Summer Compound Drought-Heat Extremes Amplify Fire-Weather Risk and Burned Area beyond Historical Thresholds in Chongqing Region, Subtropical China
Abstract
:1. Introduction
2. Study Region, Materials and Methods
2.1. Study Region and Ecological Significance
- (a)
- Sichuan Basin evergreen broadleaf forests;
- (b)
- Daba Mountains evergreen forests;
- (c)
- Guizhou Plateau broadleaf and evergreen forests [17].
2.2. Burned Area (2001–2022)
2.3. Fire-Weather Variables (2001–2022)
2.4. Spatiotemporal Analyses
3. Results
3.1. Cumulative Burned Area
3.2. Fire-Weather Variables
3.3. Spatiotemporal Patterns of Fire Weather (VPD) and Fire Activity (Burned Area)
4. Discussion
4.1. Summer CDHEs Have Serious Implications for Fire Activity (Burned Area) and Fire-Weather (Risk); What Alters the Balance between Winter and Summer Burned Area
4.2. Ecological Considerations in the Era of Anthropogenic Global Warming
4.3. Limitations and Future Work
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Jones, M.W.; Abatzoglou, J.T.; Veraverbeke, S.; Andela, N.; Lasslop, G.; Forkel, M.; Smith, A.J.P.; Burton, C.; Betts, R.A.; van der Werf, G.R.; et al. Global and Regional Trends and Drivers of Fire Under Climate Change. Rev. Geophys. 2022, 60, e2020RG000726. [Google Scholar] [CrossRef]
- Dong, C.; Williams, A.P.; Abatzoglou, J.T.; Lin, K.; Okin, G.S.; Gillespie, T.W.; Long, D.; Lin, Y.-H.; Hall, A. The season for large fires in Southern California is projected to lengthen in a changing climate. Commun. Earth Environ. 2022, 3, 22. [Google Scholar] [CrossRef]
- Arias, P.A.; Bellouin, N.; Coppola, E.; Jones, R.G.; Krinner, G.; Marotzke, J.; Naik, V.; Palmer, M.D.; Plattner, G.-K.; Rogelj, J.; et al. Technical Summary. In Climate Change 2021: The Physical Science Basis Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021; pp. 33–144. [Google Scholar]
- Ridder, N.N.; Ukkola, A.M.; Pitman, A.J.; Perkins-Kirkpatrick, S.E. Increased occurrence of high impact compound events under climate change. Clim. Atmos. Sci. (Nat. Partn. J.) 2022, 5, 3. [Google Scholar] [CrossRef]
- Yu, R.; Zhai, P.M. More frequent and widespread persistent compound drought and heat event observed in China. Sci. Rep. 2020, 10, 14576. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Dong, B.W. Projected near-term changes in temperature extremes over China in the mid-twenty-first century and underlying physical processes. Clim. Dyn. 2021, 56, 1879–1894. [Google Scholar] [CrossRef]
- de Dios, V.R.; Fellows, A.W.; Nolan, R.H.; Boer, M.M.; Bradstock, R.A.; Domingo, F.; Goulden, M.L. A semi-mechanistic model for predicting the moisture content of fine litter. Agric. For. Meteorol. 2015, 203, 64–73. [Google Scholar] [CrossRef]
- Resco-de-Dios, V.; Camprubí, A.C.; He, Y.P.; Han, Y.; Yao, Y.A. North-south antiphase of wildfire activity across the pyroregions of continental China driven by NAO and the Antarctic oscillation. Sci. Total Environ. 2023, 859, 160386. [Google Scholar] [CrossRef] [PubMed]
