Foraging Behavior Response of Small Mammals to Different Burn Severities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Study Design
2.3. Vegetation Analysis
2.4. Giving up Density Experiment
2.5. Burn Severity Patches Used by Different Species
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Species | N Detection | Percentage |
---|---|---|
Peromyscus sp.—Mouse | 82 | 45.55% |
Tamias dorsalis—Cliff chipmunk | 49 | 27.22% |
Tamiasciurus fremonti grahamensis—Mt. Graham red squirrel | 16 | 8.88% |
Mephitis mephitis—Striped skunk | 10 | 5.55% |
Otospermophilus variegatus—Rock squirrel | 8 | 4.44% |
Neotoma mexicana—Mexican woodrat | 8 | 4.44% |
Ursus americanus—Black bear | 6 | 3.33% |
Sciurus aberti—Abert’s squirrel | 5 | 2.77% |
Birds | 4 | 2.22% |
Urocyon cinereoargenteus—Gray fox | 1 | 0.55% |
Microtus longicaudus leucophaeus—Long-tailed vole | 1 | 0.55% |
No species detected | 30 | 16.66% |
NA (problems with camera, but seeds eaten) | 25 | 13.88% |
Patch Type | Year | % Canopy Cover | % Shrub Cover | % Grass Cover | Volume of Logs m3 | ||||
---|---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | Mean | SD | ||
Unburned | 2018 | 83.72 | 10.81 | 8.92 | 9.15 | 19.99 | 22.32 | 133,374.45 | 217,664.65 |
2019 | 78.97 | 10.96 | 11.33 | 10.98 | 20.05 | 22.31 | 133,374.45 | 216,208.68 | |
Low burn severity | 2018 | 69.63 | 11.03 | 0.86 | 1.72 | 12.56 | 13.01 | 208,708.30 | 225,619.18 |
2019 | 54.95 | 17.44 | 4.15 | 5.44 | 20.45 | 16.84 | 306,591.92 | 420,116.44 | |
High burn severity | 2018 | 38.43 | 21.47 | 0.71 | 1.50 | 17.36 | 20.29 | 169,837.83 | 164,172.06 |
2019 | 38.43 | 21.33 | 2.25 | 2.73 | 17.23 | 17.77 | 169,837.83 | 163,129.69 |
References
- Bailey, L.D.; van de Pol, M. Tackling Extremes: Challenges for Ecological and Evolutionary Research on Extreme Climatic Events. J. Anim. Ecol. 2016, 85, 85–96. [Google Scholar] [CrossRef] [PubMed]
- Stott, P. How Climate Change Affects Extreme Weather Events. Science 2016, 352, 1517–1518. [Google Scholar] [CrossRef] [PubMed]
- Jolly, W.M.; Cochrane, M.A.; Freeborn, P.H.; Holden, Z.A.; Brown, T.J.; Williamson, G.J.; Bowman, D.M.J.S. Climate-Induced Variations in Global Wildfire Danger from 1979 to 2013. Nat. Commun. 2015, 6, 7537. [Google Scholar] [CrossRef] [PubMed]
- Littell, J.S.; Peterson, D.L.; Riley, K.L.; Liu, Y.; Luce, C.H. A Review of the Relationships between Drought and Forest Fire in the United States. Glob. Chang. Biol. 2016, 22, 2353–2369. [Google Scholar] [CrossRef]
- McKenzie, D.; Littell, J.S. Climate Change and the Eco-Hydrology of Fire: Will Area Burned Increase in a Warming Western USA? Ecol. Appl. 2017, 27, 26–36. [Google Scholar] [CrossRef]
- Dennison, P.E.; Brewer, S.C.; Arnold, J.D.; Moritz, M.A. Large Wildfire Trends in the Western United States, 1984–2011. Geophys. Res. Lett. 2014, 41, 2928–2933. [Google Scholar] [CrossRef]
- Smucker, K.M.; Hutto, R.L.; Steele, B.M. Changes in Bird Abundance after Wildfire: Importance of Fire Severity and Time since Fire. Ecol. Appl. 2005, 15, 1535–1549. [Google Scholar] [CrossRef]
