AgriFireInfo v1.0: An Open-Source Platform for the Monitoring and Management of Open-Field Crop Residue Burning
Abstract
:1. Introduction
2. Data and Methods
2.1. Architecture of the Platform
2.2. Data Sources
2.3. Fire Radiative Energy
2.4. Prevention Alarming Index
3. Results and Discussion
3.1. Displaying Crop Residue Fire Spots and Emission Patterns
3.2. Visualizing Meteorological Conditions and Air Quality
3.3. Evaluating the Daily Variations in Burning Intensities
3.4. Assessing the Regions with High Prevention Alarming Index VALUES
3.5. Regulating Controlled Crop-Residue-Burning Activities
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De, S. Strategies of Plant Biotechnology to Meet the Increasing Demand of Food and Nutrition in India. Int. Ann. Sci. 2020, 10, 7–15. [Google Scholar] [CrossRef]
- Xu, C.; You, C. Agricultural Expansion Dominates Rapid Increases in Cropland Fires in Asia. Environ. Int. 2023, 179, 108189. [Google Scholar] [CrossRef]
- Huang, T.; Ma, J.; Song, S.; Ling, Z.; Macdonald, R.W.; Gao, H.; Tao, S.; Shen, H.; Zhao, Y.; Liu, X. Health and Environmental Consequences of Crop Residue Burning Correlated with Increasing Crop Yields Midst India’s Green Revolution. NPJ Clim. Atmos. Sci. 2022, 5, 81. [Google Scholar] [CrossRef]
- Mathur, R.; Srivastava, V.K. Crop Residue Burning: Effects on Environment. In Greenhouse Gas Emissions. Energy, Environment, and Sustainability; Springer: Singapore, 2019; pp. 127–140. [Google Scholar] [CrossRef]
- Yang, G.; Zhao, H.; Tong, D.Q.; Xiu, A.; Zhang, X.; Gao, C. Impacts of Post-Harvest Open Biomass Burning and Burning Ban Policy on Severe Haze in the Northeastern China. Sci. Total Environ. 2020, 716, 136517. [Google Scholar] [CrossRef]
- Ravindra, K.; Singh, T.; Sinha, V.; Sinha, B.; Paul, S.; Attri, S.D.; Mor, S. Appraisal of Regional Haze Event and Its Relationship with PM2. 5 Concentration, Crop Residue Burning and Meteorology in Chandigarh, India. Chemosphere 2021, 273, 128562. [Google Scholar] [CrossRef] [PubMed]
- Khalid, A.; Guerriero, E.; Cerasa, M.; Mahmood, T.; Khalid, A.; Paris, E.; Mosca, S.; Gallucci, F. Estimation Inventories of Persistent Organic Pollutants from Rice Straw Combustion as an Agricultural Waste. Fire 2023, 6, 459. [Google Scholar] [CrossRef]
- Wang, J.; Wang, X. A Triumph of Reducing Carbon Emission by Banning Open Straw Burning. Sci. Bull. 2023, 68, 18–20. [Google Scholar] [CrossRef] [PubMed]
- Shyamsundar, P.; Springer, N.P.; Tallis, H.; Polasky, S.; Jat, M.L.; Sidhu, H.S.; Krishnapriya, P.P.; Skiba, N.; Ginn, W.; Ahuja, V.; et al. Fields on Fire: Alternatives to Crop Residue Burning in India. Science 2019, 365, 536–538. [Google Scholar] [CrossRef]
- Theesfeld, I.; Jelinek, L. A Misfit in Policy to Protect Russia’s Black Soil Region. An Institutional Analytical Lens Applied to the Ban on Burning of Crop Residues. Land. Use Policy 2017, 67, 517–526. [Google Scholar] [CrossRef]
- Zhang, T.; de Jong, M.C.; Wooster, M.J.; Xu, W.; Wang, L. Trends in Eastern China Agricultural Fire Emissions Derived from a Combination of Geostationary (Himawari) and Polar (VIIRS) Orbiter Fire Radiative Power Products. Atmos. Chem. Phys. 2020, 20, 10687–10705. [Google Scholar] [CrossRef]
