Synthesis and Perspectives on Disturbance Interactions, and Forest Fire Risk and Fire Severity in Central Europe
Abstract
:1. Introduction
1.1. Global Perspective and Rationale
1.2. Changing Fire Regimes in the Temperate Forests of Central Europe
1.3. Disturbance Interactions as Drivers of Forest Fire Risk and Severity
1.4. Wildfire, Drought, and Storms
1.5. Wildfire, Insect Outbreaks, and Microbial Pathogens
2. Materials and Methods
3. Results
4. Discussion
4.1. Disturbance Interactions and Implications for Forest Fire Dynamics in Central Europe
4.2. Key Factors Influencing Wildfire Dynamics in Central Europe
4.3. Perspectives and Research Priorities
4.4. Managing the Emerging Fire Regime in Central Europe
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Agee, J.K. Fire Ecology of Pacific Northwest Forests; Island Press: Washington, DC, USA, 1996; ISBN 9781559632300. [Google Scholar]
- Adámek, M.; Jankovská, Z.; Hadincová, V.; Kula, E.; Wild, J. Drivers of Forest Fire Occurrence in the Cultural Landscape of Central Europe. Landsc. Ecol. 2018, 33, 2031–2045. [Google Scholar] [CrossRef]
- Carter, V.A.; Moravcová, A.; Chiverrell, R.C.; Clear, J.L.; Finsinger, W.; Dreslerová, D.; Halsall, K.; Kuneš, P. Holocene-Scale Fire Dynamics of Central European Temperate Spruce-Beech Forests. Quat. Sci. Rev. 2018, 191, 15–30. [Google Scholar] [CrossRef]
- Senande-Rivera, M.; Insua-Costa, D.; Miguez-Macho, G. Spatial and Temporal Expansion of Global Wildland Fire Activity in Response to Climate Change. Nat. Commun. 2022, 13, 1208. [Google Scholar] [CrossRef]
- United Nations Environment Programme Spreading like Wildfire—The Rising Threat of Extraordinary Landscape Fires. Available online: https://www.unep.org/resources/report/spreading-wildfire-rising-threat-extraordinary-landscape-fires (accessed on 2 September 2024).
- MacCarthy, J.; Richter, J.; Tyukavina, S.; Weisse, M.; Harris, N. The Latest Data Confirms: Forest Fires Are Getting Worse, World Resources Institute. Available online: https://www.wri.org/insights/global-trends-forest-fires (accessed on 2 September 2024).
- San-Miguel-Ayanz, J.; Durrant, T.; Boca, R.; Maianti, P.; Liberta, G.; Oom, D.; Branco, A.; De Rigo, D.; Ferrari, D.; Roglia, E.; et al. Advance Report on Forest Fires in Europe, Middle East and North Africa 2022 (JRC133215); Publications Office of the European Union: Luxembourg, 2023. [Google Scholar] [CrossRef]
- He, T.; Lamont, B.B.; Pausas, J.G. Fire as a Key Driver of Earth’s Biodiversity. Biol. Rev. 2019, 94, 1983–2010. [Google Scholar] [CrossRef]
- Allen, C.D.; Breshears, D.D.; McDowell, N.G. On Underestimation of Global Vulnerability to Tree Mortality and Forest Die-off from Hotter Drought in the Anthropocene. Ecosphere 2015, 6, 1–55. [Google Scholar] [CrossRef]
- Stevens-Rumann, C.S.; Kemp, K.B.; Higuera, P.E.; Harvey, B.J.; Rother, M.T.; Donato, D.C.; Morgan, P.; Veblen, T.T. Evidence for Declining Forest Resilience to Wildfires under Climate Change. Ecol. Lett. 2018, 21, 243–252. [Google Scholar] [CrossRef]
- Lavalle, C.; Micale, F.; Houston, T.D.; Camia, A.; Hiederer, R.; Lazar, C.; Conte, C.; Amatulli, G.; Genovese, G. Climate Change in Europe. 3. Impact on Agriculture and Forestry. A Review. Agron. Sustain. Dev. 2009, 29, 433–446. [Google Scholar] [CrossRef]
- Flannigan, M.D.; Cantin, A.S.; de Groot, W.J.; Wotton, M.; Newbery, A.; Gowman, L.M. Global Wildland Fire Season Severity in the 21st Century. For. Ecol. Manag. 2013, 294, 54–61. [Google Scholar] [CrossRef]
- Rogers, B.M.; Balch, J.K.; Goetz, S.J.; Lehmann, C.E.R.; Turetsky, M. Focus on Changing Fire Regimes: Interactions with Climate, Ecosystems, and Society. Environ. Res. Lett. 2020, 15, 030201. [Google Scholar] [CrossRef]
- Kelly, L.T.; Giljohann, K.M.; Duane, A.; Aquilué, N.; Archibald, S.; Batllori, E.; Bennett, A.F.; Buckland, S.T.; Canelles, Q.; Clarke, M.F.; et al. Fire and Biodiversity in the Anthropocene. Science 2020, 370, eabb0355. [Google Scholar] [CrossRef]
- Schoennagel, T.; Balch, J.K.; Brenkert-Smith, H.; Dennison, P.E.; Harvey, B.J.; Krawchuk, M.A.; Mietkiewicz, N.; Morgan, P.; Moritz, M.A.; Rasker, R.; et al. Adapt Tomore Wildfire in Western North American Forests as Climate Changes. Proc. Natl. Acad. Sci. USA 2017, 114, 4582–4590. [Google Scholar] [CrossRef] [PubMed]
- Wasserman, T.N.; Mueller, S.E. Climate Influences on Future Fire Severity: A Synthesis of Climate-Fire Interactions and Impacts on Fire Regimes, High-Severity Fire, and Forests in the Western United States. Fire Ecol. 2023, 19, 43. [Google Scholar] [CrossRef]
- Jones, M.W.; Kelley, D.I.; Burton, C.A.; Di Giuseppe, F.; Barbosa, M.L.F.; Brambleby, E.; Hartley, A.J.; Lombardi, A.; Mataveli, G.; McNorton, J.R.; et al. State of Wildfires 2023–2024. Earth Syst. Sci. Data 2024, 16, 3601–3685. [Google Scholar] [CrossRef]
- Bobek, P.; Svobodová-Svitavská, H.; Pokorný, P.; Šamonil, P.; Kuneš, P.; Kozáková, R.; Abraham, V.; Klinerová, T.; Švarcová, M.G.; Jamrichová, E.; et al. Divergent Fire History Trajectories in Central European Temperate Forests Revealed a Pronounced Influence of Broadleaved Trees on Fire Dynamics. Quat. Sci. Rev. 2019, 222, 105865. [Google Scholar] [CrossRef]
- Adámek, M.; Bobek, P.; Hadincová, V.; Wild, J.; Kopecký, M. Forest Fires within a Temperate Landscape: A Decadal and Millennial Perspective from a Sandstone Region in Central Europe. For. Ecol. Manag. 2015, 336, 81–90. [Google Scholar] [CrossRef]
- Bowman, D.M.J.S.J.S.; Kolden, C.A.; Abatzoglou, J.T.; Johnston, F.H.; van der Werf, G.R.; Flannigan, M. Vegetation Fires in the Anthropocene. Nat. Rev. Earth Environ. 2020, 1, 500–515. [Google Scholar] [CrossRef]
- El Garroussi, S.; Di Giuseppe, F.; Barnard, C.; Wetterhall, F. Europe Faces up to Tenfold Increase in Extreme Fires in a Warming Climate. npj Clim. Atmos. Sci. 2024, 7, 30. [Google Scholar] [CrossRef]
- Burton, P.J.; Jentsch, A.; Walker, L.R. The Ecology of Disturbance Interactions. Bioscience 2020, 70, 854–870. [Google Scholar] [CrossRef]
- Jentsch, A.; White, P. A Theory of Pulse Dynamics and Disturbance in Ecology. Ecology 2019, 100, e02734. [Google Scholar] [CrossRef]
- Lucash, M.S.; Scheller, R.M.; Sturtevant, B.R.; Gustafson, E.J.; Kretchun, A.M.; Foster, J.R. More than the Sum of Its Parts: How Disturbance Interactions Shape Forest Dynamics under Climate Change. Ecosphere 2018, 9, e02293. [Google Scholar] [CrossRef]
- Turner, M.G.; Calder, W.J.; Cumming, G.S.; Hughes, T.P.; Jentsch, A.; LaDeau, S.L.; Lenton, T.M.; Shuman, B.N.; Turetsky, M.R.; Ratajczak, Z.; et al. Climate Change, Ecosystems, and Abrupt Change: Science Priorities. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2020, 375, 20190105. [Google Scholar] [CrossRef] [PubMed]
- Kraus, D.; Wohlgemuth, T.; Castellnou, M.; Conedera, M. Fire in Forest Ecosystems: Processes and Management Strategies. In Disturbance Ecology; Landscape Series; Wohlgemuth, T., Jentsch, A., Seidl, R., Eds.; Springer: Cham, Switzerland, 2022; Volume 32, pp. 143–171. ISBN 978-3-030-98756-5. [Google Scholar]