- Lindenmayer, D.B.; Blanchard, W.; MacGregor, C.; Barton, P.; Banks, S.C.; Crane, M.; Michael, D.; Okada, S.; Berry, L.; Florance, D.; et al. Temporal Trends in Mammal Responses to Fire Reveals the Complex Effects of Fire Regime Attributes. Ecol. Appl. 2016, 26, 557–573. [Google Scholar] [CrossRef]
- Camargo, A.C.L.; Barrio, R.O.L.; de Camargo, N.F.; Mendonça, A.F.; Ribeiro, J.F.; Rodrigues, C.M.F.; Vieira, E.M. Fire Affects the Occurrence of Small Mammals at Distinct Spatial Scales in a Neotropical Savanna. Eur. J. Wildl. Res. 2018, 64, 63. [Google Scholar] [CrossRef]
- Whelan, R.J.; Rodgerson, L.; Dickman, C.R.; Sutherland, E.F. Critical Life Processes of Plants and Animals: Developing a Process-Based Understanding of Population Changes in Fire-Prone Landscapes. In Flammable Australia: The Fire Regimes and Biodiversity of a Continent; Cambridge University Press: Cambridge, UK, 2002; pp. 94–124. [Google Scholar]
- Engstrom, R.T. First-Order Fire Effects on Animals: Review and Recommendations. Fire Ecol. 2010, 6, 115–130. [Google Scholar] [CrossRef]
- Koprowski, J.L.; Leonard, K.M.; Zugmeyer, C.A.; Jolley, J.L. Direct Effects of Fire on Endangered Mount Graham Red Squirrels. Southwest. Nat. 2006, 51, 59–63. [Google Scholar] [CrossRef]
- Lawes, M.J.; Murphy, B.P.; Fisher, A.; Woinarski, J.C.Z.; Edwards, A.C.; Russell-Smith, J. Small Mammals Decline with Increasing Fire Extent in Northern Australia: Evidence from Long-Term Monitoring in Kakadu National Park. Int. J. Wildland Fire 2015, 24, 712. [Google Scholar] [CrossRef]
- Arthur, A.D.; Pech, R.P.; Dickman, C.R. Habitat Structure Mediates the Non-Lethal Effects of Predation on Enclosed Populations of House Mice. J. Anim. Ecol. 2004, 73, 867–877. [Google Scholar] [CrossRef]
- Spencer, R.-J.; Thompson, M.B. Experimental Analysis of the Impact of Foxes on Freshwater Turtle Populations. Conserv. Biol. 2005, 19, 845–854. [Google Scholar] [CrossRef]
- Raynor, E.J.; Joern, A.; Briggs, J.M. Bison Foraging Responds to Fire Frequency in Nutritionally Heterogeneous Grassland. Ecology 2015, 96, 1586–1597. [Google Scholar] [CrossRef]
- Kreisel, K.J.; Stein, S.J. Bird Use of Burned and Unburned Coniferous Forests during Winter. Wilson Bull. 1999, 111, 243–250. [Google Scholar]
- Forsman, A. Rethinking Phenotypic Plasticity and Its Consequences for Individuals, Populations and Species. Heredity 2015, 115, 276–284. [Google Scholar] [CrossRef]
- Haim, A.; Izhaki, I.; Golan, A. Rodent Species Diversity in Pine Forests Recovering from Fire. Isr. J. Ecol. Evol. 1996, 42, 353–359. [Google Scholar]
- Sutherland, E.F.; Dickman, C.R. Mechanisms of Recovery after Fire by Rodents in the Australian Environment: A Review. Wildl. Res. 1999, 26, 405. [Google Scholar] [CrossRef]
- Horn, K.J.; McMillan, B.R.; St. Clair, S.B. Expansive Fire in Mojave Desert Shrubland Reduces Abundance and Species Diversity of Small Mammals. J. Arid Environ. 2012, 77, 54–58. [Google Scholar] [CrossRef]
