Soil Remediation: Current Approaches and Emerging Bio-Based Trends
Abstract
:1. Introduction
2. Review Methodology
3. Soil Contaminants and Remediation Processes
3.1. Evaluation of a Contaminated Site
- Preliminary assessment;
- Exploratory investigation;
- Detailed investigation;
- Risk assessment;
- Intervention.
3.2. Types of Soil Contaminants and Effects of Soil Pollution
3.2.1. Organic Contaminants
3.2.2. Inorganic Contaminants
3.3. Remediation Technologies Applied to Contaminated Soils
3.3.1. Mechanical Processes
3.3.2. Physical Processes
3.3.3. Physicochemical Processes
3.3.4. Chemical Processes
Process | Technology | Mode of Action | In Situ | Ex Situ | Types of Contaminants Removed | Advantages | Disadvantages | Ref. |
---|---|---|---|---|---|---|---|---|
Mechanical | Mechanical | Mechanical removal, excavation and soil replacement | Heavy metals, Organic contaminants | Suitable for small, contaminated sites; used to accelerate groundwater remediation via physical removal of contaminated media that can continue to cause contamination. | Depending on the depth of soil to be removed and replaced, the remediation can be expensive; the removed contaminated soil may need further handling and disposal treatment. | [56,57,72,73] | ||
Physical | Hydrodynamic | Flushing, filtering | Semi-volatile organic compounds (SVOCs), petroleum and fuel residuals, heavy metals, PCBs, PAHs, and pesticides | High efficiency (60–90%) and fast effects; decreases the volume of decontaminant soil and cuts costs; reduces the volume of decontaminant soil, reducing costs; allows simultaneous treatment of organic pollutants and metals that can be recovered and reused; treated soil can be redeposited on site; costs are relatively low. | Extreme soil disturbance; needs a space big enough for the equipment; requires wash water treatment. | [56,58,74,75] | ||
Thermal | Thermal desorption, incineration | Semi-volatile organic compounds (SVOCs), Hg, petroleum, PCBs | Suitable for various contaminants, with a short treatment period; high efficiency; strong safety measures; and ability to recycle both soil and contaminants. | Production of off-gases, which are mostly organic compounds and may result in secondary pollution; energy demand. | [59,60,76,77,78,79] | |||
Vitrification | Heavy metal, VOCs (lost by heating) | High efficiency; immobilize harmful contaminants; long-term protection. | High cost; limited to small soil area/volume, treated land, and soil losing environmental functions; associated with massive CO2 emissions; high energy demand. | [80,81,82] | ||||
Electrical | Electrochemical bleaching, electric osmosis, electrophoresis, electromigration, electrodialysis | Slurries and heavy metals, Radionuclides, Mixed inorganic species VOCs and SVOCs | Minimal soil disturbance; less expensive; targets a specific area; applicable for a wide range of contaminants; suitable for fine soils with low permeability. | Time consuming; low efficiency; indicated for fine soils with low permeability; time-consuming process; may change the soils’ pH. | [62,73,83,84,85,86,87] | |||
Containment | Encapsulation, surface capping | Halogenated organics Hydrocarbons; Chlorinate solvents; Radionuclides; Metals | Minimal volume of harmful contaminant residues; restricts contaminant migration into non-contaminated areas. | Need for appropriate reactive materials for walls; large area requires longer duration. | [65,68,88] | |||
Physicochemical | Soil vapor extraction (SVE) | Removal of volatile products | VOCs, PAHs | Able to treat large volumes of soil; minor soil disturbances; shorter remediation time; effective and cost-efficient. | Requires air emission licenses; need for treatment of extracted vapor; only unsaturated soil zones; requires integration with other technologies. | [66,67,89,90,91,92] | ||
Chemical | Hydrolisis, Photolysis, Neutralization, Oxidation, Reduction | Reagent Leaching, Oxidation, Reduction | Heavy metals, Remove chlorine atoms (PCBs, pesticides), PAHs | Wide range of contaminants; relatively quickly; reduces toxicity of contaminated soil. | Can create hazardous by-products; expensive; longer duration. | [93,94,95] | ||
Biological/ Biochemical | Phyto- remediation | Phytodegradation, rhizodegradation, phytovoltalization, phytoextraction, rhyzofiltration, phytostabilization | Petroleum Hydrocarbons; Organophosphate Insecticides; Heavy metals; Radionuclides; Non-aromatic chlorinated solvents; Surplus mineral; Explosives | High public acceptance; low cost and easy to implement; suitable for large and low-contamination areas; takes advantage of the natural processes of plants; improves the overall quality and texture of soil. | Limited to shallow soils, streams, and groundwater contamination; time-consuming; low efficiency; disposal of plants can be a concern. | [12,96,97,98,99] | ||
Bioremediation | Oxidation, adsorption, biosurfactant | PAH’s; Petroleum Hydrocarbons; Pesticides; Chlorophenols; Heavy metals | Low cost; simple to implement; minimal soil disturbance. | Low efficiency; merely supplemental to principal remediation techniques. | [5,6,9,15,97,100,101,102] |
3.3.5. Biological Processes
Lignin in Bioremediation
3.4. Future Bio-Based Trends
- Bio-electrochemical systems (BESs) or microbial electrochemical systems (MESs) are a type of energy-saving bioremediation process developed in the last decade to enhance the remediation of oil-contaminated soil. In BESs, electrochemically active bacteria can catalyze the oxidation and reduction reactions of hydrocarbon pollutants and extracellularly transfer electrons to convert chemical energy into electrical current. Microbial fuel cell (MFC) technology is an example of a BES. The advantages include enhanced removal efficiency for complex contaminants, minimal energy or chemical requirements for operation, and lower long-term operational costs due to the use of non-exhaustible electrodes as electron acceptors and donors. The generated electrical current could also function as a real-time bioremediation indicator and power wireless sensors for online monitoring [99].