- Barmpoutis, P.; Kastridis, A.; Stathaki, T.; Yuan, J.; Shi, M.; Grammalidis, N. Suburban Forest Fire Risk Assessment and Forest Surveillance Using 360-Degree Cameras and a Multiscale Deformable Transformer. Remote Sens. 2023, 15, 1995. [Google Scholar] [CrossRef]
- Duangsuwan, S.; Klubsuwan, K. Accuracy Assessment of Drone Real-Time Open Burning Imagery Detection for Early Wildfire Surveillance. Forests 2023, 14, 1852. [Google Scholar] [CrossRef]
- Wang, S.; Yin, C.; Li, F.; Richel, A. Innovative Incentives Can Sustainably Enhance the Achievement of Straw Burning Control in China. Sci. Total Environ. 2023, 857, 159498. [Google Scholar] [CrossRef] [PubMed]
- Mohapatra, A.; Trinh, T. Early Wildfire Detection Technologies in Practice—A Review. Sustainability 2022, 14, 12270. [Google Scholar] [CrossRef]
- Kalabokidis, K.; Athanasis, N.; Gagliardi, F.; Karayiannis, F.; Palaiologou, P.; Parastatidis, S.; Vasilakos, C. Virtual Fire: A Web-Based GIS Platform for Forest Fire Control. Ecol. Inf. 2013, 16, 62–69. [Google Scholar] [CrossRef]
- Cao, H.; Meng, X.; Liu, X.; Liu, W.; Chen, Y.; Yu, H.; Mi, X. Construction of Space-Air-Ground Integration Crop Residue Burning Monitoring Platform (In Chinese). Remote Sens. Technol. Appl. 2023, 38, 640–648. [Google Scholar]
- Zheng, M.; Li, J.; Liu, Z. Development and Application of Crop Stalk Burning Monitoring System in Northeast China Based on Android Client (In Chinese). Trans. Chin. Soc. Agric. Eng. 2022, 38, 146–153. [Google Scholar]
- Zhao, Y.; Zhang, M. Design and Implementation of Straw Burning Satellite Monitoring Service Platform (In Chinese). Geospat. Inf. 2021, 19, 49–53. [Google Scholar]
- Wooster, M.J.; Roberts, G.; Perry, G.L.W.; Kaufman, Y.J. Retrieval of Biomass Combustion Rates and Totals from Fire Radiative Power Observations: FRP Derivation and Calibration Relationships between Biomass Consumption and Fire Radiative Energy Release. J. Geophys. Res. Atmos. 2005, 110, 1–24. [Google Scholar] [CrossRef]
- Laurent, P.; Mouillot, F.; Moreno, M.V.; Yue, C.; Ciais, P. Varying Relationships between Fire Radiative Power and Fire Size at a Global Scale. Biogeosciences 2019, 16, 275–288. [Google Scholar] [CrossRef]
- Zheng, B.; Campbell, J.B.; de Beurs, K.M. Remote Sensing of Crop Residue Cover Using Multi-Temporal Landsat Imagery. Remote Sens. Environ. 2012, 117, 177–183. [Google Scholar] [CrossRef]
- Hively, W.D.; Lamb, B.T.; Daughtry, C.S.T.; Shermeyer, J.; McCarty, G.W.; Quemada, M. Mapping Crop Residue and Tillage Intensity Using WorldView-3 Satellite Shortwave Infrared Residue Indices. Remote Sens. 2018, 10, 1657. [Google Scholar] [CrossRef]
- Dvorakova, K.; Shi, P.; Limbourg, Q.; van Wesemael, B. Soil Organic Carbon Mapping from Remote Sensing: The Effect of Crop Residues. Remote Sens. 2020, 12, 1913. [Google Scholar] [CrossRef]
- Van Deventer, A.P.; Ward, A.D.; Gowda, P.H.; Lyon, J.G. Using Thematic Mapper Data to Identify Contrasting Soil Plains and Tillage Practices. Photogramm. Eng. Remote Sens. 1997, 63, 87–93. [Google Scholar]
- Xiang, X.; Du, J.; Jacinthe, P.-A.; Zhao, B.; Zhou, H.; Liu, H.; Song, K. Integration of Tillage Indices and Textural Features of Sentinel-2A Multispectral Images for Maize Residue Cover Estimation. Soil. Tillage Res. 2022, 221, 105405. [Google Scholar] [CrossRef]