- Mazzamuto, M.V.; Mazzella, M.N.; Merrick, M.J.; Koprowski, J.L. Fire Impacts on a Forest Obligate: Western Gray Squirrel Response to Burn Severity. Mamm. Biol. 2020, 100, 295–303. [Google Scholar] [CrossRef]
- De Souza Lima Figueiredo, M.; Fernandez, F.A.D.S. Contrasting Effects of Fire on Populations of Two Small Rodent Species in Fragments of Atlantic Forest in Brazil. J. Trop. Ecol. Camb. 2004, 20, 225–228. [Google Scholar] [CrossRef]
- Gerber, L.R.; Hilborn, R. Catastrophic Events and Recovery from Low Densities in Populations of Otariids: Implications for Risk of Extinction. Mammal Rev. 2001, 31, 131–150. [Google Scholar] [CrossRef]
- Merrick, M.J.; Morandini, M.; Greer, V.L.; Koprowski, J.L. Endemic Population Response to Increasingly Severe Fire: A Cascade of Endangerment for the Mt. Graham Red Squirrel. BioScience 2021, 71, 161–173. [Google Scholar] [CrossRef]
- Converse, S.J.; White, G.C.; Farris, K.L.; Zack, S. Small Mammals and Forest Fuel Reduction: National-Scale Responses to Fire and Fire Surrogates. Ecol. Appl. 2006, 16, 1717–1729. [Google Scholar] [CrossRef]
- Boone, S.R.; Brehm, A.M.; Mortelliti, A. Seed Predation and Dispersal by Small Mammals in a Landscape of Fear: Effects of Personality, Predation Risk and Land-Use Change. Oikos 2022, 2022, 1–15. [Google Scholar] [CrossRef]
- Doherty, T.S.; Davis, R.A.; van Etten, E.J.B. A Game of Cat-and-Mouse: Microhabitat Influences Rodent Foraging in Recently Burnt but Not Long Unburnt Shrublands. J. Mammal. 2015, 96, 324–331. [Google Scholar] [CrossRef]
- Schmitz, O.J.; Beckerman, A.P.; O’Brien, K.M. Behaviorally Mediated Trophic Cascades: Effects of Predation Risk on Food Web Interactions. Ecology 1997, 78, 1388–1399. [Google Scholar] [CrossRef]
- Cowlishaw, G. Trade-Offs between Foraging and Predation Risk Determine Habitat Use in a Desert Baboon Population. Anim. Behav. 1997, 53, 667–686. [Google Scholar] [CrossRef]
- Newman, J.A.; Recer, G.M.; Zwicker, S.M.; Caraco, T. Effects of Predation Hazard on Foraging “Constraints”: Patch-Use Strategies in Grey Squirrels. Oikos 1988, 53, 93–97. [Google Scholar] [CrossRef]
- Bowers, M.A. Exploitation of Seed Aggregates by Merriam’s Kangaroo Rat: Harvesting Rates and Predatory Risk. Ecology 1990, 71, 2334–2344. [Google Scholar] [CrossRef]
- Brown, J.S. Patch Use as an Indicator of Habitat Preference, Predation Risk, and Competition. Behav. Ecol. Sociobiol. 1988, 22, 37–47. [Google Scholar] [CrossRef]
- Whitham, T.G. Coevolution of Foraging in Bombus and Nectar Dispensing in Chilopsis: A Last Dreg Theory. Science 1977, 197, 593–596. [Google Scholar] [CrossRef]
- Brown, J.S.; Morgan, R.A.; Dow, B.D. Patch Use under Predation Risk: II. A Test with Fox Squirrels, Sciurus Niger. Ann. Zool. Fenn. 1992, 29, 311–318. [Google Scholar]
- Parkins, K.; York, A.; Di Stefano, J. Edge Effects in Fire-Prone Landscapes: Ecological Importance and Implications for Fauna. Ecol. Evol. 2018, 8, 5937–5948. [Google Scholar] [CrossRef]
- Banks, S.C.; Lindenmayer, D.B.; Ward, S.J.; Taylor, A.C. The Effects of Habitat Fragmentation via Forestry Plantation Establishment on Spatial Genotypic Structure in the Small Marsupial Carnivore, Antechinus Agilis. Mol. Ecol. 2005, 14, 1667–1680. [Google Scholar] [CrossRef]