- Dale, V.H.; Joyce, L.A.; McNulty, S.; Neilson, R.P.; Ayres, M.P.; Flannigan, M.D.; Hanson, P.J.; Irland, L.C.; Lugo, A.E.; Peterson, C.J.; et al. Climate Change and Forest Disturbances: Climate Change Can Affect Forests by Altering the Frequency, Intensity, Duration, and Timing of Fire, Drought, Introduced Species, Insect and Pathogen Outbreaks, Hurricanes, Windstorms, Ice Storms, or Landslides. Bioscience 2001, 51, 723–734. [Google Scholar] [CrossRef]
- Krebs, P.; Pezzatti, G.B.; Mazzoleni, S.; Talbot, L.M.; Conedera, M. Fire Regime: History and Definition of a Key Concept in Disturbance Ecology. Theory Biosci. 2010, 129, 53–69. [Google Scholar] [CrossRef]
- Suffling, R.; Perera, H.A. Characterizing Natural Forest Disturbance Regimes. In Emulating Natural Forest Landscape Disturbances; Perera, A., Buse, L., Weber, M., Eds.; Columbia University Press: Chichester, NY, USA; West Sussex, UK, 2008; pp. 43–54. [Google Scholar]
- Schuck, A.; Held, A.; Nikinmaa, L. Indicator 2.4: Forest Damage. In Europe’s Forests 2020; Ministerial Conference on the Protection of Forests in Europe—FOREST EUROPE: Zvolen, Slovak Republic, 2020; pp. 76–82. [Google Scholar]
- Carnicer, J.; Alegria, A.; Giannakopoulos, C.; Di Giuseppe, F.; Karali, A.; Koutsias, N.; Lionello, P.; Parrington, M.; Vitolo, C. Global Warming Is Shifting the Relationships between Fire Weather and Realized Fire-Induced CO2 Emissions in Europe. Sci. Rep. 2022, 12, 10365. [Google Scholar] [CrossRef]
- Heisig, J.; Olson, E.; Pebesma, E. Predicting Wildfire Fuels and Hazard in a Central European Temperate Forest Using Active and Passive Remote Sensing. Fire 2022, 5, 29. [Google Scholar] [CrossRef]
- Khabarov, N.; Krasovskii, A.; Obersteiner, M.; Swart, R.; Dosio, A.; San-Miguel-Ayanz, J.; Durrant, T.; Camia, A.; Migliavacca, M. Forest Fires and Adaptation Options in Europe. Reg. Environ. Chang. 2016, 16, 21–30. [Google Scholar] [CrossRef]
- Beck, H.E.; Zimmermann, N.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and Future Köppen-Geiger Climate Classification Maps at 1-Km Resolution. Sci. Data 2018, 5, 1–12. [Google Scholar] [CrossRef]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World Map of the Köppen-Geiger Climate Classification Updated. Meteorol. Zeitschrift 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Bednar-Friedl, B.; Biesbroek, R.; Schmidt, D.N.; Alexander, P.; Børsheim, K.Y.; Carnicer, J.; Georgopoulou, E.; Haasnoot, M.; Le Cozannet, G.; Lionello, P.; et al. Europe. In Climate Change 2022—Impacts, Adaptation and Vulnerability; Pörtner, H.-O., Roberts, D.C., Tignor, M., Poloczanska, E.S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2023; pp. 1817–1928. [Google Scholar]
- UNEP-WCMC Author Team Western European Broadleaf Forests|One Earth. Available online: http://www.eoearth.org/view/article/177334/ (accessed on 17 July 2024).
- UNEP-WCMC Author Team Central European Mixed Forests|One Earth. Available online: https://www.oneearth.org/ecoregions/central-european-mixed-forests/ (accessed on 17 July 2024).
- Galizia, L.F.; Curt, T.; Barbero, R.; Rodrigues, M. Understanding Fire Regimes in Europe. Int. J. Wildl. Fire 2022, 31, 56–66. [Google Scholar] [CrossRef]
- Senf, C.; Buras, A.; Zang, C.S.; Rammig, A.; Seidl, R. Excess Forest Mortality Is Consistently Linked to Drought across Europe. Nat. Commun. 2020, 11, 6200. [Google Scholar] [CrossRef]
- Feurdean, A.; Vannière, B.; Finsinger, W.; Warren, D.; Connor, S.C.; Forrest, M.; Liakka, J.; Panait, A.; Werner, C.; Andrič, M.; et al. Fire Hazard Modulation by Long-Term Dynamics in Land Cover and Dominant Forest Type in Eastern and Central Europe. Biogeosciences 2020, 17, 1213–1230. [Google Scholar] [CrossRef]
- Caudullo, G.; Welk, E.; San-Miguel-Ayanz, J. Chorological Maps for the Main European Woody Species. Data Br. 2017, 12, 662–666. [Google Scholar] [CrossRef] [PubMed]
- Brichta, J.; Vacek, S.; Vacek, Z.; Cukor, J.; Mikeska, M.; Bílek, L.; Šimůnek, V.; Gallo, J.; Brabec, P. Importance and Potential of Scots Pine (Pinus sylvestris L.) in 21st Century. Cent. Eur. For. J. 2023, 69, 3–20. [Google Scholar] [CrossRef]
- Beck, W. Silviculture and Stand Dynamics of Scots Pine in Germany. For. Syst. 2001, 9, 199–212. [Google Scholar] [CrossRef]
- Mason, W.L.; Alía, R. Current and Future Status of Scots Pine (Pinus sylvestris L.) Forests in Europe. For. Syst. 2000, 9, 317–335. [Google Scholar] [CrossRef]
- Houston Durrant, T.; de Rigo, D.; Caudullo, G. Pinus sylvestris in Europe: Distribution, Habitat, Usage and Threats. In European Atlas of Forest Tree Species; San-Miguel-Ayanz, J., de Rigo, D., Caudullo, G., Houston Durrant, T., Mauri, A., Eds.; Publication Office of the European Union: Luxembourg, 2016; p. e016b94. [Google Scholar]
- Leuschner, C.; Förster, A.; Diers, M.; Culmsee, H. Are Northern German Scots Pine Plantations Climate Smart? The Impact of Large-Scale Conifer Planting on Climate, Soil and the Water Cycle. For. Ecol. Manag. 2022, 507, 120013. [Google Scholar] [CrossRef]
- Dietze, E.; Brykała, D.; Schreuder, L.T.; Jażdżewski, K.; Blarquez, O.; Brauer, A.; Dietze, M.; Obremska, M.; Ott, F.; Pieńczewska, A.; et al. Human-Induced Fire Regime Shifts during 19th Century Industrialization: A Robust Fire Regime Reconstruction Using Northern Polish Lake Sediments. PLoS ONE 2019, 14, e0222011. [Google Scholar] [CrossRef]
- BMEL. Der Wald in Deutschland: Ausgewählte Ergebnisse Der Dritten Bundeswaldinventur; Federal Ministry of Food and Agriculture: Berlin, Germany, 2014. [Google Scholar]
- BMEL. Der Wald in Deutschland: Ausgewählte Ergebnisse Der Vierten Bundeswaldinventur; Federal Ministry of Food and Agriculture: Bonn, Germany, 2024. [Google Scholar]
- Fernandez-Anez, N.; Krasovskiy, A.; Müller, M.; Vacik, H.; Baetens, J.; Hukić, E.; Kapovic Solomun, M.; Atanassova, I.; Glushkova, M.; Bogunović, I.; et al. Current Wildland Fire Patterns and Challenges in Europe: A Synthesis of National Perspectives. Air Soil Water Res. 2021, 14, 11786221211028185. [Google Scholar] [CrossRef]
- Adámek, M.; Hadincová, V.; Wild, J. Long-Term Effect of Wildfires on Temperate Pinus sylvestris Forests: Vegetation Dynamics and Ecosystem Resilience. For. Ecol. Manag. 2016, 380, 285–295. [Google Scholar] [CrossRef]
- Keeley, J.E. Ecology and Evolution of Pine Life Histories. Ann. For. Sci. 2012, 69, 445–453. [Google Scholar] [CrossRef]
- Agee, J.K. Fire and Pine Ecosystems. In Ecology and Biogeography of Pinus; Richardson, D.M., Ed.; Cambridge University Press: Cambridge, UK, 1998; pp. 193–213. [Google Scholar]
- Fernandes, P.M.; Vega, J.A.; Jiménez, E.; Rigolot, E. Fire Resistance of European Pines. For. Ecol. Manag. 2008, 256, 246–255. [Google Scholar] [CrossRef]
- Caudullo, G.; Tinner, W.; de Rigo, D. Picea abies in Europe: Distribution, Habitat, Usage and Threats. In European Atlas of Forest Tree Species; San-Miguel-Ayanz, J., de Rigo, D., Caudullo, G., Houston Durrant, T., Mauri, A., Eds.; Publication Office of the European Union: Luxembourg, 2016; p. e012300. [Google Scholar]
- Sullivan, J. Picea abies. In Fire Effects Information System; U.S. Department of Agriculture, Forest Service: Washington, DC, USA, 1994. Available online: https://www.fs.usda.gov/database/feis/plants/tree/picabi/all.html (accessed on 4 December 2024).