- Recent advancements in bioremediation involve the utilization of biochar and modified lignin. Biochar enhances microbial diversity and assists in the breakdown of hydrocarbons in contaminated soil. However, heavy metals and metalloids cannot be removed from the ecosystem. The following two common strategies are employed for heavy metal and metalloid bioremediation: the absorption and accumulation in plants, as well as the conversion of toxic metals into less harmful forms that native microorganisms can absorb [127,128,129]. Biochar can be produced from carbonaceous waste materials like agricultural, forestry, household, and livestock waste [130]. Lignin can also be transformed into biochar. Because of the similarities between lignin and lignite coal, lignin can also be used as a feedstock for generating activated carbon for mercury sequestration [131]. The co-application of biochar with other bioremediation techniques (e.g., bioaugmentation, phytoremediation, and biostimulation) can have strong beneficial synergistic effects on the removal of soil pollutants. Thermal or chemical modification of biochar to improve its bioremediation potential is another steady trend in the area [132]. Targeted lignin derivatization can expand its performance in bioremediation applications. Functionalization includes, but is not limited to, selective oxidation [133,134] and the introduction of strong chelating groups (e.g., quaternization [135], carboxymethylation [136], or amination [137]). Pristine lignin or lignin derivatives, both loose or fixed on the suitable supporting substrate are prospective heavy metals and agrochemicals sequestrators to control groundwater contamination and wastewater treatment [138,139,140,141]. Lignin nanoparticles (LNPs) merit increased attention as a biodegradable, green organic nanoscale matrix for different bioremediation purposes [142,143,144]. Being cheaper and environmentally safer than inorganic and carbon-based NMs, LNPs can lift at least part of the restrictions on the use of nanoremediation technologies for soil remediation. Since LNPs may have a beneficial effect on microbial well-being, one of the future research endeavors may be to explore synergistic effects between them in bioremediation applications [142].
- New bioremediation techniques show that biosurfactants are a suitable alternative to synthetic surfactants for cleaning contaminated soil. Biosurfactants lower the surface tension and form micelles on microbial cell surfaces, making bioremediation more effective. Biosurfactants can be classified as ionic or non-ionic, and they include glycolipids, lipopeptides, lipoproteins, and humic compounds. They are attractive for bioremediation because they are biodegradable, not very toxic, can withstand extreme pH, temperature, and salinity, and can break down contaminants quickly. Overall, biosurfactants are a promising technology for cleaning contaminated soil [3].
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Braimoh, A.K.; Vlek, P.L.G. Impact of land use on soil resources. In Land Use and Soil Resources; Braimoh, A.K., Vlek, P.L.G., Eds.; Springer Science & Business Media B.V.: Stockholm, Sweden, 2007; pp. 1–9. [Google Scholar]
- Cruz, N.; Rodrigues, S.M. Soil contamination and remediation. In Life on Land. Encyclopedia of the UN Sustainable Development Goals; Leal Filho, W., Azul, A.M., Brandli, L., Lange Salvia, A., Wall, T., Eds.; Springer International Publishing: New York, NY, USA, 2021; pp. 916–928. [Google Scholar]
- Sales da Silva, I.G.; Gomes de Almeida, F.C.; Padilha da Rocha e Silva, N.M.; Casazza, A.A.; Converti, A.; Asfora Sarubbo, L. Soil bioremediation: Overview of technologies and trends. Energies 2020, 13, 4664. [Google Scholar] [CrossRef]
- Panagos, P.; Van Liedekerke, M.; Yigini, Y.; Montanarella, L. Contaminated sites in Europe: Review of the current situation based on data collected through a european network. J. Environ. Public Health 2013, 2013, 11. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Xu, P.; Zeng, G.; Yang, C.; Huang, D.; Zhang, J. Bioremediation of soils contaminated with polycyclic aromatic hydrocarbons, petroleum, pesticides, chlorophenols and heavy metals by composting: Applications, microbes and future research needs. Biotechnol. Adv. 2015, 33, 745–755. [Google Scholar] [CrossRef]