- Fisher, J.T.; Wilkinson, L. The Response of Mammals to Forest Fire and Timber Harvest in the North American Boreal Forest. Mammal Rev. 2005, 35, 51–81. [Google Scholar] [CrossRef]
- Amacher, A.J.; Barrett, R.H.; Moghaddas, J.J.; Stephens, S.L. Preliminary Effects of Fire and Mechanical Fuel Treatments on the Abundance of Small Mammals in the Mixed-Conifer Forest of the Sierra Nevada. For. Ecol. Manag. 2008, 255, 3193–3202. [Google Scholar] [CrossRef]
- Hutchen, J.; Volkmann, L.A.; Hodges, K.E.; Hutchen, J.; Volkmann, L.A.; Hodges, K.E. Experimental Designs for Studying Small-Mammal Responses to Fire in North American Conifer Forests. Int. J. Wildland Fire 2017, 26, 523–531. [Google Scholar] [CrossRef]
- Reed, T.M. Interspecific Territoriality in the Chaffinch and Great Tit on Islands and the Mainland of Scotland: Playback and Removal Experiments. Anim. Behav. 1982, 30, 171–181. [Google Scholar] [CrossRef]
- Hope, A.G.; Malaney, J.L.; Bell, K.C.; Salazar-Miralles, F.; Chavez, A.S.; Barber, B.R.; Cook, J.A. Revision of Widespread Red Squirrels (Genus: Tamiasciurus) Highlights the Complexity of Speciation within North American Forests. Mol. Phylogenet. Evol. 2016, 100, 170–182. [Google Scholar] [CrossRef] [PubMed]
- Hutton, K.A.; Koprowski, J.L.; Greer, V.L.; Alanen, M.I.; Schauffert, C.A.; Young, P.J. Use of Mixed-Conifer and Spruce-Fir Forests by an Introduced Population of Abert’s Squirrels (Sciurus Aberti). Southwest. Nat. 2003, 48, 257–260. [Google Scholar] [CrossRef]
- McGuire, L.A.; Youberg, A.M. Impacts of Successive Wildfire on Soil Hydraulic Properties: Implications for Debris Flow Hazards and System Resilience. Earth Surf. Process. Landf. 2019, 44, 2236–2250. [Google Scholar] [CrossRef]
- Parsons, R.A.; Mell, W.E.; McCauley, P. Linking 3D Spatial Models of Fuels and Fire: Effects of Spatial Heterogeneity on Fire Behavior. Ecol. Model. 2011, 222, 679–691. [Google Scholar] [CrossRef]
- Koprowski, J.L.; King, S.; Merrick, M. Expanded Home Ranges in a Peripheral Population: Space Use by Endangered Mt. Graham Red Squirrels. Endanger. Species Res. 2008, 4, 227–232. [Google Scholar] [CrossRef]
- Abramson, G.; Giuggioli, L.; Kenkre, V.M.; Dragoo, J.W.; Parmenter, R.R.; Parmenter, C.A.; Yates, T.L. Diffusion and Home Range Parameters for Rodents: Peromyscus Maniculatus in New Mexico. Ecol. Complex. 2006, 3, 64–70. [Google Scholar] [CrossRef]
- Edelman, A.J.; Koprowski, J.L. Selection of Drey Sites by Abert’s Squirrels in an Introduced Population. J. Mammal. 2005, 86, 1220–1226. [Google Scholar] [CrossRef]
- Doumas, S.L.; Koprowski, J.L. Return of Fire as a Restoration Tool: Long-Term Effects of Burn Severity on Habitat Use by Mexican Fox Squirrels. Restor. Ecol. 2013, 21, 133–139. [Google Scholar] [CrossRef]
- Strickler, G.S. Use of the Densiometer to Estimate Density of Forest Canopy on Permanent Sample Plots; U.S. Department of Agriculture: Washington, DC, USA, 1959; 5p.