- Felton, A.; Petersson, L.; Nilsson, O.; Witzell, J.; Cleary, M.; Felton, A.M.; Björkman, C.; Sang, Å.O.; Jonsell, M.; Holmström, E.; et al. The Tree Species Matters: Biodiversity and Ecosystem Service Implications of Replacing Scots Pine Production Stands with Norway Spruce. Ambio 2020, 49, 1035–1049. [Google Scholar] [CrossRef] [PubMed]
- Uggla, E. Fire Ecology in Swedish Forests; Royal College of Forestry: Sweden, 1973; Available online: https://talltimbers.org/wp-content/uploads/2014/03/Uggla1973_op.pdf (accessed on 4 December 2024).
- Angelstam, P.; Kuuluvainen, T. Boreal Forest Disturbance Regimes, Successional Dynamics and Landscape Structures: A European Perspective. Ecol. Bull. 2004, 51, 117–136. [Google Scholar]
- Paine, R.T.; Tegner, M.J.; Johnson, E.A. Compounded Perturbations Yield Ecological Surprises. Ecosystems 1998, 1, 535–545. [Google Scholar] [CrossRef]
- Buma, B. Disturbance Interactions: Characterization, Prediction, and the Potential for Cascading Effects. Ecosphere 2015, 6, 1–15. [Google Scholar] [CrossRef]
- Sturtevant, B.R.; Fortin, M.J. Understanding and Modeling Forest Disturbance Interactions at the Landscape Level. Front. Ecol. Evol. 2021, 9, 653647. [Google Scholar] [CrossRef]
- Scheffer, M.; Carpenter, S.R. Catastrophic Regime Shifts in Ecosystems: Linking Theory to Observation. Trends Ecol. Evol. 2003, 18, 648–656. [Google Scholar] [CrossRef]
- Buma, B.; Wessman, C.A. Disturbance Interactions Can Impact Resilience Mechanisms of Forests. Ecosphere 2011, 2, 1–13. [Google Scholar] [CrossRef]
- Johnstone, J.F.; Allen, C.D.; Franklin, J.F.; Frelich, L.E.; Harvey, B.J.; Higuera, P.E.; Mack, M.C.; Meentemeyer, R.K.; Metz, M.R.; Perry, G.L.W.; et al. Changing Disturbance Regimes, Ecological Memory, and Forest Resilience. Front. Ecol. Environ. 2016, 14, 369–378. [Google Scholar] [CrossRef]
- Batllori, E.; De Cáceres, M.; Brotons, L.; Ackerly, D.D.; Moritz, M.A.; Lloret, F. Compound Fire-Drought Regimes Promote Ecosystem Transitions in Mediterranean Ecosystems. J. Ecol. 2019, 107, 1187–1198. [Google Scholar] [CrossRef]
- Chuvieco, E.; Yebra, M.; Martino, S.; Thonicke, K.; Gómez-Giménez, M.; San-Miguel, J.; Oom, D.; Velea, R.; Mouillot, F.; Molina, J.R.; et al. Towards an Integrated Approach to Wildfire Risk Assessment: When, Where, What and How May the Landscapes Burn. Fire 2023, 6, 215. [Google Scholar] [CrossRef]
- Seidl, R.; Thom, D.; Kautz, M.; Martin-Benito, D.; Peltoniemi, M.; Vacchiano, G.; Wild, J.; Ascoli, D.; Petr, M.; Honkaniemi, J.; et al. Forest Disturbances under Climate Change. Nat. Clim. Chang. 2017, 7, 395–402. [Google Scholar] [CrossRef] [PubMed]
- Senf, C.; Seidl, R. Storm and Fire Disturbances in Europe: Distribution and Trends. Glob. Chang. Biol. 2021, 27, 3605–3619. [Google Scholar] [CrossRef] [PubMed]
- Patacca, M.; Lindner, M.; Lucas-Borja, M.E.; Cordonnier, T.; Fidej, G.; Gardiner, B.; Hauf, Y.; Jasinevičius, G.; Labonne, S.; Linkevičius, E.; et al. Significant Increase in Natural Disturbance Impacts on European Forests since 1950. Glob. Chang. Biol. 2023, 29, 1359–1376. [Google Scholar] [CrossRef]
- Cannon, J.B.; O’Brien, J.J.; Loudermilk, E.L.; Dickinson, M.B.; Peterson, C.J. The Influence of Experimental Wind Disturbance on Forest Fuels and Fire Characteristics. For. Ecol. Manag. 2014, 330, 294–303. [Google Scholar] [CrossRef]
- Cannon, J.B.; Peterson, C.J.; O’Brien, J.J.; Brewer, J.S. A Review and Classification of Interactions between Forest Disturbance from Wind and Fire. For. Ecol. Manag. 2017, 406, 381–390. [Google Scholar] [CrossRef]
- Mitchell, S.J. Wind as a Natural Disturbance Agent in Forests: A Synthesis. Forestry 2013, 86, 147–157. [Google Scholar] [CrossRef]
- Kulakowski, D.; Veblen, T.T. Effect of Prior Disturbances on the Extent and Severity of Wildfire in Colorado Subalpine Forests. Ecology 2007, 88, 759–769. [Google Scholar] [CrossRef]
- Cannon, J.B.; Henderson, S.K.; Bailey, M.H.; Peterson, C.J. Interactions between Wind and Fire Disturbance in Forests: Competing Amplifying and Buffering Effects. For. Ecol. Manag. 2019, 436, 117–128. [Google Scholar] [CrossRef]
- Rodell, M.; Li, B. Changing Intensity of Hydroclimatic Extreme Events Revealed by GRACE and GRACE-FO. Nat. Water 2023, 1, 241–248. [Google Scholar] [CrossRef]
- Lindner, M.; Fitzgerald, J.B.; Zimmermann, N.E.; Reyer, C.; Delzon, S.; van der Maaten, E.; Schelhaas, M.-J.; Lasch, P.; Eggers, J.; van der Maaten-Theunissen, M.; et al. Climate Change and European Forests: What Do We Know, What Are the Uncertainties, and What Are the Implications for Forest Management? J. Environ. Manag. 2014, 146, 69–83. [Google Scholar] [CrossRef] [PubMed]
- Sutanto, S.J.; Vitolo, C.; Di Napoli, C.; D’Andrea, M.; Van Lanen, H.A.J. Heatwaves, Droughts, and Fires: Exploring Compound and Cascading Dry Hazards at the Pan-European Scale. Environ. Int. 2020, 134, 105276. [Google Scholar] [CrossRef] [PubMed]
- Littell, J.S.; Peterson, D.L.; Riley, K.L.; Liu, Y.; Luce, C.H. A Review of the Relationships between Drought and Forest Fire in the United States. Glob. Chang. Biol. 2016, 22, 2353–2369. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Zhai, L.; Pivovaroff, A.; Shuman, J.; Buotte, P.; Ding, J.; Christoffersen, B.; Knox, R.; Moritz, M.; Fisher, R.A.; et al. Assessing Climate Change Impacts on Live Fuel Moisture and Wildfire Risk Using a Hydrodynamic Vegetation Model. Biogeosciences 2021, 18, 4005–4020. [Google Scholar] [CrossRef]
- Resco de Dios, V.; Cunill Camprubí, À.; Pérez-Zanón, N.; Peña, J.C.; Martínez del Castillo, E.; Rodrigues, M.; Yao, Y.; Yebra, M.; Vega-García, C.; Boer, M.M. Convergence in Critical Fuel Moisture and Fire Weather Thresholds Associated with Fire Activity in the Pyroregions of Mediterranean Europe. Sci. Total Environ. 2022, 806, 151462. [Google Scholar] [CrossRef]
- Turco, M.; von Hardenberg, J.; AghaKouchak, A.; Llasat, M.C.; Provenzale, A.; Trigo, R.M. On the Key Role of Droughts in the Dynamics of Summer Fires in Mediterranean Europe. Sci. Rep. 2017, 7, 81. [Google Scholar] [CrossRef]