- Stepanova, Y.; Gladkov, E.A.; Osipova, E.S.; Gladkova, O.V.; Tereshonok, D.V. Bioremediation of soil from petroleum contamination. Processes 2022, 10, 1224. [Google Scholar] [CrossRef]
- Brevik, E.C.; Sauer, T.J. The past, present, and future of soils and human health studies. Soil 2015, 1, 35–46. [Google Scholar] [CrossRef]
- Kreuk, J.F.; Annokkée, G.J. Applied biotechnology for decontamination of polluted soils. Possibilities and problems. In Contaminated Soil’88; Wolf, K., Van Den Brink, W.J., Colon, F.J., Eds.; Springer: Dordrecht, The Netherlands, 1988; pp. 679–686. [Google Scholar]
- Haghollahi, A.; Fazaelipoor, M.H.; Schaffie, M. The effect of soil type on the bioremediation of petroleum-contaminated soils. J. Environ. Manag. 2016, 180, 197–201. [Google Scholar] [CrossRef] [PubMed]
- Aqeel, M.; Jamil, M.M.; Yusoff, I. Soil Contamination, risk assessment and remediation. In Environmental Risk Assessment of Soil Contamination; Hernandez-Soriano, M.C., Ed.; IntechOpen: London, UK, 2014. [Google Scholar]
- Kessel, D.; Jeon, J.; Jung, J.; Oh, E.; Kim, C.L. Logistical simulation modeling for planning a soil remediation process. Sci. Technol. Nucl. Install. 2019, 2019, 13. [Google Scholar] [CrossRef]
- Gerhardt, K.E.; Huang, X.D.; Glick, B.R.; Greenberg, B.M. Phytoremediation and rhizoremediation of organic soil contaminants: Potential and challenges. Plant Sci. 2009, 176, 20–30. [Google Scholar] [CrossRef]
- Vrščaj, B.; Poggio, L.; Marsan, F.A. A method for soil environmental quality evaluation for management and planning in urban areas. Landsc. Urban Plan. 2008, 88, 81–94. [Google Scholar] [CrossRef]
- Lehmann, A.; Stahr, K. The potential of soil functions and planner-oriented soil evaluation to achieve sustainable land use. J. Soils Sediments 2010, 10, 1092–1102. [Google Scholar] [CrossRef]
- Zhang, H.; Yuan, X.; Xiong, T.; Wang, H.; Jiang, L. Bioremediation of co-contaminated soil with heavy metals and pesticides: Influence factors, mechanisms and evaluation methods. Chem. Eng. J. 2020, 398, 125657. [Google Scholar] [CrossRef]
- US Environmental Protection Agency. Remediation Technology Descriptions for Cleaning up Contaminated Sites. Available online: https://www.epa.gov/remedytech/remediation-technology-descriptions-cleaning-contaminated-sites (accessed on 19 February 2023).
- Sims, R.C. Soil remediation techniques at uncontrolled hazardous waste sites a critical review. J. Air Waste Manag. Assoc. 1990, 40, 704–732. [Google Scholar] [CrossRef]
- Lal, R.; Blum, W.H.; Valentine, C.; Stewart, B.A. Methods for Assessment of Soil Degradation; CRC Press: Boca Raton, FL, USA; Available online: https://books.google.pt/books?id=4gv5HEOrX8YC&printsec=frontcover&hl=pt-PT&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false (accessed on 17 January 2023).
- Pereira da Silva, M.S.C.R. Assessment and Remediation of an Area Contaminated by Hydrocarbons. Case Study: ‘Contamination in a Lubricants Warehouse’. Master’s Thesis, Universidade Nova De Lisboa, Lisbon, Portugal, 2008. [Google Scholar]
- Liu, L.; Li, W.; Song, W.; Guo, M. Remediation techniques for heavy metal-contaminated soils: Principles and applicability. Sci. Total Environ. 2018, 633, 206–219. [Google Scholar] [CrossRef] [PubMed]
- Chopra, A.K.; Pathak, C.; Prasad, G. Scenario of heavy metal contamination in agricultural soil and its management. J. Appl. Nat. Sci. 2009, 1, 99–108. [Google Scholar] [CrossRef]
- Dror, I.; Yaron, B.; Berkowitz, B. Microchemical contaminants as forming agents of anthropogenic soils. Ambio 2017, 46, 109–120. [Google Scholar] [CrossRef]
- Carré, F.; Caudeville, J.; Bonnard, R.; Bert, V.; Boucard, P.; Ramel, M. Soil contamination and human health: A major challenge for global soil security. In Global Soil Security. Progress in Soil Science; Field, D.J., Morgan, C.L.S., McBratney, A.B., Eds.; Springer: Cham, Switzerland, 2017; pp. 275–295. [Google Scholar]
- Sa’adu, I.; Farsang, A. Plastic contamination in agricultural soils: A review. Environ. Sci. Eur. 2023, 35, 13. [Google Scholar] [CrossRef]
- Havugimana, E.; Bhople, B.; Kumar, A. Soil pollution-major sources and types of soil pollutants. Environ. Sci. Eng. 2017, 11, 53–86. [Google Scholar]