- Jacob, S.A.; Matter, S.F.; Cameron, G.N. Interactive Effects of Vegetation and Illumination on Foraging Behavior of White-Footed Mice (Peromyscus Leucopus). J. Mammal. 2017, 98, 804–814. [Google Scholar] [CrossRef]
- Persons, W.E.; Eason, P. Human Activity and Habitat Type Affect Perceived Predation Risk in Urban White-Footed Mice (Peromyscus Leucopus). Ethology 2017, 123, 348–356. [Google Scholar] [CrossRef]
- Vander Wall, S.B.; Kuhn, K.M.; Gworek, J.R. Two-Phase Seed Dispersal: Linking the Effects of Frugivorous Birds and Seed-Caching Rodents. Oecologia 2005, 145, 281–286. [Google Scholar] [CrossRef] [PubMed]
- Suazo, A.A.; Delong, A.T. Responses of Old-Field Mice (Peromyscus Polionotus) to Consecutive Days of Live Trapping. Am. Midl. Nat. 2007, 158, 395–402. [Google Scholar] [CrossRef]
- Wall, S.B.V.; Hager, E.C.H.; Kuhn, K.M. Pilfering of Stored Seeds and the Relative Costs of Scatter-Hoarding versus Larder-Hoarding in Yellow Pine Chipmunks. West. N. Am. Nat. 2005, 65, 248–257. [Google Scholar]
- Sullivan, T.P. Operational Application of Diversionary Food in Young Lodgepole Pine Forests to Reduce Feeding Damage by Red Squirrels. Proc. Vertebr. Pest Conf. 1992, 15, 340–343. [Google Scholar]
- Bedoya-Perez, M.A.; Carthey, A.J.R.; Mella, V.S.A.; McArthur, C.; Banks, P.B. A Practical Guide to Avoid Giving up on Giving-up Densities. Behav. Ecol. Sociobiol. 2013, 67, 1541–1553. [Google Scholar] [CrossRef]
- Potash, A.D.; Conner, L.M.; McCleery, R.A. Vertical and Horizontal Vegetation Cover Synergistically Shape Prey Behaviour. Anim. Behav. 2019, 152, 39–44. [Google Scholar] [CrossRef]
- Briani, D.C.; Palma, A.R.T.; Vieira, E.M.; Henriques, R.P.B. Post-Fire Succession of Small Mammals in the Cerrado of Central Brazil. Biodivers. Conserv. 2004, 13, 1023–1037. [Google Scholar] [CrossRef]
- Diffendorfer, J.; Fleming, G.M.; Tremor, S.; Spencer, W.; Beyers, J.L. The Role of Fire Severity, Distance from Fire Perimeter and Vegetation on Post-Fire Recovery of Small-Mammal Communities in Chaparral. Int. J. Wildland Fire 2012, 21, 436. [Google Scholar] [CrossRef]
- Whelan, R.J. Managing Fire Regimes for Conservation and Property Protection: An Australian Response. Conserv. Biol. 2002, 16, 1659–1661. [Google Scholar] [CrossRef]
- Bowers, M.A.; Jefferson, J.L.; Kuebler, M.G. Variation in Giving-up Densities of Foraging Chipmunks (Tamias Striatus) and Squirrels (Sciurus Carolinensis). Oikos 1993, 66, 229–236. [Google Scholar] [CrossRef]
- Orrock, J.L.; Danielson, B.J.; Brinkerhoff, R.J. Rodent Foraging Is Affected by Indirect, but Not by Direct, Cues of Predation Risk. Behav. Ecol. 2004, 15, 433–437. [Google Scholar] [CrossRef]
- Thorson, J.M.; Morgan, R.A.; Brown, J.S.; Norman, J.E. Direct and Indirect Cues of Predatory Risk and Patch Use by Fox Squirrels and Thirteen-Lined Ground Squirrels. Behav. Ecol. 1998, 9, 151–157. [Google Scholar] [CrossRef]
- Sivy, K.J.; Ostoja, S.M.; Schupp, E.W.; Durham, S. Effects of Rodent Species, Seed Species, and Predator Cues on Seed Fate. Acta Oecologica 2011, 37, 321–328. [Google Scholar] [CrossRef]
