 May 2007; pp. 13–17. [Google Scholar]
- URL-1 URL-1. Available online: https://www.ogm.gov.tr/tr/e-kutuphane/kitaplik/yangin-yonetim-planlari (accessed on 21 October 2022).
- Pausas, J.G. What Is a Fire and What Is a Forest Fire? 2012. Available online: https://www.uv.es/jgpausas/files/PCF_DECALOGUE_en.pdf (accessed on 9 March 2022).
Items | Meaning |
---|---|
SPOT | Height of the observation point above sea level |
OFFSETA | Height of the observation point |
OFFSETB | Smoke height |
AZIMUT1 | Start of observation point scanning angle |
AZIMUT2 | End of observation point scanning angle |
VERT1 | Upper horizontal angle limit of the observation point scanning angle |
VERT2 | Lower horizontal angle limit of the observation point scanning angle |
RADIUS1 | Start of observation point visibility range |
RADIUS2 | End of observation point visibility range |
Factor | Weights | Sub-Criteria | Weights |
---|---|---|---|
Elevation (m) | 0.477 | 0–250 | 1 |
250–500 | 2 | ||
500–750 | 3 | ||
750–1000 | 4 | ||
1000–1250 | 5 | ||
1250–1500 | 7 | ||
1500–2000 | 9 | ||
2000–2500 | 7 | ||
2500–3063 | 5 | ||
Slope (°) | 0.140 | 0–4 | 9 |
4–6 | 8 | ||
6–10 | 7 | ||
10–12 | 6 | ||
12–20 | 5 | ||
20–25 | 4 | ||
25–30 | 3 | ||
30–40 | 2 | ||
40+ | 1 | ||
Aspect | 0.140 | Flat | 9 |
North | 3 | ||
Northeast | 5 | ||
East | 5 | ||
Southeast | 7 | ||
South | 9 | ||
Southwest | 7 | ||
West | 5 | ||
Northwest | 5 | ||
Curvature | 0.056 | Concave | 7 |
Flat | 5 | ||
Convex | 9 | ||
Distance to towers (m) | 0.187 | 0–6083 | 9 |
6083–12,167 | 8 | ||
12,167–18,250 | 7 | ||
18,250–24,334 | 6 | ||
24,334–30,417 | 5 | ||
30,417–36,501 | 4 | ||
36,501–42,584 | 3 | ||
42,584–48,668 | 2 | ||
48,668–54,752 | 1 |
Fire Towers | Scenario I | Scenario II | ||||
---|---|---|---|---|---|---|
Visible General Area (%) | Visible Forest Area (%) | Visible Fire Number (%) | Visible General Area (%) | Visible Forest Area (%) | Visible Fire Number (%) | |
Akçagedik | 32.81 | 32.83 | 27.34 | 15.92 | 16.17 | 10.07 |
Akyokuş | 44.90 | 48.48 | 81.82 | 11.85 | 15.56 | 54.55 |
Alıç | 36.03 | 35.67 | 63.58 | 12.23 | 12.61 | 23.46 |
Arıtaş | 9.27 | 10.35 | 8.66 | 2.57 | 3.02 | 3.15 |
Asar | 78.26 | 73.15 | 93.55 | 46.93 | 39.13 | 55.65 |
Asarbaşı | 22.54 | 24.49 | 35.71 | 10.96 | 12.07 | 20.24 |
Bodrumkaya | 13.30 | 15.73 | 12.71 | 6.08 | 7.03 | 4.42 |
Bozkaya | 57.98 | 60.35 | 94.12 | 30.43 | 29.96 | 50.74 |
Çakılıca | 33.37 | 33.40 | 50.61 | 13.07 | 13.01 | 24.39 |
Çalış | 37.47 | 35.22 | 42.37 | 18.47 | 16.68 | 20.34 |
Çamdağ | 58.23 | 62.08 | 55.32 | 18.14 | 19.73 | 21.28 |
Çıralı | 26.00 | 26.49 | 19.83 | 11.19 | 11.76 | 9.92 |
Çıvkuş | 22.81 | 29.61 | 1.02 | 11.40 | 14.64 | 1.02 |
Dağbaşı | 44.68 | 44.54 | 47.41 | 24.69 | 24.91 | 16.30 |
Dedebeleni | 23.13 | 21.85 | 17.24 | 11.78 | 11.01 | 8.05 |
Dernek | 38.24 | 39.08 | 28.71 | 16.72 | 17.56 | 11.88 |
Doyran | 36.73 | 26.48 | 50.00 | 7.72 | 8.40 | 12.00 |
Dumandağ | 60.68 | 58.69 | 72.00 | 33.26 | 29.05 | 45.33 |