- Kacálková, L.; Tlustoš, P. The uptake of persistent organic pollutants by plants. Cent. Eur. J. Biol. 2011, 6, 223–235. [Google Scholar] [CrossRef]
- Sun, J.; Pan, L.; Tsang, D.C.W.; Zhan, Y.; Zhu, L.; Li, X. Organic contamination and remediation in the agricultural soils of China: A critical review. Sci. Total Environ. 2018, 615, 724–740. [Google Scholar] [CrossRef]
- Jayaraj, R.; Megha, P.; Sreedev, P. Organochlorine pesticides, their toxic effects on living organisms and their fate in the environment. Interdiscip. Toxicol. 2016, 9, 90–100. [Google Scholar] [CrossRef]
- Wang, G.; Lu, Y.; Wang, T.; Zhang, X.; Han, J.; Luo, W.; Shi, Y.; Li, Y.; Jiao, W. Factors influencing the spatial distribution of organochlorine pesticides in soils surrounding chemical industrial parks. J. Environ. Qual. 2009, 38, 180–187. [Google Scholar] [CrossRef] [PubMed]
- Kumar, B.; Verma, V.K.; Singh, K.; Kumar, S.; Sharma, C.S.; Akolkar, A.B. Polychlorinated biphenyls in residential soils and their health risk and hazard in an industrial city in India. J. Public Health Res. 2014, 3, 252. [Google Scholar] [CrossRef] [PubMed]
- Van Den Berg, M.; Birnbaum, L.S.; Denison, M.; De Vito, M.; Farland, W.; Feeley, M.; Fiedler, H.; Hakansson, H.; Hanberg, A.; Haws, L.; et al. The 2005 World Health Organization reevaluation of human and mammalian toxic equivalency factors for dioxins and dioxin-like compounds. Toxicol. Sci. 2006, 93, 223–241. [Google Scholar] [CrossRef] [PubMed]
- Jing, R.; Fusi, S.; Kjellerup, B.V. Remediation of Polychlorinated biphenyls (PCBs) in contaminated soils and sediment: State of knowledge and perspectives. Front. Environ. Sci. 2018, 6, 79. [Google Scholar] [CrossRef]
- Li, Y.; Huang, G.; Gu, H.; Huang, Q.; Lou, C.; Zhang, L.; Liu, H. Assessing the risk of phthalate ester (PAE) contamination in soils and crops irrigated with treated sewage effluent. Water 2018, 10, 999. [Google Scholar] [CrossRef]
- CDC—Centers for Disease Control and Prevention. Polycyclic Aromatic Hydrocarbons (PAHs). Available online: https://wwwn.cdc.gov/tsp/substances/ToxSubstance.aspx?toxid=25 (accessed on 19 February 2023).
- Abdel-Shafy, H.I.; Mansour, M.S.M. A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egypt. J. Pet. 2016, 25, 107–123. [Google Scholar] [CrossRef]
- Roy, D.; Jung, W.; Kim, J.; Lee, M.; Park, J. Polycyclic aromatic hydrocarbons in soil and human health risk levels for various land-use areas in Ulsan, South Korea. Front. Environ. Sci. 2021, 9, 744387. [Google Scholar] [CrossRef]
- Gan, S.; Lau, E.V.; Ng, H.K. Remediation of soils contaminated with polycyclic aromatic hydrocarbons (PAHs). J. Hazard. Mater. 2009, 172, 532–549. [Google Scholar] [CrossRef]
- Yuniati, M.D. Bioremediation of petroleum-contaminated soil: A Review. IOP Conf. Ser. Earth Environ. Sci. 2018, 118, 012063. [Google Scholar] [CrossRef]
- Besalatpour, A.A.; Hajabbasi, A.H.; Khoshgoftarmanesh, A. Landfarming process effects on biochemical properties of petroleum-contaminated soils. Soil Sediment Contam. 2011, 20, 234–248. [Google Scholar] [CrossRef]
- Johnsen, A.R.; Schmidt, S.; Hybholt, T.K.; Henriksen, S.; Jacobsen, C.S.; Andersen, O. Strong impact on the polycyclic aromatic hydrocarbon (PAH)-degrading community of a PAH-polluted soil but marginal effect on PAH degradation when priming with bioremediated soil dominated by mycobacteria. Appl. Environ. Microbiol. 2007, 73, 1474–1480. [Google Scholar] [CrossRef] [PubMed]
- De Jong, E. The effect of a crude oil spill on cereals. Environ. Pollut. Ser. A Ecol. Biol. 1980, 22, 187–196. [Google Scholar] [CrossRef]
- Li, F.; Fang, X.; Zhou, Z.; Liao, X.; Zou, J.; Yuan, B.; Sun, W. Adsorption of perfluorinated acids onto soils: Kinetics, isotherms, and influences of soil properties. Sci. Total Environ. 2019, 649, 504–514. [Google Scholar] [CrossRef]
- Bolan, N.; Sarkar, B.; Vithanage, M.; Singh, G.; Tsang, D.C.W.; Mukhopadhyay, R.; Ramadass, K.; Vinu, A.; Sun, Y.; Ramanayaka, S.; et al. Distribution, behaviour, bioavailability and remediation of poly- and per-fluoroalkyl substances (PFAS) in solid biowastes and biowaste-treated soil. Environ. Int. 2021, 155, 106600. [Google Scholar] [CrossRef] [PubMed]