- Ma, F.; Yuan, X.; Li, H. Characteristics and circulation patterns for wet and dry compound day-night heat waves in mid-eastern China. Glob. Planet. Chang. 2022, 213, 103839. [Google Scholar] [CrossRef]
- Su, Q.; Dong, B.W. Recent Decadal Changes in Heat Waves over China: Drivers and Mechanisms. J. Clim. 2019, 32, 4215–4234. [Google Scholar] [CrossRef]
- Gamelin, B.L.; Feinstein, F.; Wang, J.L.; Bessac, J.; Yan, E.; Kotamarthi, V.R. Projected, U.S. drought extremes through the twenty-first century with vapor pressure deficit. Sci. Rep. 2022, 12, 8615. [Google Scholar] [CrossRef]
- Grossiord, C.; Buckley, T.N.; Cernusak, L.A.; Novick, K.A.; Poulter, B.; Siegwolf, R.T.W.; Sperry, J.S.; McDowell, N.G. Plant responses to rising vapor pressure deficit. New Phytol. Tansley Rev. 2020, 226, 1550–1566. [Google Scholar] [CrossRef] [PubMed]
- Resco-de-Dios, V.; Camprubí, À.C.; Pérez-Zanón, N.; Peña, J.C.; del Castillo, E.M.; Rodrigues, M.; Yao, Y.; Yebra, M.; Vega-García, C.; Boer, M.M. Convergence in critical fuel moisture and fire weather thresholds associated with fire activity in the pyroregions of Mediterranean Europe. Sci. Total Environ. 2022, 806, 151462. [Google Scholar] [CrossRef]
- Jain, P.; Castellanos-Acuna, D.; Coogan, S.C.P.; Abatzoglou, J.T.; Flannigan, M.D. Observed increases in extreme fire weather driven by atmospheric humidity and temperature. Nat. Clim. Chang. 2022, 12, 63–70. [Google Scholar] [CrossRef]
- Clarke, H.; Nolan, R.H.; Resco De Dios, V.; Bradstock, R.; Griebel, A.; Khanal, S.; Boer, M.M. Forest fire threatens global carbon sinks and population centres under rising atmospheric water demand. Nat. Commun. 2022, 13, 7161. [Google Scholar] [CrossRef] [PubMed]
- Balch, J.K.; Abatzoglou, J.T.; Joseph, M.B.; Koontz, M.J.; Mahood, A.L.; McGlinchy, J.; Cattau, M.E.; Williams, A.P. Warming weakens the night-time barrier to global fire. Nat. Vol. 2022, 602, 442–448. [Google Scholar] [CrossRef] [PubMed]
- Dinerstein, E.; Olson, D.; Joshi, A.; Vynne, C.; Burgess, N.D.; Wikramanayake, E.; Hahn, N.; Palminteri, S.; Hedao, P.; Noss, R.; et al. An Ecoregion-Based Approach to Protecting Half the Terrestrial Realm. Bioscience 2017, 67, 534–545. [Google Scholar] [CrossRef] [PubMed]
- Tang, C.Q. The Subtropical Vegetation of Southwestern China: Plan Distribution, Diversity and Ecology; Springer: Dordrecht, The Netherlands, 2015; p. 363. [Google Scholar]
- Qi, P.W.; Zhang, X. Spatiotemporal variation characteristics and driving factors of vegetation cover in Chongqing from 2000 to 2019. Acta Ecol. Sin. 2022, 42, 5427–5436. (In Chinese) [Google Scholar]
- Chongqing Municipal Government. Notice Issued by the Chongqing Municipal People’s Government on Chongqing’s 14th Five-Year Plan (2021–2025) for Building an Important Ecological Barrier in the Upper Reaches of the Yangtze River. 2021. Available online: http://www.cq.gov.cn/zwgk/zfxxgkml/szfwj/qtgw/202105/t20210526_9329658.html (accessed on 10 August 2023). (In Chinese)