- Hicke, J.A.; Johnson, M.C.; Hayes, J.L.; Preisler, H.K. Effects of Bark Beetle-Caused Tree Mortality on Wildfire. For. Ecol. Manag. 2012, 271, 81–90. [Google Scholar] [CrossRef]
- Wermelinger, B.; Jakoby, O. Bark Beetles. In Disturbance Ecology; Landscape Series; Wohlgemuth, T., Jentsch, A., Seidl, R., Eds.; Springer: Cham, Switzerland, 2022; Volume 32, pp. 271–293. [Google Scholar]
- Schafellner, C.; Möller, K. Insect Defoliators. In Disturbance Ecology; Landscape Series; Wohlgemuth, T., Jentsch, A., Seidl, R., Eds.; Springer: Cham, Switzerland, 2022; Volume 32, pp. 239–269. [Google Scholar]
- Canelles, Q.; Aquilué, N.; James, P.M.A.; Lawler, J.; Brotons, L. Global Review on Interactions between Insect Pests and Other Forest Disturbances. Landsc. Ecol. 2021, 36, 945–972. [Google Scholar] [CrossRef]
- Mattson, W.J.; Haack, R.A. The Role of Drought in Outbreaks of Plant-Eating Insects. Bioscience 1987, 37, 110–118. [Google Scholar] [CrossRef]
- Gely, C.; Laurance, S.G.W.; Stork, N.E. How Do Herbivorous Insects Respond to Drought Stress in Trees? Biol. Rev. 2020, 95, 434–448. [Google Scholar] [CrossRef]
- Pureswaran, D.S.; Roques, A.; Battisti, A. Forest Insects and Climate Change. Curr. For. Reports 2018, 4, 35–50. [Google Scholar] [CrossRef]
- Jactel, H.; Koricheva, J.; Castagneyrol, B. Responses of Forest Insect Pests to Climate Change: Not so Simple. Curr. Opin. Insect Sci. 2019, 35, 103–108. [Google Scholar] [CrossRef] [PubMed]
- Hlásny, T.; König, L.; Krokene, P.; Lindner, M.; Montagné-Huck, C.; Müller, J.; Qin, H.; Raffa, K.F.; Schelhaas, M.-J.; Svoboda, M.; et al. Bark Beetle Outbreaks in Europe: State of Knowledge and Ways Forward for Management. Curr. For. Rep. 2021, 7, 138–165. [Google Scholar] [CrossRef]
- Roques, A. Processionary Moths and Climate Change: An Update; Springer: Cham, The Netherlands, 2015; pp. 1–427. [Google Scholar] [CrossRef]
- Sieg, C.H.; Linn, R.R.; Pimont, F.; Hoffman, C.M.; McMillin, J.D.; Winterkamp, J.; Baggett, L.S. Fires Following Bark Beetles: Factors Controlling Severity and Disturbance Interactions in Ponderosa Pine. Fire Ecol. 2017, 13, 1–23. [Google Scholar] [CrossRef]
- Metz, M.R.; Frangioso, K.M.; Meentemeyer, R.K.; Rizzo, D.M. Interacting Disturbances: Wildfire Severity Affected by Stage of Forest Disease Invasion. Ecol. Appl. 2011, 21, 313–320. [Google Scholar] [CrossRef]
- Dalponte, M.; Cetto, R.; Marinelli, D.; Andreatta, D.; Salvadori, C.; Pirotti, F.; Frizzera, L.; Gianelle, D. Spectral Separability of Bark Beetle Infestation Stages: A Single-Tree Time-Series Analysis Using Planet Imagery. Ecol. Indic. 2023, 153, 110349. [Google Scholar] [CrossRef]
- Stephens, S.L.; Collins, B.M.; Fettig, C.J.; Finney, M.A.; Hoffman, C.M.; Knapp, E.E.; North, M.P.; Safford, H.; Wayman, R.B. Drought, Tree Mortality, and Wildfire in Forests Adapted to Frequent Fire. Bioscience 2018, 68, 77–88. [Google Scholar] [CrossRef]
- Agne, M.C.; Woolley, T.; Fitzgerald, S. Fire Severity and Cumulative Disturbance Effects in the Post-Mountain Pine Beetle Lodgepole Pine Forests of the Pole Creek Fire. For. Ecol. Manag. 2016, 366, 73–86. [Google Scholar] [CrossRef]
- Kulakowski, D.; Jarvis, D. The Influence of Mountain Pine Beetle Outbreaks and Drought on Severe Wildfires in Northwestern Colorado and Southern Wyoming: A Look at the Past Century. For. Ecol. Manag. 2011, 262, 1686–1696. [Google Scholar] [CrossRef]
- Black, S.H.; Kulakowski, D.; Noon, B.R.; Dellasala, D.A. Do Bark Beetle Outbreaks Increase Wildfire Risks in the Central U.S. Rocky Mountains? Implications from Recent Research. Nat. Areas J. 2013, 33, 59–65. [Google Scholar] [CrossRef]
- Meigs, G.W.; Zald, H.S.J.J.; Campbell, J.L.; Keeton, W.S.; Kennedy, R.E. Do Insect Outbreaks Reduce the Severity of Subsequent Forest Fires? Environ. Res. Lett. 2016, 11, 045008. [Google Scholar] [CrossRef]
- Valachovic, Y.S.; Lee, C.A.; Scanlon, H.; Varner, J.M.; Glebocki, R.; Graham, B.D.; Rizzo, D.M. Sudden Oak Death-Caused Changes to Surface Fuel Loading and Potential Fire Behavior in Douglas-Fir-Tanoak Forests. For. Ecol. Manag. 2011, 261, 1973–1986. [Google Scholar] [CrossRef]
- Metz, M.R.; Varner, J.M.; Simler, A.B.; Frangioso, K.M.; Rizzo, D.M. Implications of Sudden Oak Death for Wildland Fire Management. For. Phytophthoras 2017, 7, 30–44. [Google Scholar] [CrossRef]
- Cobb, R.C.; Meentemeyer, R.K.; Rizzo, D.M. Wildfire and Forest Disease Interaction Lead to Greater Loss of Soil Nutrients and Carbon. Oecologia 2016, 182, 265–276. [Google Scholar] [CrossRef]
- Tkaczyk, M. Worldwide Review of Bacterial Diseases of Oaks (Quercus Sp.) and Their Potential Threat to Trees in Central Europe. Forestry 2023, 96, 425–433. [Google Scholar] [CrossRef]
- EFSA Panel on Plant Health (PLH). Scientific Opinion on the Pest Risk Analysis on Phytophthora Ramorum Prepared by the FP6 Project RAPRA. EFSA J. 2011, 9, 2186. [Google Scholar] [CrossRef]
- Landmann, G.; Held, A.; Schuck, A.; Van Brusselen, J. (Eds.) European Forests at Risk. A Scoping Study in Support of the Development of a European Forest Risk Facility; European Forest Institute: Freiburg, Germany, 2015. [Google Scholar] [CrossRef]
- Gill, J.C.; Malamud, B.D. Reviewing and Visualizing the Interactions of Natural Hazards. Rev. Geophys. 2014, 52, 680–722. [Google Scholar] [CrossRef]
- Hardy, C.C. Wildland Fire Hazard and Risk: Problems, Definitions, and Context. For. Ecol. Manag. 2005, 211, 73–82. [Google Scholar] [CrossRef]
- Graul, C. leafletR: Interactive Web-Maps Based on the Leaflet JavaScript Library, R package version 0.4-0, 2016. Available online: http://cran.r-project.org/package=leafletR (accessed on 4 December 2024).
- R Core Team. R (v. 4.4.1): A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2024; Available online: https://www.R-project.org/ (accessed on 4 December 2024).