- Navarro, D.A.; Kabiri, S.; Ho, J.; Bowles, K.C.; Davis, G.; McLaughlin, M.J.; Kookana, R.S. Stabilisation of PFAS in soils: Long-term effectiveness of carbon-based soil amendments. Environ. Pollut. 2023, 323, 121249. [Google Scholar] [CrossRef]
- Weissmannová, H.D.; Pavlovský, J. Indices of soil contamination by heavy metals—Methodology of calculation for pollution assessment (minireview). Environ. Monit. Assess. 2017, 189, 616. [Google Scholar] [CrossRef]
- Mohasin, M.; Habib, K.; Rao, P.S. Heavy metals pollution in soil and their remediation techniques: A Review. Int. J. Environ. Clim. Change 2022, 12, 1231–1250. [Google Scholar] [CrossRef]
- Kumar, A. Inorganic soil contaminants and their biological remediation. In Plant Responses to Soil Pollution; Singh, P., Singh, S.K., Prasad, S.M., Eds.; Springer: Singapore, 2020; pp. 133–153. [Google Scholar]
- Zwolak, A.; Sarzyńska, M.; Szpyrka, E.; Stawarczyk, K. Sources of soil pollution by heavy metals and their accumulation in vegetables: A Review. Water Air Soil Pollut. 2019, 230, 134. [Google Scholar] [CrossRef]
- Bradl, H.B. Adsorption of heavy metal ions on soils and soils constituents. J. Colloid Interface Sci. 2004, 277, 1–18. [Google Scholar] [CrossRef]
- Rieuwerts, S.; Thornton, I.; Farago, M.E.; Ashmore, M.R. Factors influencing metal bioavailability in soils: Preliminary investigations for the development of a critical loads approach for metals. Chem. Speciat. Bioavailab. 1998, 10, 61–75. [Google Scholar] [CrossRef]
- Cataldo, D.A.; Wildung, R.E. Soil and plant factors influencing the accumulation of heavy metals by plants. Environ. Health Perspect. 1978, 27, 149–159. [Google Scholar] [CrossRef] [PubMed]
- Petruzzelliy, G. Soil Contamination and remediation strategies. Current research and future challenge. Geophys. Res. Abstr. 2012, 14, 7963. [Google Scholar]
- Singh, A.; Kuhad, R.C.; Ward, O.P. (Eds.) Advances in applied bioremediation. In Soil Biology; Springer: Berlin, Germany, 2009; Volume 17, pp. 1–19. [Google Scholar]
- Song, P.; Xu, D.; Yue, J.; Ma, Y.; Dong, S.; Feng, J. Recent advances in soil remediation technology for heavy metal contaminated sites: A critical review. Sci. Total Environ. 2022, 838, 156417. [Google Scholar] [CrossRef] [PubMed]
- Michael-Igolima, U.; Abbey, S.J.; Ifelebuegu, A.O. A systematic review on the effectiveness of remediation methods for oil contaminated soils. Environ. Adv. 2022, 9, 100319. [Google Scholar] [CrossRef]
- Senevirathna, S.T.M.L.D.; Mahinroosta, R.; Li, M.; KrishnaPillai, K. In situ soil flushing to remediate confined soil contaminated with PFOS- an innovative solution for emerging environmental issue. Chemosphere 2021, 262, 127606. [Google Scholar] [CrossRef]
- Cappuyns, V. Environmental impacts of soil remediation activities: Quantitative and qualitative tools applied on three case studies. J. Clean. Prod. 2013, 52, 145–154. [Google Scholar] [CrossRef]
- Khan, F.I.; Husain, T.; Hejazi, R. An overview and analysis of site remediation technologies. J. Environ. Manag. 2004, 71, 95–122. [Google Scholar] [CrossRef]
- Tan, Z.; Ai, P.; Wang, Q. Recent developments in organic contaminated soil remediation with the use of thermal desorption technology. Environ. Eng. Manag. J. 2017, 16, 1145–1154. [Google Scholar] [CrossRef]
- Zhao, C.; Dong, Y.; Feng, Y.; Li, Y.; Dong, Y. Thermal desorption for remediation of contaminated soil: A review. Chemosphere 2019, 221, 841–855. [Google Scholar] [CrossRef]
- Aparicio, J.D.; Raimondo, E.E.; Saez, J.M.; Costa-Gutierrez, S.B.; Álvarez, A.; Benimeli, C.S.; Polti, M.A. The current approach to soil remediation: A review of physicochemical and biological technologies, and the potential of their strategic combination. J. Environ. Chem. Eng. 2022, 10, 107141. [Google Scholar] [CrossRef]
- Iannelli, R.; Masi, M.; Ceccarini, A.; Ostuni, M.B.; Lageman, R.; Muntoni, A.; Spiga, D.; Polettini, A.; Marini, A.; Pomi, R. Electrokinetic remediation of metal-polluted marine sediments: Experimental investigation for plant design. Electrochim. Acta 2015, 181, 146–159. [Google Scholar] [CrossRef]
- Muhammad, H.M.; Sharifah, S.S.S.; Ummi, M.B.; Zaleha, M.I. Remediation technology inventions for soil and groundwater contamination. Med. Health 2022, 17, 13–30. [Google Scholar]