- Bai, Y.Y.; Gao, Y.H.; Zhang, Y.L.; Li, Y.H.; Wang, Z. The impact of climate change on high temperature, drought, and flood disasters in Chongqing. Meteorol. Mon. 2010, 36, 47–54. (In Chinese) [Google Scholar]
- Mao, F.Y.; Li, X.H. Spatial and Temporal Distribution Characteristics of Drought in Southwest China in 56a Based on Daily MCI. Clim. Chang. Res. Lett. 2019, 8, 812–820. (In Chinese) [Google Scholar] [CrossRef]
- Yu, R.; Zhai, P.M. Changes in compound drought and hot extreme events in summer overpopulated eastern China. Weather. Clim. Extrem. 2020, 30, 100295. [Google Scholar] [CrossRef]
- Shi, Z.T.; Jia, G.S.; Zhou, Y.Y.; Xu, X.Y.; Jiang, Y. Amplified intensity and duration of heatwaves by concurrent droughts in China. Atmos. Res. 2021, 261, 105743. [Google Scholar] [CrossRef]
- China Central Government. In 2006, the Severe Drought in Chongqing Made the Average Annual Temperature 1.4 °C Higher. 2007. Available online: https://www.gov.cn/jrzg/2007-01/10/content_492376.htm (accessed on 10 August 2023). (In Chinese)
- China Meteorological Administration. Keep Improving, Effectively Deal with Super High Temperature and Drought. 2022. Available online: https://www.cma.gov.cn/ztbd/2022zt/20221028/2022102802/202210/t20221030_5155527.html (accessed on 10 August 2023). (In Chinese)
- China Meteorological Administration. Under the Extreme High Temperature, the Drought in the Yangtze River Basin Is Urgent—Six Questions about the Rare Drought in the Yangtze River Basin. 2022. Available online: https://www.cma.gov.cn/wmhd/2011wzbft/2011wftzb/202208/t20220819_5043860.html (accessed on 10 August 2023). (In Chinese)
- Wu, P. Under Extreme High Temperature, Understanding the Drought in the Yangtze River Basin Is Urgent. China Meteorological Newspaper, 19 August 2022. (In Chinese) [Google Scholar]
- Artés, T.; Oom, D.; de Rigo, D.; Durrant, T.H.; Maianti, P.; Libertà, G. A global wildfire dataset for the analysis of fire regimes and fire behaviour. Sci. Data 2019, 6, 286. [Google Scholar] [CrossRef] [PubMed]
- Giglio, L.; Justice, C.; Boschetti, L.; Roy, D. MODIS/Terra + Aqua Burned Area Monthly L3 Global 500 m SIN Grid V061 [Data Set]; NASA EOSDIS Land Processes Distributed Active Archive Center: Sioux Falls, SD, USA, 2021. [CrossRef]
- Giglio, L.; Schroeder, W.; Justice, C.O. The collection 6 MODIS active fire detection algorithm and fire products. Remote Sens. Environ. 2016, 178, 31–41. [Google Scholar] [CrossRef] [PubMed]
- Giglio, L.; Descloitres, J.; Justice, C.O.; Kaufman, Y.J. An Enhanced Contextual Fire Detection Algorithm for, M.O.D.I.S. Remote Sens. Environ. 2003, 87, 273–282. [Google Scholar] [CrossRef]
- Muñoz-Sabater, J.; Dutra, E.; Agustí-Panareda, A.; Albergel, C.; Arduini, G.; Balsamo, G.; Boussetta, S.; Choulga, M.; Harrigan, S.; Hersbach, H.; et al. ERA5-Land: A state-of-the-art global reanalysis dataset for land applications. Earth Syst. Sci. Data 2021, 13, 4349–4383. [Google Scholar] [CrossRef]
- Pebesma, E.; Graeler, B. Package ‘gstat’. Cran, 2014, pp. 1–79. Available online: http://52north.org/geostatistics (accessed on 15 June 2023).