- Lima, S.L. Maximizing Feeding Efficiency and Minimizing Time Exposed to Predators: A Trade-off in the Black-Capped Chickadee. Oecologia 1985, 66, 60–67. [Google Scholar] [CrossRef] [PubMed]
- Wywialowski, A.P. Habitat Structure and Predators: Choices and Consequences for Rodent Habitat Specialists and Generalists. Oecologia 1987, 72, 39–45. [Google Scholar] [CrossRef]
- Embar, K.; Kotler, B.P.; Mukherjee, S. Risk Management in Optimal Foragers: The Effect of Sightlines and Predator Type on Patch Use, Time Allocation, and Vigilance in Gerbils. Oikos 2011, 120, 1657–1666. [Google Scholar] [CrossRef]
- Camp, M.J.; Rachlow, J.L.; Woods, B.A.; Johnson, T.R.; Shipley, L.A. Examining Functional Components of Cover: The Relationship between Concealment and Visibility in Shrub-Steppe Habitat. Ecosphere 2013, 4, art19. [Google Scholar] [CrossRef]
- Laundré, J.W.; Hernández, L.; Altendorf, K.B. Wolves, Elk, and Bison: Reestablishing the “Landscape of Fear” in Yellowstone National Park, U.S.A. Can. J. Zool. 2001, 79, 1401–1409. [Google Scholar] [CrossRef]
- Brown, J.S.; Kotler, B.P. Hazardous Duty Pay and the Foraging Cost of Predation. Ecol. Lett. 2004, 7, 999–1014. [Google Scholar] [CrossRef]
- Griffiths, A.D.; Brook, B.W. Effect of Fire on Small Mammals: A Systematic Review. Int. J. Wildland Fire 2014, 23, 1034. [Google Scholar] [CrossRef]
- Torre, I.; Jaime-González, C.; Díaz, M. Habitat Suitability for Small Mammals in Mediterranean Landscapes: How and Why Shrubs Matter. Sustainability 2022, 14, 1562. [Google Scholar] [CrossRef]
- Waters, J.R.; Zabel, C.J. Northern Flying Squirrel Densities in Fir Forests of Northeastern California. J. Wildl. Manag. 1995, 59, 858. [Google Scholar] [CrossRef]
- Roberts, S.L.; Kelt, D.A.; van Wagtendonk, J.W.; Miles, A.K.; Meyer, M.D. Effects of Fire on Small Mammal Communities in Frequent-Fire Forests in California. J. Mammal. 2015, 96, 107–119. [Google Scholar] [CrossRef]
- Greenberg, C.H.; Otis, D.L.; Waldrop, T.A. Response of White-Footed Mice (Peromyscus Leucopus) to Fire and Fire Surrogate Fuel Reduction Treatments in a Southern Appalachian Hardwood Forest. For. Ecol. Manag. 2006, 234, 355–362. [Google Scholar] [CrossRef]
- Connolly, B.M.; Orrock, J.L. Habitat-Specific Capture Timing of Deer Mice (Peromyscus Maniculatus) Suggests That Predators Structure Temporal Activity of Prey. Ethology 2018, 124, 105–112. [Google Scholar] [CrossRef]
- Schoennagel, T.; Balch, J.K.; Brenkert-Smith, H.; Dennison, P.E.; Harvey, B.J.; Krawchuk, M.A.; Mietkiewicz, N.; Morgan, P.; Moritz, M.A.; Rasker, R.; et al. Adapt to More Wildfire in Western North American Forests as Climate Changes. Proc. Natl. Acad. Sci. USA 2017, 114, 4582–4590. [Google Scholar] [CrossRef]
- Ward, M.; Rhodes, J.R.; Watson, J.E.M.; Lefevre, J.; Atkinson, S.; Possingham, H.P. Use of Surrogate Species to Cost-Effectively Prioritize Conservation Actions. Conserv. Biol. 2020, 34, 600–610. [Google Scholar] [CrossRef]
- Ancillotto, L.; Fichera, G.; Pidinchedda, E.; Veith, M.; Kiefer, A.; Mucedda, M.; Russo, D. Wildfires, Heatwaves and Human Disturbance Threaten Insular Endemic Bats. Biodivers. Conserv. 2021, 30, 4401–4416. [Google Scholar] [CrossRef]