- Acar, Y.B.; Alshawabkeh, A.N. Principles of electrokinetic remediation. Environ. Sci. Technol. 1993, 27, 2638–2647. [Google Scholar] [CrossRef]
- Zhang, C.; Zhu, M.Y.; Zeng, G.M.; Yu, Z.G.; Cui, F.; Yang, Z.Z.; Shen, L.Q. Active capping technology: A new environmental remediation of contaminated sediment. Environ. Sci. Pollut. Res. 2016, 23, 4370–4386. [Google Scholar] [CrossRef] [PubMed]
- Kaleris, V.; Croisé, J. Estimation of cleanup time for continuous and pulsed soil vapor extraction. J. Hydrol. 1997, 194, 300–356. [Google Scholar] [CrossRef]
- Zhang, C.; Chen, X.; Tan, Y.; Feng, Y.; Zhong, Z. Soil vapor extraction removal of semi-volatile organic compounds in soil: A pilot-scale study. In Proceedings of the 2015 International Conference on Sustainable Energy and Environmental Engineering, Bangkok, Thailand, 26 October 2015. [Google Scholar]
- Jersak, J.; Göransson, G.; Ohlsson, Y.; Larsson, L.; Flyhammar, P.; Lindh, P. In-Situ Capping of Contaminated Sediments Method Overview. Method Overview; SGI Publication 30-1E—Swedish Geotechnical Institute, SGI: Linköping, Sweden, 2016. [Google Scholar]
- Gamallo, M.; Fernandes, L.; Feijoo, G.; Moreira, M.T. Nano-based technologies for environmental soil remediation. In Nanomaterials for Sustainable Energy and Environmental Remediation; Materials Today Series; Naushad, M., Saravanan, R., Kumar Raju, K., Eds.; Elsevier Inc.: Amsterdam, The Netherlands, 2020; pp. 307–331. [Google Scholar]
- Ganie, S.A.; Bano, S.; Khan, N.; Sultana, S.; Rehman, Z.; Rahman, M.M.; Sabir, S.; Coulon, F.; Khan, M. Z Nanoremediation technologies for sustainable remediation of contaminated environments: Recent advances and challenges. Chemosphere 2021, 275, 130065. [Google Scholar] [CrossRef]
- Qian, Y.; Qin, C.; Chen, M.; Lin, S. Nanotechnology in soil remediation—Applications vs. implications. Ecotoxicol. Environ. Saf. 2020, 201, 110815. [Google Scholar] [CrossRef] [PubMed]
- Song, B.; Zeng, G.; Gong, J.; Liang, J.; Xu, P.; Liu, Z.; Zhang, Y.; Zhang, C.; Cheng, M.; Liu, Y.; et al. Evaluation methods for assessing effectiveness of in situ remediation of soil and sediment contaminated with organic pollutants and heavy metals. Environ. Int. 2017, 105, 43–55. [Google Scholar] [CrossRef]
- López-Vizcaíno, R.; Navarro, V.; León, M.J.; Risco, C.; Rodrigo, M.A.; Sáez, C.; Cañizares, P. Scale-up on electrokinetic remediation: Engineering and technological parameters. J. Hazard. Mater. 2016, 315, 135–143. [Google Scholar] [CrossRef]
- Karthika, N.; Jananee, K.; Murugaiyan, V. Remediation of contaminated soil using soil washing—A review. Int. J. Eng. Res. Appl. 2016, 16, 13–18. [Google Scholar]
- Navarro, A.; Martínez, F. The use of soil-flushing to remediate metal contamination in a smelting slag dumping area: Column and pilot-scale experiments. Eng. Geol. 2010, 115, 16–27. [Google Scholar] [CrossRef]
- Liu, H.; Li, J.; Zhao, M.; Li, Y.; Chen, Y. Remediation of oil-based drill cuttings using low-temperature thermal desorption: Performance and kinetics modeling. Chemosphere 2019, 235, 1081–1088. [Google Scholar] [CrossRef] [PubMed]
- Kang, C.U.; Kim, D.H.; Khan, M.A.; Kumar, R.; Ji, S.E.; Choi, K.W.; Paeng, K.J.; Park, S.; Jeon, B.H. Pyrolytic remediation of crude oil-contaminated soil. Sci. Total Environ. 2020, 713, 136498. [Google Scholar] [CrossRef] [PubMed]
- Falciglia, P.P.; Lumia, L.; Giustra, M.G.; Gagliano, E.; Roccaro, P.; Vagliasindi, F.G.A.; Di Bella, G. Remediation of petrol hydrocarbon-contaminated marine sediments by thermal desorption. Chemosphere 2020, 260, 127576. [Google Scholar] [CrossRef]
- Park, C.M.; Katz, L.E.; Liljestrand, H.M. Mercury speciation during in situ thermal desorption in soil. J. Hazard. Mater. 2015, 300, 624–632. [Google Scholar] [CrossRef] [PubMed]
- Mallampati, S.R.; Mitoma, Y.; Okuda, T.; Simion, C.; Lee, B.K. Dynamic immobilization of simulated radionuclide 133cs in soil by thermal treatment/vitrification with nanometallic ca/cao composites. J. Environ. Radioact. 2015, 139, 118–124. [Google Scholar] [CrossRef]
- Falciglia, P.P.; Romano, S.; Vagliasindi, F.G.A. Stabilisation/solidification of soils contaminated by mining activities: Influence of barite powder and grout content on γ-radiation shielding, unconfined compressive strength and 232th immobilisation. J. Geochem. Explor. 2017, 174, 140–147. [Google Scholar] [CrossRef]