- Rodrigues, M.; Camprubí, À.C.; Balaguer-Romano, R.; Megía, C.J.C.; Castañares, F.; Ruffault, J.; Fernandes, P.M.; de Dios, V.R. Drivers and implications of the extreme 2022 wildfire season in Southwest Europe. Sci. Total Environ. 2023, 859, 160320. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Li, Q.; Liu, D.; Chen, D.; Hu, C.M. Variation Characteristics of Forest Fire Danger and Analysis on Meteorological Conditions in Chongqing. J. Arid. Meteorol. 2014, 32, 744–750. (In Chinese) [Google Scholar]
- Chen, Y.Y.; You, Y.S.; He, Z.M.; Zeng, Y. Analysis on Temporal—Spatial Feature of Forest Fires in Chongqing. Chin. Agric. Sci. Bull. 2014, 30, 51–58. [Google Scholar]
- Richardson, D.; Black, A.S.; Irving, D.; Matear, R.J.; Monselesan, D.P.; Risbey, J.S.; Squire, D.T. Global increase in wildfire potential from compound fire weather and drought. Clim. Atmos. Sci. (Nat. Partn. J.) 2022, 5, 23. [Google Scholar] [CrossRef]
- Chongqing Municipal Government. Stabilize the Forest Fire Damage Rate to Less Than 0.3‰ Chongqing Set This Work Target in 2023. Available online: https://www.cq.gov.cn/ywdt/jrcq/202303/t20230309_11728354.html (accessed on 10 August 2023). (In Chinese)
- Boer, M.M.; Resco-de-Dios Bradstock, R.A. Unprecedented burn area of Australian mega forest fires. Nat. Clim. Chang. 2020, 10, 170. [Google Scholar] [CrossRef]
- Bradstock, R.A. A biogeographic model of fire regimes in Australia: Current and future implications. Glob. Ecol. Biogeogr. 2010, 19, 145–158. [Google Scholar] [CrossRef]
- Nolan, R.H.; Blackman, C.J.; de Dios, V.R.; Choat, B.; Medlyn, B.E.; Li, X.; Bradstock, R.A.; Boer, M.M. Linking Forest Flammability and Plant Vulnerability to Drought. Forests 2020, 11, 779. [Google Scholar] [CrossRef]
- Hou, D. Investigation on Existing Issues and Strategies Concerning the Protection of Forest Resources in Chongqing City. Master’s Thesis, Southwest University, Chongqing, China, 2022. (In Chinese). [Google Scholar]
- Yuan, J.; Jiang, H.; Xu, J. Analysis on Regularity and Trend of Forest Fire in Chongqing. J. Zhejiang For. Sci. Technol. 2013, 33, 74–78. [Google Scholar]
- Zhao, W.J. Extreme weather and climate events in China under changing climate. Natl. Sci. Rev. 2020, 7, 938–943. [Google Scholar] [CrossRef] [PubMed]
- Nolan, R.H.; Boer, M.M.; de Dios, V.R.; Caccamo, G.; Bradstock, R.A. Large-scale, dynamic transformations in fuel moisture drive wildfire activity across southeastern Australia. Geophys. Res. Lett. 2016, 43, 4229–4238. [Google Scholar] [CrossRef]
- Nolan, R.H.; Boer, M.M.; Collins, L.; de Dios, V.R.; Clarke, H.; Jenkins, M.; Kenny, B.; Bradstock, R.A. Causes and consequences of eastern Australia’s 2019–2020 season of mega-fires. Glob. Chang. Biol. 2020, 26, 1039–1041. [Google Scholar] [CrossRef] [PubMed]
- Abram, N.J.; Henley, B.J.; Gupta, A.S.; Lippmann, T.J.R.; Clarke, H.; Dowdy, A.J.; Sharples, J.J.; Nolan, R.H.; Zhang, T.; Wooster, M.J.; et al. Connections of climate change and variability to large and extreme forest fires in southeast Australia. Commun. Earth Environ. 2021, 2, 8. [Google Scholar] [CrossRef]
- Squire, D.T.; Richardson, D.; Risbey, J.S.; Black, A.S.; Kitsios, V.; Matear, R.J.; Monselesan, D.; Moore, T.S. Likelihood of unprecedented drought and fire weather during Australia’s 2019 megafires. Clim. Atmos. Sci. (Nat. Partn. J.) 2021, 4, 64. [Google Scholar] [CrossRef]