- Kane, J.M.; Varner, J.M.; Metz, M.R.; van Mantgem, P.J. Characterizing Interactions between Fire and Other Disturbances and Their Impacts on Tree Mortality in Western U.S. Forests. For. Ecol. Manag. 2017, 405, 188–199. [Google Scholar] [CrossRef]
- Schelhaas, M.J.; Nabuurs, G.J.; Schuck, A. Natural Disturbances in the European Forests in the 19th and 20th Centuries. Glob. Chang. Biol. 2003, 9, 1620–1633. [Google Scholar] [CrossRef]
- Tedim, F.; Xanthopoulos, G.; Leone, V. Chapter 5—Forest Fires in Europe: Facts and Challenges. In Wildfire Hazards, Risks, and Disasters; Shroder, J.F., Paton, D., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2015; pp. 77–99. ISBN 978-0-12-410434-1. [Google Scholar]
- Bastit, F.; Brunette, M.; Montagné-Huck, C. Pests, Wind and Fire: A Multi-Hazard Risk Review for Natural Disturbances in Forests. Ecol. Econ. 2023, 205, 107702. [Google Scholar] [CrossRef]
- Berčák, R.; Holuša, J.; Kaczmarowski, J.; Tyburski, Ł.; Szczygieł, R.; Held, A.; Vacik, H.; Slivinský, J.; Chromek, I. Fire Protection Principles and Recommendations in Disturbed Forest Areas in Central Europe: A Review. Fire 2023, 6, 310. [Google Scholar] [CrossRef]
- Haas, O.; Keeping, T.; Gomez-Dans, J.; Prentice, I.C.; Harrison, S.P. The Global Drivers of Wildfire. Front. Environ. Sci. 2024, 12, 1438262. [Google Scholar] [CrossRef]
- Seidl, R.; Fernandes, P.M.; Fonseca, T.F.; Gillet, F.; Jönsson, A.M.; Merganičová, K.; Netherer, S.; Arpaci, A.; Bontemps, J.D.; Bugmann, H.; et al. Modelling Natural Disturbances in Forest Ecosystems: A Review. Ecol. Model. 2011, 222, 903–924. [Google Scholar] [CrossRef]
- Jenkins, M.J.; Runyon, J.B.; Fettig, C.J.; Page, W.G.; Bentz, B.J. Interactions among the Mountain Pine Beetle, Fires, and Fuels. For. Sci. 2014, 60, 489–501. [Google Scholar] [CrossRef]
- Beetz, K.; Marrs, C.; Busse, A.; Poděbradská, M.; Kinalczyk, D.; Kranz, J.; Forkel, M. Effects of Bark Beetle Disturbance and Fuel Types on Fire Radiative Power and Burn Severity in the Bohemian-Saxon Switzerland. For. An Int. J. For. Res. 2024, 2024, 1–12. [Google Scholar] [CrossRef]
- Collins, B.J.; Rhoades, C.C.; Battaglia, M.A.; Hubbard, R.M. The Effects of Bark Beetle Outbreaks on Forest Development, Fuel Loads and Potential Fire Behavior in Salvage Logged and Untreated Lodgepole Pine Forests. For. Ecol. Manag. 2012, 284, 260–268. [Google Scholar] [CrossRef]
- Lindenmayer, D.B.; Franklin, J.F.; Burton, P.J. Salvage Logging and Its Ecological Consequences; Island Press: Washington, DC, USA, 2008; ISBN 9781610911467. [Google Scholar]
- Sanginés de Cárcer, P.; Mederski, P.S.; Magagnotti, N.; Spinelli, R.; Engler, B.; Seidl, R.; Eriksson, A.; Eggers, J.; Bont, L.G.; Schweier, J. The Management Response to Wind Disturbances in European Forests. Curr. For. Rep. 2021, 7, 167–180. [Google Scholar] [CrossRef]
- Mauri, L.; Taccaliti, F.; Lingua, E. Modeling the Interaction between Wildfires and Windthrows: A Pilot Case Study for Italian Alps. J. Environ. Manag. 2024, 371, 123150. [Google Scholar] [CrossRef]
- Larjavaara, M.; Brotons, L.; Corticeiro, S.; Espelta, J.M.; Gazzard, R.; Leverkus, A.; Lovric, N.; Maia, P.; Sanders, T.; Svoboda, M.; et al. Deadwood and Fire Risk in Europe; Publications Office of the European Union: Luxembourg, 2023. [Google Scholar] [CrossRef]
- Schafstall, N.; Kuosmanen, N.; Kuneš, P.; Svobodová, H.S.; Svitok, M.; Chiverrell, R.C.; Halsall, K.; Fleischer, P.; Knížek, M.; Clear, J.L. Sub-Fossil Bark Beetles as Indicators of Past Disturbance Events in Temperate Picea abies Mountain Forests. Quat. Sci. Rev. 2022, 275, 107289. [Google Scholar] [CrossRef]
- Jonášová, M.; Prach, K. Central-European Mountain Spruce (Picea abies (L.) Karst.) Forests: Regeneration of Tree Species after a Bark Beetle Outbreak. Ecol. Eng. 2004, 23, 15–27. [Google Scholar] [CrossRef]
- Økland, B.; Nikolov, C.; Krokene, P.; Vakula, J. Transition from Windfall- to Patch-Driven Outbreak Dynamics of the Spruce Bark Beetle Ips typographus. For. Ecol. Manag. 2016, 363, 63–73. [Google Scholar] [CrossRef]
- Morris, J.L.; Cottrell, S.; Fettig, C.J.; Hansen, W.D.; Sherriff, R.L.; Carter, V.A.; Clear, J.L.; Clement, J.; DeRose, R.J.; Hicke, J.A.; et al. Managing Bark Beetle Impacts on Ecosystems and Society: Priority Questions to Motivate Future Research. J. Appl. Ecol. 2017, 54, 750–760. [Google Scholar] [CrossRef]
- Havašová, M.; Ferenčík, J.; Jakuš, R. Interactions between Windthrow, Bark Beetles and Forest Management in the Tatra National Parks. For. Ecol. Manag. 2017, 391, 349–361. [Google Scholar] [CrossRef]
- Talucci, A.C.; Meigs, G.W.; Knudby, A.; Krawchuk, M.A. Fire Severity and the Legacy of Mountain Pine Beetle Outbreak: High-Severity Fire Peaks with Mixed Live and Dead Vegetation. Environ. Res. Lett. 2022, 17, 124010. [Google Scholar] [CrossRef]
- Siliņš, I.; Kārkliņa, A.; Miezīte, O.; Jansons, Ā. Trends in Outbreaks of Defoliating Insects Highlight Growing Threats for Central European Forests, and Implications for Eastern Baltic Region. Forests 2021, 12, 799. [Google Scholar] [CrossRef]
- Forzieri, G.; Girardello, M.; Ceccherini, G.; Spinoni, J.; Feyen, L.; Hartmann, H.; Beck, P.S.A.; Camps-Valls, G.; Chirici, G.; Mauri, A.; et al. Emergent Vulnerability to Climate-Driven Disturbances in European Forests. Nat. Commun. 2021, 12, 1–12. [Google Scholar] [CrossRef]
- Stadelmann, G.; Bugmann, H.; Wermelinger, B.; Bigler, C. Spatial Interactions between Storm Damage and Subsequent Infestations by the European Spruce Bark Beetle. For. Ecol. Manag. 2014, 318, 167–174. [Google Scholar] [CrossRef]
- Bigler, C.; Bräker, O.U.; Bugmann, H.; Dobbertin, M.; Rigling, A. Drought as an Inciting Mortality Factor in Scots Pine Stands of the Valais, Switzerland. Ecosystems 2006, 9, 330–343. [Google Scholar] [CrossRef]
- Bose, A.K.; Gessler, A.; Büntgen, U.; Rigling, A. Tamm Review: Drought-Induced Scots Pine Mortality—Trends, Contributing Factors, and Mechanisms. For. Ecol. Manag. 2024, 561, 121873. [Google Scholar] [CrossRef]
- Bose, A.K.; Gessler, A.; Bolte, A.; Bottero, A.; Buras, A.; Cailleret, M.; Camarero, J.J.; Haeni, M.; Hereş, A.; Hevia, A.; et al. Growth and Resilience Responses of Scots Pine to Extreme Droughts across Europe Depend on Predrought Growth Conditions. Glob. Chang. Biol. 2020, 26, 4521–4537. [Google Scholar] [CrossRef] [PubMed]
- Machado Nunes Romeiro, J.; Eid, T.; Antón-Fernández, C.; Kangas, A.; Trømborg, E. Natural Disturbances Risks in European Boreal and Temperate Forests and Their Links to Climate Change—A Review of Modelling Approaches. For. Ecol. Manag. 2022, 509, 120071. [Google Scholar] [CrossRef]
- Abatzoglou, J.T.; Williams, A.P. Impact of Anthropogenic Climate Change on Wildfire across Western US Forests. Proc. Natl. Acad. Sci. USA 2016, 113, 11770–11775. [Google Scholar] [CrossRef] [PubMed]
- Grünig, M.; Seidl, R.; Senf, C. Increasing Aridity Causes Larger and More Severe Forest Fires across Europe. Glob. Chang. Biol. 2023, 29, 1648–1659. [Google Scholar] [CrossRef]