- Ballesteros, S.; Rincón, J.M.; Rincón-Mora, B.; Jordán, M.M. Vitrification of urban soil contamination by hexavalent chromium. J. Geochem. Explor. 2017, 174, 132–139. [Google Scholar] [CrossRef]
- Villen-Guzman, M.; Paz-Garcia, J.M.; Rodriguez, J.M.; Garcia-Herruzo, F.; Amaya-Santos, G.; Gomez-Lahoz, C.; Vereda-Alonso, C. Scaling-up the acid-enhanced electrokinetic remediation of a real contaminated soil. Electrochim. Acta 2015, 181, 139–145. [Google Scholar] [CrossRef]
- Kim, W.S.; Park, G.Y.; Kim, D.H.; Jung, H.B.; Ko, S.H.; Baek, K. In situ field scale electrokinetic remediation of multi-metals contaminated paddy soil: Influence of electrode configuration. Electrochim. Acta 2012, 86, 89–95. [Google Scholar] [CrossRef]
- Puppala, S.K.; Acar, Y.B.; Alshawabkeh, A.N. Enhanced electrokinetic remediation of high sorption capacity soil. J. Hazard. Mater. 1997, 55, 203–220. [Google Scholar] [CrossRef]
- Kim, D.H.; Jo, S.U.; Yoo, J.C.; Baek, K. Ex situ pilot scale electrokinetic restoration of saline soil using pulsed current. Sep. Purif. Technol. 2013, 120, 282–288. [Google Scholar] [CrossRef]
- Mao, X.; Shao, X.; Zhang, Z.; Han, F. Mechanism and optimization of enhanced electro-kinetic remediation on 137cs contaminated kaolin soils: A semi-pilot study based on experimental and modeling methodology. Electrochim. Acta 2018, 284, 38–51. [Google Scholar] [CrossRef]
- Rumer, R.R.; Mitchell, J.K. Assessment of barrier containment technologies—A comprehensive treatment for environmental remediation applications. In Proceedings of the International Containment Technology Workshop, Baltimore, MD, USA, 29–31 August 1995. [Google Scholar]
- Ma, J.; Yang, Y.; Dai, X.; Li, C.; Wang, Q.; Chen, C.; Yan, G.; Guo, S. Bioremediation enhances the pollutant removal efficiency of soil vapor extraction (sve) in treating petroleum drilling waste. Water Air Soil Pollut. 2016, 227, 465. [Google Scholar] [CrossRef]
- Labianca, C.; De Gisi, S.; Picardi, F.; Todaro, F.; Notarnicola, M. Remediation of a petroleum hydrocarbon-contaminated site by soil vapor extraction: A full-scale case study. Appl. Sci. 2020, 10, 4261. [Google Scholar] [CrossRef]
- Albergaria, J.T.; Alvim-Ferraz, M.d.C.M.; Delerue-Matos, C. Remediation of sandy soils contaminated with hydrocarbons and halogenated hydrocarbons by soil vapour extraction. J. Environ. Manag. 2012, 104, 195–201. [Google Scholar] [CrossRef]
- Soares, A.A.; Albergaria, J.T.; Domingues, V.F.; Alvim-Ferraz, M.d.C.M.; Delerue-Matos, C. Remediation of soils combining soil vapor extraction and bioremediation: Benzene. Chemosphere 2010, 80, 823–828. [Google Scholar] [CrossRef]
- Varanasi, P.; Fullana, A.; Sidhu, S. Remediation of PCB contaminated soils using iron nano-particles. Chemosphere 2007, 66, 1031–1038. [Google Scholar] [CrossRef]
- Wu, B.Z.; Chen, H.Y.; Wang, S.J.; Wai, C.M.; Liao, W.; Chiu, K.H. Reductive dechlorination for remediation of polychlorinated biphenyls. Chemosphere 2012, 88, 757–768. [Google Scholar] [CrossRef]
- Brahushi, F.; Kengara, F.O.; Song, Y.; Jiang, X.; Munch, J.C.; Wang, F. Fate processes of chlorobenzenes in soil and potential remediation strategies: A Review. Pedosphere 2017, 27, 407–420. [Google Scholar] [CrossRef]
- Sarwar, N.; Imran, M.; Shaheen, M.R.; Ishaque, W.; Kamran, M.A.; Matloob, A.; Rehim, A.; Hussain, S. Phytoremediation strategies for soils contaminated with heavy metals: Modifications and future perspectives. Chemosphere 2017, 171, 710–721. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.J.; Deng, S.G.; Hu, C.Y.; Gao, P.; Khan, E.; Yu, C.P.; Ma, L.Q. Applications of bioremediation and phytoremediation in contaminated soils and waters: CREST publications during 2018–2022. Crit. Rev. Environ. Sci. Technol. 2023, 53, 723–732. [Google Scholar] [CrossRef]
- Rostami, S.; Azhdarpoor, A. The application of plant growth regulators to improve phytoremediation of contaminated soils: A Review. Chemosphere 2019, 220, 818–827. [Google Scholar] [CrossRef] [PubMed]
- Lim, M.W.; Lau, E.V.; Poh, P.E. A comprehensive guide of remediation technologies for oil contaminated soil—Present works and future directions. Mar. Pollut. Bull. 2016, 109, 14–45. [Google Scholar] [CrossRef]