Erentepe | 59.12 | 54.19 | 66.93 | 31.68 | 24.95 | 33.86 |
Ertaş | 54.11 | 47.14 | 54.79 | 31.34 | 22.36 | 35.62 |
Evliyatepe | 34.47 | 31.46 | 42.05 | 13.33 | 9.91 | 12.50 |
Gelintepesi | 49.04 | 45.57 | 55.00 | 15.59 | 14.14 | 19.09 |
Göğü | 40.63 | 32.32 | 19.31 | 18.16 | 11.57 | 7.93 |
Güğü | 38.56 | 43.59 | 31.58 | 13.39 | 15.43 | 12.87 |
Gülen | 59.22 | 59.10 | 66.02 | 25.16 | 24.56 | 28.64 |
Güllük | 38.79 | 44.34 | 48.98 | 20.39 | 21.82 | 29.93 |
Hıdır | 58.95 | 56.20 | 42.69 | 33.78 | 29.29 | 25.73 |
Karadağ | 44.67 | 45.02 | 51.47 | 21.53 | 21.67 | 30.15 |
Karasivri | 27.17 | 39.03 | 0.00 | 13.19 | 19.71 | 0.00 |
Karatepe | 37.97 | 36.98 | 26.23 | 16.28 | 15.30 | 13.11 |
Karlık | 52.91 | 53.69 | 66.04 | 21.71 | 22.39 | 18.87 |
Kartallık | 50.18 | 47.51 | 76.65 | 17.23 | 16.14 | 28.40 |
Katran | 40.95 | 44.29 | 38.31 | 15.20 | 16.84 | 12.44 |
Kayrak | 35.22 | 24.77 | 48.17 | 5.94 | 5.83 | 3.67 |
Kocatepe | 52.11 | 40.93 | 51.19 | 11.46 | 8.75 | 11.90 |
Kozlupınar | 8.94 | 9.30 | 8.42 | 4.58 | 4.92 | 3.16 |
Kurşunlu | 77.40 | 79.56 | 86.89 | 12.46 | 16.15 | 13.52 |
Ladintepe | 42.37 | 43.39 | 43.59 | 18.89 | 19.67 | 21.37 |
Pancarlık | 32.73 | 31.88 | 68.03 | 15.02 | 14.04 | 32.79 |
Pınarbaşı | 42.88 | 46.69 | 50.79 | 12.53 | 13.90 | 11.11 |
Sarıkaya | 28.60 | 26.75 | 46.84 | 14.35 | 13.41 | 22.78 |
Sivastı | 43.73 | 42.06 | 59.70 | 20.30 | 19.84 | 28.36 |
Sivri | 58.68 | 52.83 | 79.94 | 19.90 | 15.68 | 26.74 |
Sivrice | 42.45 | 39.44 | 54.55 | 9.15 | 9.05 | 7.14 |
Soğanlı | 39.86 | 34.39 | 22.39 | 23.85 | 15.69 | 5.97 |
Sülümentepe | 46.83 | 46.85 | 45.19 | 21.34 | 21.04 | 19.23 |
Tünektepe | 29.32 | 29.92 | 49.62 | 10.47 | 10.81 | 19.08 |
Türkbeleni | 77.32 | 67.47 | 86.30 | 17.71 | 17.30 | 24.32 |
Yaylacık | 55.03 | 56.86 | 58.21 | 20.93 | 22.09 | 16.42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cosgun, U.; Coşkun, M.; Toprak, F.; Yıldız, D.; Coşkun, S.; Taşoğlu, E.; Öztürk, A. Visibility Evaluation and Suitability Analysis of Fire Lookout Towers in Mediterranean Region, Southwest Anatolia/Türkiye. Fire 2023, 6, 305. https://doi.org/10.3390/fire6080305
Cosgun U, Coşkun M, Toprak F, Yıldız D, Coşkun S, Taşoğlu E, Öztürk A. Visibility Evaluation and Suitability Analysis of Fire Lookout Towers in Mediterranean Region, Southwest Anatolia/Türkiye. Fire. 2023; 6(8):305. https://doi.org/10.3390/fire6080305
Chicago/Turabian StyleCosgun, Ufuk, Mücahit Coşkun, Ferhat Toprak, Damla Yıldız, Sevda Coşkun, Enes Taşoğlu, and Ahmet Öztürk. 2023. "Visibility Evaluation and Suitability Analysis of Fire Lookout Towers in Mediterranean Region, Southwest Anatolia/Türkiye" Fire 6, no. 8: 305. https://doi.org/10.3390/fire6080305
APA StyleCosgun, U., Coşkun, M., Toprak, F., Yıldız, D., Coşkun, S., Taşoğlu, E., & Öztürk, A. (2023). Visibility Evaluation and Suitability Analysis of Fire Lookout Towers in Mediterranean Region, Southwest Anatolia/Türkiye. Fire, 6(8), 305. https://doi.org/10.3390/fire6080305