- San-Miguel-Ayanz, J.; Durrant, T.; Boca, R.; Maianti, P.; Liberta, G.; Artes Vivancos, T.; Jacome Felix Oom, D.; Branco, A.; De Rigo, D.; Ferrari, D.; et al. Forest Fires in Europe, Middle East and North Africa 2019, EUR 30402 EN (JRC122115); Publications Office of the European Union: Luxembourg, 2020. [Google Scholar] [CrossRef]
- San-Miguel-Ayanz, J.; Durrant, T.; Boca, R.; Liberta`, G.; Branco, A.; De Rigo, D.; Ferrari, D.; Maianti, P.; Artes Vivancos, T.; Pfeiffer, H.; et al. Forest Fires in Europe, Middle East and North Africa 2018, EUR 29856 EN (JRC117883); Publications Office of the European Union: Luxembourg, 2019. [Google Scholar] [CrossRef]
- Senf, C.; Seidl, R. Persistent Impacts of the 2018 Drought on Forest Disturbance Regimes in Europe. Biogeosciences 2021, 18, 5223–5230. [Google Scholar] [CrossRef]
- Bentz, B.J.J.; Rgnire, J.; Fettig, C.J.J.; Hansen, E.M.M.; Hayes, J.L.L.; Hicke, J.A.A.; Kelsey, R.G.G.; Negron, J.F.; Seybold, S.J.J.; Régnière, J.; et al. Climate Change and Bark Beetles of the Western United States and Canada: Direct and Indirect Effects. Bioscience 2010, 60, 602–613. [Google Scholar] [CrossRef]
- Robbins, Z.J.; Xu, C.; Aukema, B.H.; Buotte, P.C.; Chitra-Tarak, R.; Fettig, C.J.; Goulden, M.L.; Goodsman, D.W.; Hall, A.D.; Koven, C.D.; et al. Warming Increased Bark Beetle-induced Tree Mortality by 30% during an Extreme Drought in California. Glob. Chang. Biol. 2022, 28, 509–523. [Google Scholar] [CrossRef]
- Allen, C.D.; Macalady, A.K.; Chenchouni, H.; Bachelet, D.; McDowell, N.; Vennetier, M.; Kitzberger, T.; Rigling, A.; Breshears, D.D.; Hogg, E.H.; et al. A Global Overview of Drought and Heat-Induced Tree Mortality Reveals Emerging Climate Change Risks for Forests. For. Ecol. Manag. 2010, 259, 660–684. [Google Scholar] [CrossRef]
- Rigo, D.; Durrant, H.; Vivancos, A. Forest Fire Danger Extremes in Europe under Climate Change: Variability and Uncertainty; Publications Office of the European Union; EUR 28926, JRC108974; Luxembourg, 2017. [Google Scholar]
- Desprez-Loustau, M.-L.; Marçais, B.; Nageleisen, L.-M.; Piou, D.; Vannini, A. Interactive Effects of Drought and Pathogens in Forest Trees. Ann. For. Sci. 2006, 63, 597–612. [Google Scholar] [CrossRef]
- Gomez-Gallego, M.; Galiano, L.; Martínez-Vilalta, J.; Stenlid, J.; Capador-Barreto, H.D.; Elfstrand, M.; Camarero, J.J.; Oliva, J. Interaction of Drought- and Pathogen-induced Mortality in Norway Spruce and Scots Pine. Plant. Cell Environ. 2022, 45, 2292–2305. [Google Scholar] [CrossRef]
- Aguade, D.; Poyatos, R.; Gomez, M.; Oliva, J.; Martinez-Vilalta, J. The Role of Defoliation and Root Rot Pathogen Infection in Driving the Mode of Drought-Related Physiological Decline in Scots Pine (Pinus sylvestris L.). Tree Physiol. 2015, 35, 229–242. [Google Scholar] [CrossRef] [PubMed]
- Holuša, J.; Lubojacký, J.; Čurn, V.; Tonka, T.; Lukášová, K.; Horák, J. Combined Effects of Drought Stress and Armillaria Infection on Tree Mortality in Norway Spruce Plantations. For. Ecol. Manag. 2018, 427, 434–445. [Google Scholar] [CrossRef]
- Bußkamp, J.; Langer, G.J.; Langer, E.J. Sphaeropsis Sapinea and Fungal Endophyte Diversity in Twigs of Scots Pine (Pinus sylvestris) in Germany. Mycol. Prog. 2020, 19, 985–999. [Google Scholar] [CrossRef]
- Blumenstein, K.; Bußkamp, J.; Langer, G.J.; Schlößer, R.; Parra Rojas, N.M.; Terhonen, E. Sphaeropsis Sapinea and Associated Endophytes in Scots Pine: Interactions and Effect on the Host Under Variable Water Content. Front. For. Glob. Chang. 2021, 4, 655769. [Google Scholar] [CrossRef]
- Millar, C.I.; Stephenson, N.L. Temperate Forest Health in an Era of Emerging Megadisturbance. Science 2015, 349, 823–826. [Google Scholar] [CrossRef]
- Lindner, M.; Maroschek, M.; Netherer, S.; Kremer, A.; Barbati, A.; Garcia-Gonzalo, J.; Seidl, R.; Delzon, S.; Corona, P.; Kolström, M.; et al. Climate Change Impacts, Adaptive Capacity, and Vulnerability of European Forest Ecosystems. For. Ecol. Manag. 2010, 259, 698–709. [Google Scholar] [CrossRef]
- Seidl, R.; Kautz, M. Impacts of Climate Change on Disturbances. In Disturbance Ecology; Landscape Series; Wohlgemuth, T., Jentsch, A., Seidl, R., Eds.; Springer: Cham, Switzerland, 2022; Volume 32, pp. 377–389. [Google Scholar]
- Seidl, R.; Schelhaas, M.J.; Lexer, M.J. Unraveling the Drivers of Intensifying Forest Disturbance Regimes in Europe. Glob. Chang. Biol. 2011, 17, 2842–2852. [Google Scholar] [CrossRef]
- Schumacher, S.; Bugmann, H. The Relative Importance of Climatic Effects, Wildfires and Management for Future Forest Landscape Dynamics in the Swiss Alps. Glob. Chang. Biol. 2006, 12, 1435–1450. [Google Scholar] [CrossRef]
- Seidl, R.; Rammer, W. Climate Change Amplifies the Interactions between Wind and Bark Beetle Disturbances in Forest Landscapes. Landsc. Ecol. 2017, 32, 1485–1498. [Google Scholar] [CrossRef]
- Van Wagner, C.E. Development and Structure of the Canadian Forest Fire Weather Index System; Canadian Forest Service, Petawawa National Forestry Institute: Ottawa, ON, Canada, 1987. [Google Scholar]
- Natural Resources Canada Canadian Forest Fire Weather Index (FWI) System. Available online: https://cwfis.cfs.nrcan.gc.ca/background/summary/fwi (accessed on 10 September 2024).
- Field, R.D.; Spessa, A.C.; Aziz, N.A.; Camia, A.; Cantin, A.; Carr, R.; de Groot, W.J.; Dowdy, A.J.; Flannigan, M.D.; Manomaiphiboon, K.; et al. Development of a Global Fire Weather Database. Nat. Hazards Earth Syst. Sci. 2015, 15, 1407–1423. [Google Scholar] [CrossRef]
- Miller, J.; Böhnisch, A.; Ludwig, R.; Brunner, M.I. Climate Change Impacts on Regional Fire Weather in Heterogeneous Landscapes of Central Europe. Nat. Hazards Earth Syst. Sci. 2024, 24, 411–428. [Google Scholar] [CrossRef]
- Hetzer, J.; Forrest, M.; Ribalaygua, J.; Prado-López, C.; Hickler, T. The Fire Weather in Europe: Large-Scale Trends towards Higher Danger. Environ. Res. Lett. 2024, 19, 084017. [Google Scholar] [CrossRef]
- Schelhaas, M.J.; Hengeveld, G.; Moriondo, M.; Reinds, G.J.; Kundzewicz, Z.W.; ter Maat, H.; Bindi, M. Assessing Risk and Adaptation Options to Fires and Windstorms in European Forestry. Mitig. Adapt. Strateg. Glob. Chang. 2010, 15, 681–701. [Google Scholar] [CrossRef]
- Feser, F.; Barcikowska, M.; Krueger, O.; Schenk, F.; Weisse, R.; Xia, L. Storminess over the North Atlantic and Northwestern Europe—A Review. Q. J. R. Meteorol. Soc. 2015, 141, 350–382. [Google Scholar] [CrossRef]
- Gora, E.M.; Burchfield, J.C.; Muller-Landau, H.C.; Bitzer, P.M.; Yanoviak, S.P. Pantropical Geography of Lightning-caused Disturbance and Its Implications for Tropical Forests. Glob. Chang. Biol. 2020, 26, 5017–5026. [Google Scholar] [CrossRef]
- Müller, M.M.; Vacik, H. Characteristics of Lightnings Igniting Forest Fires in Austria. Agric. For. Meteorol. 2017, 240–241, 26–34. [Google Scholar] [CrossRef]
- Conedera, M.; Cesti, G.; Pezzatti, G.B.; Zumbrunnen, T.; Spinedi, F. Lightning-Induced Fires in the Alpine Region: An Increasing Problem. In Proceedings of the V International Conference on Forest Fire Research, Coimbra, Portugal, 27–30 November 2006; Viegas, D.X., Ed.; 2006. Available online: https://www.dora.lib4ri.ch/wsl/islandora/object/wsl:17898 (accessed on 4 December 2024).