- Williams, A.P.; Abatzoglou, J.T.; Gershunov, A.; Guzman-Morales, J.; Bishop, D.A.; Balch, J.K.; Lettenmaier, D.P. Observed Impacts of Anthropogenic Climate Change on Wildfire in California. Earth’s Future 2019, 7, 892–910. [Google Scholar] [CrossRef]
- Khorshidi, M.S.; Dennison, P.E.; Nikoo, M.R.; AghaKouchak, A.; Luce, C.H.; Sadegh, M. Increasing concurrence of wildfire drivers tripled megafire critical danger days in Southern California between 1982 and 2018. Environ. Res. Lett. 2020, 15, 104002. [Google Scholar] [CrossRef]
- Ruffault, J.; Curt, T.; Moron, V.; Trigo, R.M.; Mouillot, F.; Koutsias, N.; Pimont, F.; Martin-StPaul, N.; Barbero, R.; Dupuy, J.-L.; et al. Increased likelihood of heat-induced large wildfires in the Mediterranean Basin. Sci. Rep. 2020, 10, 13790. [Google Scholar] [CrossRef]
Item | MODIS GLOBFIRE Database | ERA5-Land (ECMWF *) | Kriging Model |
---|---|---|---|
Method | MCD64A1 product ** | Reanalysis: combined model data with satellite observations. | Spatial interpolation based on data collected from 35 weather stations. |
Spatial resolution | 500 m | 0.1° pixel: equivalent to 9.8 km longitude and 11.2 km latitude. | 0.201° pixel: equivalent to 19.5 km longitude and 22.4 km longitude. |
Spatial reference | WGS84 datum, UTM Zone 48N. | WGS84 datum, UTM Zone 48N. | WGS84 datum, UTM Zone 48N. |
Temporal resolution | Daily extraction | Daily reanalysis | Daily interpolation |
Variables | Burned area (date) | Precipitation, maximum temperature, 3 pm relative humidity. Vapor pressure deficit (VPD). | Precipitation Temperature Relative humidity Vapor pressure deficit (VPD) |
References | Giglio, L., Justice, C., Boschetti, L., Roy, D. (2021) [30] Giglio et al. (2016) [31] Giglio et al. (2003) [32] | Muñoz-Sabater et al. (2021) [33] | Graeler B. and Pebesma E. (2014) [34] R libraries (gstat, sf, sp, raster, rgdal, rasterVis) RStudio (2023.03.0 Build 386) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gutiérrez Rodríguez, L.; He, Y.; Sun, M.; Yao, Y.; de Dios, V.R. Summer Compound Drought-Heat Extremes Amplify Fire-Weather Risk and Burned Area beyond Historical Thresholds in Chongqing Region, Subtropical China. Fire 2023, 6, 346. https://doi.org/10.3390/fire6090346
Gutiérrez Rodríguez L, He Y, Sun M, Yao Y, de Dios VR. Summer Compound Drought-Heat Extremes Amplify Fire-Weather Risk and Burned Area beyond Historical Thresholds in Chongqing Region, Subtropical China. Fire. 2023; 6(9):346. https://doi.org/10.3390/fire6090346
Chicago/Turabian StyleGutiérrez Rodríguez, Lucas, Yingpeng He, Mengqi Sun, Yinan Yao, and Víctor Resco de Dios. 2023. "Summer Compound Drought-Heat Extremes Amplify Fire-Weather Risk and Burned Area beyond Historical Thresholds in Chongqing Region, Subtropical China" Fire 6, no. 9: 346. https://doi.org/10.3390/fire6090346
APA StyleGutiérrez Rodríguez, L., He, Y., Sun, M., Yao, Y., & de Dios, V. R. (2023). Summer Compound Drought-Heat Extremes Amplify Fire-Weather Risk and Burned Area beyond Historical Thresholds in Chongqing Region, Subtropical China. Fire, 6(9), 346. https://doi.org/10.3390/fire6090346