- You, N.; Dong, J.; Huang, J.; Du, G.; Zhang, G.; He, Y.; Yang, T.; Di, Y.; Xiao, X. The 10-m Crop Type Maps in Northeast China during 2017–2019. Sci. Data 2021, 8, 41. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Liang, L.; Xu, W.; Liu, C.; Cheng, H.; Liu, Y.; Zhang, G.; Xu, X.; Yu, D.; Wang, P. Influence of Meteorological Factors on Open Biomass Burning at a Background Site in Northeast China. J. Environ. Sci. 2023, 138, 1–9. [Google Scholar] [CrossRef]
- Saxena, P.; Sonwani, S.; Srivastava, A.; Jain, M.; Srivastava, A.; Bharti, A.; Rangra, D.; Mongia, N.; Tejan, S.; Bhardwaj, S. Impact of Crop Residue Burning in Haryana on the Air Quality of Delhi, India. Heliyon 2021, 7, e06973. [Google Scholar] [CrossRef]
- Kulkarni, S.H.; Ghude, S.D.; Jena, C.; Karumuri, R.K.; Sinha, B.; Sinha, V.; Kumar, R.; Soni, V.K.; Khare, M. How Much Does Large-Scale Crop Residue Burning Affect the Air Quality in Delhi? Environ. Sci. Technol. 2020, 54, 4790–4799. [Google Scholar] [CrossRef]
- Huang, L.; Zhu, Y.; Wang, Q.; Zhu, A.; Liu, Z.; Wang, Y.; Allen, D.T.; Li, L. Assessment of the Effects of Straw Burning Bans in China: Emissions, Air Quality, and Health Impacts. Sci. Total Environ. 2021, 789, 147935. [Google Scholar] [CrossRef]
- Kaushal, L.A. Field Crop Residue Burning Induced Particulate Pollution in NW India–Policy Challenges & Way Forward. IOP Conf. Ser. Earth Environ. Sci. 2022, 1009, 012006. [Google Scholar] [CrossRef]
- Hu, Y.; Ai, H.H.; Odman, M.T.; Vaidyanathan, A.; Russell, A.G. Development of a WebGIS-Based Analysis Tool for Human Health Protection from the Impacts of Prescribed Fire Smoke in Southeastern USA. Int. J. Environ. Res. Public Health 2019, 16, 1981. [Google Scholar] [CrossRef]
- Feng, X.; Fu, T.-M.; Cao, H.; Tian, H.; Fan, Q.; Chen, X. Neural Network Predictions of Pollutant Emissions from Open Burning of Crop Residues: Application to Air Quality Forecasts in Southern China. Atmos. Environ. 2019, 204, 22–31. [Google Scholar] [CrossRef]
- Bai, B.; Zhao, H.; Zhang, S.; Li, X.; Zhang, X.; Xiu, A. Forecasting Crop Residue Fires in Northeastern China Using Machine Learning. Atmosphere 2022, 13, 1616. [Google Scholar] [CrossRef]
- Jeefoo, P. A WebGIS Base Information System for Monitoring Wildfire Using Suomi-NPP (VIIRS) Satellite in Phare Province, Thailand. Naresuan Univ. J. Sci. Technol. 2020, 28, 62–71. [Google Scholar] [CrossRef]
- Noviarini, D.; Delina, M.; Rizky, A.M.; Widyastuti, U.; Usman, O.; Yamani, A. Early Warning System for Fire Catcher in Rain Forest of Sumatera Using Thermal Spots. J. Adv. Res. Fluid. Mech. Therm. Sci. 2023, 103, 30–39. [Google Scholar] [CrossRef]
- Cao, J.; Peng, X.; Xin, D. Feasibility Study of Prescribed Burning for Crop Residues Based on Urban Air Quality Assessment. J. Environ. Manag. 2022, 317, 115480. [Google Scholar] [CrossRef] [PubMed]
- Holder, A.L.; Gullett, B.K.; Urbanski, S.P.; Elleman, R.; O’Neill, S.; Tabor, D.; Mitchell, W.; Baker, K.R. Emissions from Prescribed Burning of Agricultural Fields in the Pacific Northwest. Atmos. Environ. 2017, 166, 22–33. [Google Scholar] [CrossRef] [PubMed]
Region | Platform Name | Satellite Source | Link | Displayed Parameters | |||
---|---|---|---|---|---|---|---|
Fire Spots/Emission | Burned Area | Fire Weather | Air Quality | ||||