- Müller, M.M.; Vacik, H.; Valese, E. Anomalies of the Austrian Forest Fire Regime in Comparison with Other Alpine Countries: A Research Note. Forests 2015, 6, 903–913. [Google Scholar] [CrossRef]
- Müller, M.M.; Vacik, H.; Diendorfer, G.; Arpaci, A.; Formayer, H.; Gossow, H. Analysis of Lightning-Induced Forest Fires in Austria. Theor. Appl. Climatol. 2013, 111, 183–193. [Google Scholar] [CrossRef]
- Vacik, H.; Arndt, N.; Arpaci, A.; Koch, V.; Mueller, M.; Gossow, H. Characterisation of Forest Fires in Austria. Austrian J. For. Sci. 2011, 128, 1–32. [Google Scholar]
- De Giuli, M.; Winkler, M.; Deola, T.; Henschel, J.; Sass, O.; Wolff, P.; Jentsch, A. Arrested Succession on Fire-Affected Slopes in the Krummholz Zone and Subalpine Forest of the Northern Limestone Alps. Diversity 2024, 16, 366. [Google Scholar] [CrossRef]
- Kahraman, A.; Kendon, E.J.; Fowler, H.J.; Wilkinson, J.M. Contrasting Future Lightning Stories across Europe. Environ. Res. Lett. 2022, 17, 114023. [Google Scholar] [CrossRef]
- Zald, H.S.J.; Dunn, C.J. Severe Fire Weather and Intensive Forest Management Increase Fire Severity in a Multi-Ownership Landscape. Ecol. Appl. 2018, 28, 1068–1080. [Google Scholar] [CrossRef] [PubMed]
- Lindenmayer, D.B.; Yebra, M.; Cary, G.J. Perspectives: Better Managing Fire in Flammable Tree Plantations. For. Ecol. Manag. 2023, 528, 120641. [Google Scholar] [CrossRef]
- Bundesanstalt für Landwirtschaft und Ernährung Waldbrandstatistik 2022: Fläche Der Größe Borkums Verbrannt. Available online: https://www.ble.de/SharedDocs/Pressemitteilungen/DE/2023/230718_Waldbrandstatistik.html (accessed on 4 December 2024).
- Gnilke, A.; Sanders, T. Forest Fire History in Germany (2001–2020), Project Brief/Thünen Institute; Thünen Institute of Forest Ecosystem: Eberswalde, Germany, 2021. [Google Scholar]
- Ewald, M.; Labenski, P.; Westphal, E.; Metzsch-Zilligen, E.; Großhauser, M.; Fassnacht, F.E. Leaf Litter Combustion Properties of Central European Tree Species. For. Int. J. For. Res. 2023, cpad026. [Google Scholar] [CrossRef]
- Bundesanstalt für Landwirtschaft und Ernährung BMEL-Statistik: Waldbrandstatistik. Available online: https://www.bmel-statistik.de/forst-holz/waldbrandstatistik (accessed on 3 September 2024).
- Berčák, R.; Holuša, J.; Trombik, J.; Resnerová, K.; Hlásny, T. A Combination of Human Activity and Climate Drives Forest Fire Occurrence in Central Europe: The Case of the Czech Republic. Fire 2024, 7, 109. [Google Scholar] [CrossRef]
- Schmidt, M.; Hanewinkel, M.; Kändler, G.; Kublin, E.; Kohnle, U. An Inventory-Based Approach for Modeling Single-Tree Storm Damage—Experiences with the Winter Storm of 1999 in Southwestern Germany. Can. J. For. Res. 2010, 40, 1636–1652. [Google Scholar] [CrossRef]
- Knapp, N.; Wellbrock, N.; Bielefeldt, J.; Dühnelt, P.; Hentschel, R.; Bolte, A. From Single Trees to Country-Wide Maps: Modeling Mortality Rates in Germany Based on the Crown Condition Survey. For. Ecol. Manag. 2024, 568, 122081. [Google Scholar] [CrossRef]
- Korená Hillayová, M.; Holécy, J.; Korísteková, K.; Bakšová, M.; Ostrihoň, M.; Škvarenina, J. Ongoing Climatic Change Increases the Risk of Wildfires. Case Study: Carpathian Spruce Forests. J. Environ. Manag. 2023, 337, 117620. [Google Scholar] [CrossRef]
- Csontos, P.; Cseresnyés, I. Fire-Risk Evaluation of Austrian Pine Stands in Hungary—Effects of Drought Conditions and Slope Aspect on Fire Spread and Fire Behaviour. Carpathian J. Earth Environ. Sci. 2015, 10, 247–254. [Google Scholar]
- Cseresnyes, I.; Szecsy, O.; Csontos, P. Fire Risk in Austrian Pine (Pinus nigra) Plantations under Various Temperature and Wind Conditions. Acta Bot. Croat. 2011, 70, 157–166. [Google Scholar] [CrossRef]
- Turner, M.G. Disturbance and Landscape Dynamics in a Changing World. Ecology 2010, 91, 2833–2849. [Google Scholar] [CrossRef] [PubMed]
- Gough, C.M.; Buma, B.; Jentsch, A.; Mathes, K.C.; Fahey, R.T. Disturbance Theory for Ecosystem Ecologists: A Primer. Ecol. Evol. 2024, 14, e11403. [Google Scholar] [CrossRef] [PubMed]
- Kleinman, J.S.; Goode, J.D.; Fries, A.C.; Hart, J.L. Ecological Consequences of Compound Disturbances in Forest Ecosystems: A Systematic Review. Ecosphere 2019, 10, e02962. [Google Scholar] [CrossRef]
- Disturbance Ecology; Wohlgemuth, T.; Jentsch, A.; Seidl, R. (Eds.) Landscape Series; Springer: Cham, Switzerland, 2022; Volume 32, ISBN 978-3-030-98755-8. [Google Scholar]
- Vallet, L.; Schwartz, M.; Ciais, P.; van Wees, D.; De Truchis, A.; Mouillot, F. High-Resolution Data Reveal a Surge of Biomass Loss from Temperate and Atlantic Pine Forests, Contextualizing the 2022 Fire Season Distinctiveness in France. Biogeosciences 2023, 20, 3803–3825. [Google Scholar] [CrossRef]
- Stoof, C.R.; Kok, E.; Forradellas, A.C.; van Marle, M.J.E. Correction to: In Temperate Europe, Fire Is Already Here: The Case of The Netherlands (Ambio, (2024), 53, 4, (604-623), 10.1007/S13280-023-01960-Y). Ambio 2024, 53, 1092. [Google Scholar] [CrossRef]
- Fraser, L.H.; Pither, J.; Jentsch, A.; Sternberg, M.; Zobel, M.; Askarizadeh, D.; Bartha, S.; Beierkuhnlein, C.; Bennett, J.A.; Bittel, A.; et al. Worldwide Evidence of a Unimodal Relationship between Productivity and Plant Species Richness. Science 2015, 349, 302–305. [Google Scholar] [CrossRef]
- Gossow, H.; Hafellner, R.; Vacik, H.; Huber, T. Major Fire Issues in the Euro-Alpine Region—The Austrian Alps. Int. For. Fire 2009, 38, 101–110. [Google Scholar]
- Arnell, N.W.; Freeman, A.; Gazzard, R. The Effect of Climate Change on Indicators of Fire Danger in the UK. Environ. Res. Lett. 2021, 16, 044027. [Google Scholar] [CrossRef]
- Modugno, S.; Balzter, H.; Cole, B.; Borrelli, P. Mapping Regional Patterns of Large Forest Fires in Wildland–Urban Interface Areas in Europe. J. Environ. Manag. 2016, 172, 112–126. [Google Scholar] [CrossRef]
- Schug, F.; Bar-Massada, A.; Carlson, A.R.; Cox, H.; Hawbaker, T.J.; Helmers, D.; Hostert, P.; Kaim, D.; Kasraee, N.K.; Martinuzzi, S.; et al. The Global Wildland–Urban Interface. Nature 2023, 621, 94–99. [Google Scholar] [CrossRef]
- Ganteaume, A.; Barbero, R.; Jappiot, M.; Maillé, E. Understanding Future Changes to Fires in Southern Europe and Their Impacts on the Wildland-Urban Interface. J. Saf. Sci. Resil. 2021, 2, 20–29. [Google Scholar] [CrossRef]
- Fox, D.M.; Carrega, P.; Ren, Y.; Caillouet, P.; Bouillon, C.; Robert, S. How Wildfire Risk Is Related to Urban Planning and Fire Weather Index in SE France (1990–2013). Sci. Total Environ. 2018, 621, 120–129. [Google Scholar] [CrossRef] [PubMed]
- Vacca, P.; Caballero, D.; Pastor, E.; Planas, E. WUI Fire Risk Mitigation in Europe: A Performance-Based Design Approach at Home-Owner Level. J. Saf. Sci. Resil. 2020, 1, 97–105. [Google Scholar] [CrossRef]
- Rego, F.; Rigolot, E.; Fernandes, P.; Joaquim, C.M.; Silva, S. Towards Integrated Fire Management. EFI Policy Brief 4; European Forest Institute: Joensuu, Finland, 2010; Available online: https://efi.int/publications-bank/towards-integrated-fire-management (accessed on 4 December 2024).