- Mueller, S.E.; Thode, A.E.; Margolis, E.Q.; Yocom, L.L.; Young, J.D.; Iniguez, J.M. Climate Relationships with Increasing Wildfire in the Southwestern US from 1984 to 2015. For. Ecol. Manag. 2020, 460, 117861. [Google Scholar] [CrossRef]
- Tempel, D.J.; Gutiérrez, R.J.; Whitmore, S.A.; Reetz, M.J.; Stoelting, R.E.; Berigan, W.J.; Seamans, M.E.; Peery, M.Z. Effects of Forest Management on California Spotted Owls: Implications for Reducing Wildfire Risk in Fire-Prone Forests. Ecol. Appl. 2014, 24, 2089–2106. [Google Scholar] [CrossRef]
- Moriarty, K.M.; Epps, C.W.; Zielinski, W.J. Forest Thinning Changes Movement Patterns and Habitat Use by Pacific Marten. J. Wildl. Manag. 2016, 80, 621–633. [Google Scholar] [CrossRef]
- Slauson, K.; Howard, B.; White, A.; Maxwell, C.; Holland, T. Evaluating the Effects of Alternative Landscape Management Scenarios on Three Old-Forest-Associated Predators over 100 Years in the Fire-Prone Forests of the Sierra Nevada, USA. Ecol. Soc. 2022, 27, 28. [Google Scholar] [CrossRef]
Variable | Β | SE | z | p |
---|---|---|---|---|
Intercept | 0.58 | 0.65 | 0.89 | 0.37 |
Year (2019) | 437.80 | 105.20 | 4.16 | <0.0001 |
Unburned | −0.00002 | 0.67 | 0 | 1 |
Low burn severity | 0.47 | 0.69 | 0.69 | 0.49 |
Variable | β | SE | t | p |
---|---|---|---|---|
Intercept | 31.04 | 4.52 | 6.86 | 0.0009 |
Year 2019 | −2.29 | 2.19 | −1.04 | 0.29 |
Unburned | −7.13 | 2.31 | −3.08 | 0.002 |
Low burn severity | −5.63 | 2.29 | −2.46 | 0.01 |
Variable | Unburned | Low Burn Severity | High Burn Severity | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
β | SD | t | p | β | SD | t | p | β | SD | t | p | |
Intercept | 15.19 | 4.67 | 3.24 | 0.008 | 22.48 | 3.21 | 6.99 | 0.005 | 29.27 | 2.98 | 9.82 | <0.001 |
Volume logs (m3) | −8.62 | 3.07 | −2.80 | 0.007 | 2.49 | 1.31 | 1.90 | 0.06 | −8.76 | 3.08 | −2.84 | 0.006 |
% Grass cover | 0.06 | 1.58 | 0.04 | 0.97 | 2.04 | 2.11 | 0.96 | 0.33 | 0.82 | 1.49 | 0.55 | 0.58 |
% Shrub cover | −4.50 | 1.35 | −3.33 | 0.002 | 1.32 | 2.76 | 0.48 | 0.63 | −0.21 | 4.59 | −0.05 | 0.96 |
% Canopy cover | 9.17 | 4.09 | 2.23 | 0.03 | 8.75 | 2.67 | 3.26 | 0.002 | 1.34 | 2.33 | 0.58 | 0.56 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morandini, M.; Mazzamuto, M.V.; Koprowski, J.L. Foraging Behavior Response of Small Mammals to Different Burn Severities. Fire 2023, 6, 367. https://doi.org/10.3390/fire6090367
Morandini M, Mazzamuto MV, Koprowski JL. Foraging Behavior Response of Small Mammals to Different Burn Severities. Fire. 2023; 6(9):367. https://doi.org/10.3390/fire6090367
Chicago/Turabian StyleMorandini, Marina, Maria Vittoria Mazzamuto, and John L. Koprowski. 2023. "Foraging Behavior Response of Small Mammals to Different Burn Severities" Fire 6, no. 9: 367. https://doi.org/10.3390/fire6090367
APA StyleMorandini, M., Mazzamuto, M. V., & Koprowski, J. L. (2023). Foraging Behavior Response of Small Mammals to Different Burn Severities. Fire, 6(9), 367. https://doi.org/10.3390/fire6090367