Asia | Satellite See Fire | VIIRS; MODIS; Sentinel; Landsat; Himawari-8 | http://satsee.radi.ac.cn:8080/map.html (accessed on 1 February 2024) | √ | |||
Forest Fire Detection and Monitoring System | VIIRS | https://crisp.nus.edu.sg (accessed on 1 February 2024) | √ | √ | |||
National forest and land fire early warning system | VIIRS; MODIS | https://sipongi.menlhk.go.id (accessed on 1 February 2024) | √ | √ | |||
Europe | Global Wildfire Information System | VIIRS; MODIS; GOES | https://gwis.jrc.ec.europa.eu (accessed on 1 February 2024) | √ | √ | √ | |
Atmosphere Monitoring Service | MODIS | https://atmosphere.copernicus.eu/charts/packages/cams (accessed on 1 February 2024) | √ | ||||
European Forest Fire Information System | VIIRS; MODIS; Sentinel | https://effis.jrc.ec.europa.eu (accessed on 1 February 2024) | √ | √ | √ | ||
America | Fire Information for Resource Management System | VIIRS; MODIS; Landsat | https://firms.modaps.eosdis.nasa.gov (accessed on 1 February 2024) | √ | |||
Hazard Mapping System | VIIRS; MODIS; GOES; AVHRR | https://www.ospo.noaa.gov/Products/land/hms.html (accessed on 1 February 2024) | √ | √ | |||
Canadian Wildland Fire Information System | AVHRR; MODIS | https://cwfis.cfs.nrcan.gc.ca/home (accessed on 1 February 2024) | √ | √ | |||
Africa | Advanced Fire Information System | VIIRS; MODIS; MSG | https://www.afis.co.za (accessed on 1 February 2024) | √ | √ | √ | |
Oceania | Digital Earth Australia Hotspots | VIIRS; MODIS; AVHRR; Sentinel | https://hotspots.dea.ga.gov.au (accessed on 1 February 2024) | √ | √ | √ | |
MyFireWatch | VIIRS; MODIS | https://myfirewatch.landgate.wa.gov.au (accessed on 1 February 2024) | √ | √ | √ | ||
Australian Flammability Monitoring System | MODIS | https://wenfo.org/afms (accessed on 1 February 2024) | √ |
Resolution (m) | File Size (mb) | Load Time (s) | |||
---|---|---|---|---|---|
Chrome | Edge | Firefox | Mobile Phone | ||
1000 | 13.5 | 4.63 | 6.08 | 5.87 | 10.07 |
500 | 39.1 | 11.31 | 12.29 | 12.09 | 25.35 |
400 | 56.2 | 27.88 | 30.94 | 33.23 | 42.38 |
300 | 90.8 | 50.07 | 61.13 | 47.83 | * |
200 | 183 | 111.68 | 121.18 | 95.46 | * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, G.; Zhang, X.; Xiu, A.; Gao, C.; Zhang, M.; Tong, Q.; Liu, W.; Yu, Y.; Zhao, H.; Zhang, S.; et al. AgriFireInfo v1.0: An Open-Source Platform for the Monitoring and Management of Open-Field Crop Residue Burning. Fire 2024, 7, 63. https://doi.org/10.3390/fire7030063
Yang G, Zhang X, Xiu A, Gao C, Zhang M, Tong Q, Liu W, Yu Y, Zhao H, Zhang S, et al. AgriFireInfo v1.0: An Open-Source Platform for the Monitoring and Management of Open-Field Crop Residue Burning. Fire. 2024; 7(3):63. https://doi.org/10.3390/fire7030063
Chicago/Turabian StyleYang, Guangyi, Xuelei Zhang, Aijun Xiu, Chao Gao, Mengduo Zhang, Qingqing Tong, Wei Liu, Yang Yu, Hongmei Zhao, Shichun Zhang, and et al. 2024. "AgriFireInfo v1.0: An Open-Source Platform for the Monitoring and Management of Open-Field Crop Residue Burning" Fire 7, no. 3: 63. https://doi.org/10.3390/fire7030063
APA StyleYang, G., Zhang, X., Xiu, A., Gao, C., Zhang, M., Tong, Q., Liu, W., Yu, Y., Zhao, H., Zhang, S., & Xie, S. (2024). AgriFireInfo v1.0: An Open-Source Platform for the Monitoring and Management of Open-Field Crop Residue Burning. Fire, 7(3), 63. https://doi.org/10.3390/fire7030063