- Loepfe, L.; Martinez-Vilalta, J.; Piñol, J. Management Alternatives to Offset Climate Change Effects on Mediterranean Fire Regimes in NE Spain. Clim. Chang. 2012, 115, 693–707. [Google Scholar] [CrossRef]
- Costa, P.; Castellnou, M.; Larrañaga, A.; Miralles, M.; Kraus, D. Prevention of Large Wildfires Using the Fire Types Concept; Unitat Tècnica del GRAF: Barcelona, Spain, 2011; ISBN 978-84-694-1457-6. Available online: https://interior.gencat.cat/web/.content/home/010_el_departament/publicacions/proteccio_civil/guia_la_prevencio_dels_grans_incendis_forestals_adaptada_a_l_incendi_tipus/docs/guia_la_prevencio_dels_grans_incendis_forestals_eng.pdf (accessed on 4 December 2024).
- Rabin, S.S.; Gérard, F.N.; Arneth, A. The Influence of Thinning and Prescribed Burning on Future Forest Fires in Fire-Prone Regions of Europe. Environ. Res. Lett. 2022, 17, 055010. [Google Scholar] [CrossRef]
- Crecente-Campo, F.; Pommerening, A.; Rodríguez-Soalleiro, R. Impacts of Thinning on Structure, Growth and Risk of Crown Fire in a Pinus sylvestris L. Plantation in Northern Spain. For. Ecol. Manag. 2009, 257, 1945–1954. [Google Scholar] [CrossRef]
- Feurdean, A.; Veski, S.; Florescu, G.; Vannière, B.; Pfeiffer, M.; O’Hara, R.B.; Stivrins, N.; Amon, L.; Heinsalu, A.; Vassiljev, J.; et al. Broadleaf Deciduous Forest Counterbalanced the Direct Effect of Climate on Holocene Fire Regime in Hemiboreal/Boreal Region (NE Europe). Quat. Sci. Rev. 2017, 169, 378–390. [Google Scholar] [CrossRef]
- Xanthopoulos, G.; Caballero, D.; Galante, M.; Alexandrian, D.; Rigolot, E.; Marzano, R. Forest Fuels Management in Europe. In Fuels Management-How to Measure Success: Conference Proceedings, Portland, OR, USA, 28–30 March 2006; Andrews, P.L., Butler, B.W., Eds.; U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2006. Available online: https://research.fs.usda.gov/treesearch/25935 (accessed on 4 December 2024).
- Green, L. Fuelbreaks and Other Fuel Modification for Wildland Fire Control; Agricultural Handbook No. 499; U.S. Department of Agriculture, Forest Service: Washington, DC, USA, 1977. Available online: https://research.fs.usda.gov/treesearch/33461 (accessed on 4 December 2024).
- Finney, M.A. Design of Regular Landscape Fuel Treatment Patterns for Modifying Fire Growth and Behavior. For. Sci. 2001, 47, 219–228. [Google Scholar] [CrossRef]
- Leverkus, A.B.; Gustafsson, L.; Lindenmayer, D.B.; Castro, J.; Rey Benayas, J.M.; Ranius, T.; Thorn, S. Salvage Logging Effects on Regulating Ecosystem Services and Fuel Loads. Front. Ecol. Environ. 2020, 18, 391–400. [Google Scholar] [CrossRef]
- Leverkus, A.B.; Rey Benayas, J.M.; Castro, J.; Boucher, D.; Brewer, S.; Collins, B.M.; Donato, D.; Fraver, S.; Kishchuk, B.E.; Lee, E.J.; et al. Salvage Logging Effects on Regulating and Supporting Ecosystem Services—A Systematic Map. Can. J. For. Res. 2018, 48, 983–1000. [Google Scholar] [CrossRef]
- Lindenmayer, D.B.; Foster, D.R.; Franklin, J.F.; Hunter, M.L.; Noss, R.F.; Schmiegelow, F.A.; Perry, D. Salvage Harvesting Policies after Natural Disturbance. Science 2004, 303, 1303. [Google Scholar] [CrossRef] [PubMed]
- De Groot, W.J.; Goldammer, J.G.; Justice, C.O.; Lynham, T.J.; Csiszar, I.A.; San-Miguel-Ayanz, J. Implementing a Global Early Warning System for Wildland Fire. In Proceedings of the VI International Conference on Forest Fire Research, Coimbra, Portugal, 15–18 November 2010; Available online: https://gfmc.online/wp-content/uploads/VI-ICFFRGlobal-EWS.pdf (accessed on 4 December 2024).
- Neumann, M.; Vilà-Vilardell, L.; Müller, M.M.; Vacik, H. Fuel Loads and Fuel Structure in Austrian Coniferous Forests. Int. J. Wildl. Fire 2022, 31, 693–707. [Google Scholar] [CrossRef]
- Hanewinkel, M.; Peltola, H.; Soares, P.; Olabarria, J. Recent Approaches to Model the Risk of Storm and Fire to European Forests and Their Integration into Simulation and Decision Support Tools. For. Syst. 2010, 19, 30–47. [Google Scholar] [CrossRef]
- Marquez Torres, A.; Signorello, G.; Kumar, S.; Adamo, G.; Villa, F.; Balbi, S. Fire Risk Modeling: An Integrated and Data-Driven Approach Applied to Sicily. Nat. Hazards Earth Syst. Sci. 2023, 23, 2937–2959. [Google Scholar] [CrossRef]
- Milanović, S.S.D.; Trailović, Z.; Milanović, S.S.D.; Hochbichler, E.; Kirisits, T.; Immitzer, M.; Čermák, P.; Pokorný, R.; Jankovský, L.; Jaafari, A. Country-Level Modeling of Forest Fires in Austria and the Czech Republic: Insights from Open-Source Data. Sustainability 2023, 15, 5269. [Google Scholar] [CrossRef]
- McNorton, J.R.; Di Giuseppe, F.; Pinnington, E.; Chantry, M.; Barnard, C. A Global Probability-Of-Fire (PoF) Forecast. Geophys. Res. Lett. 2024, 51, e2023GL107929. [Google Scholar] [CrossRef]
- Arrogante-Funes, F.; Mouillot, F.; Moreira, B.; Aguado, I.; Chuvieco, E. Mapping and Assessment of Ecological Vulnerability to Wildfires in Europe. Fire Ecol. 2024, 20, 98. [Google Scholar] [CrossRef]
- Li, H.; Vulova, S.; Rocha, A.D.; Kleinschmit, B. Spatio-Temporal Feature Attribution of European Summer Wildfires with Explainable Artificial Intelligence (XAI). Sci. Total Environ. 2024, 916, 170330. [Google Scholar] [CrossRef]
- Rösch, M.; Nolde, M.; Ullmann, T.; Riedlinger, T. Data-Driven Wildfire Spread Modeling of European Wildfires Using a Spatiotemporal Graph Neural Network. Fire 2024, 7, 207. [Google Scholar] [CrossRef]
- European Environment Agency. European Climate Risk Assessment (EEA Report 01/2024); Publications Office of the European Union: Luxembourg, 2024; Available online: https://www.eea.europa.eu/publications/european-climate-risk-assessment (accessed on 4 December 2024).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leonardos, L.; Gnilke, A.; Sanders, T.G.M.; Shatto, C.; Stadelmann, C.; Beierkuhnlein, C.; Jentsch, A. Synthesis and Perspectives on Disturbance Interactions, and Forest Fire Risk and Fire Severity in Central Europe. Fire 2024, 7, 470. https://doi.org/10.3390/fire7120470
Leonardos L, Gnilke A, Sanders TGM, Shatto C, Stadelmann C, Beierkuhnlein C, Jentsch A. Synthesis and Perspectives on Disturbance Interactions, and Forest Fire Risk and Fire Severity in Central Europe. Fire. 2024; 7(12):470. https://doi.org/10.3390/fire7120470
Chicago/Turabian StyleLeonardos, Leonardos, Anne Gnilke, Tanja G. M. Sanders, Christopher Shatto, Catrin Stadelmann, Carl Beierkuhnlein, and Anke Jentsch. 2024. "Synthesis and Perspectives on Disturbance Interactions, and Forest Fire Risk and Fire Severity in Central Europe" Fire 7, no. 12: 470. https://doi.org/10.3390/fire7120470
APA StyleLeonardos, L., Gnilke, A., Sanders, T. G. M., Shatto, C., Stadelmann, C., Beierkuhnlein, C., & Jentsch, A. (2024). Synthesis and Perspectives on Disturbance Interactions, and Forest Fire Risk and Fire Severity in Central Europe. Fire, 7(12), 470. https://doi.org/10.3390/fire7120470