- Omokhagbor Adams, G.; Tawari Fufeyin, P.; Eruke Okoro, S.; Ehinomen, I. Bioremediation, Biostimulation and Bioaugmention: A Review. Int. J. Environ. Bioremediation Biodegrad. 2020, 3, 28–39. [Google Scholar] [CrossRef]
- Jariyal, M.; Jindal, V.; Mandal, K.; Gupta, V.K.; Singh, B. Bioremediation of organophosphorus pesticide phorate in soil by microbial consortia. Ecotoxicol. Environ. Saf. 2018, 159, 310–316. [Google Scholar] [CrossRef]
- Wilson, S.C.; Jones, K.C. Bioremediation of soil contaminated with polynuclear aromatic hydrocarbons (PAHs): A Review. Environ. Pollut. 1993, 81, 229–249. [Google Scholar] [CrossRef]
- Kavamura, V.N.; Esposito, E. Biotechnological strategies applied to the decontamination of soils polluted with heavy metals. Biotechnol. Adv. 2010, 28, 61–69. [Google Scholar] [CrossRef]
- Dzionek, A.; Wojcieszyńska, D.; Guzik, U. Natural carriers in bioremediation: A Review. Electron. J. Biotechnol. 2016, 23, 28–36. [Google Scholar] [CrossRef]
- Ayilara, M.S.; Babalola, O.O. Bioremediation of environmental wastes: The role of microorganisms. Front. Agron. 2023, 5, 1183691. [Google Scholar] [CrossRef]
- Narendra Kuppan, N.; Padman, M.; Mahadeva, M.; Srinivasan, S.; Devarajan, R. A comprehensive review of sustainable bi-oremediation techniques: Ecofriendly solutions for waste and pollution management. Waste Manag. Bull. 2024, 2, 154–171. [Google Scholar] [CrossRef]
- Patel, V.P.; Desai, S.A.; Thakur, S. Mechanistic approach of genetically modified organisms for detoxification of xe-nobiotic substances. In Microbiome-Assisted Bioremediation; Patel, V.P., Li, W.-J., Eds.; Academic Press: Cambridge, MA, USA, 2024; pp. 241–255. [Google Scholar]
- Ebuehi, O.A.T.; Abibo, I.B.; Shekwolo, P.D.; Adoki, K.I.; Okoro, I.C. Remediation of crude oil contaminated soil by enhanced natural attenuation technique. J. Appl. Sci. Environ. Mgt. 2005, 9, 103–106. [Google Scholar]
- Declercq, I.; Cappuyns, V.; Duclos, Y. Monitored natural attenuation (MNA) of contaminated soils: State of the art in Europe—A Critical Evaluation. Sci. Total Environ. 2012, 426, 393–405. [Google Scholar] [CrossRef]
- Ramadass, K.; Megharaj, M.; Venkateswarlu, K.; Naidu, R. Bioavailability of weathered hydrocarbons in engine oil-contaminated soil: Impact of bioaugmentation mediated by pseudomonas spp. On bioremediation. Sci. Total Environ. 2018, 636, 968–974. [Google Scholar] [CrossRef]
- Baldan, E.; Basaglia, M.; Fontana, F.; Shapleigh, J.P.; Casella, S. Development, assessment and evaluation of a biopile for hydrocarbons soil remediation. Int. Biodeterior. Biodegrad. 2015, 98, 66–72. [Google Scholar] [CrossRef]
- Smith, E.; Thavamani, P.; Ramadass, K.; Naidu, R.; Srivastava, P.; Megharaj, M. Remediation trials for hydrocarbon-contaminated soils in arid environments: Evaluation of bioslurry and biopiling techniques. Int. Biodeterior. Biodegrad. 2015, 101, 56–65. [Google Scholar] [CrossRef]
- Frutos, F.J.G.; Escolano, O.; García, S.; Babín, M.; Fernández, M.D. Bioventing remediation and ecotoxicity evaluation of phenanthrene-contaminated soil. J. Hazard. Mater. 2010, 183, 806–813. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.D.; Swindoll, C.M. Bioventing for in situ remediation. Hydrol. Sci. J. 1993, 38, 273–282. [Google Scholar] [CrossRef]
- Ren, X.; Zeng, G.; Tang, L.; Wang, J.; Wan, J.; Wang, J.; Deng, Y.; Liu, Y.; Peng, B. The potential impact on the biodegradation of organic pollutants from composting technology for soil remediation. Waste Manag. 2018, 72, 138–149. [Google Scholar] [CrossRef]
- Semple, K.T.; Reid, B.J.; Fermor, T.R. Impact of composting strategies on the treatment of soils contaminated with organic pollutants. Environ. Pollut. 2001, 112, 269–283. [Google Scholar] [CrossRef]
- McCarthy, K.; Walker, L.; Vigoren, L.; Bartel, J. Remediation of spilled petroleum hydrocarbons by in situ landfarming at an arctic site. Cold Reg. Sci. Technol. 2004, 40, 31–39. [Google Scholar] [CrossRef]
- Straube, W.L.; Nestler, C.C.; Hansen, L.D.; Ringleberg, D.; Pritchard, P.H.; Jones-Meehan, J. Remediation of polyaromatic hydrocarbons (PAHS) through landfarming with biostimulation and bioaugmentation. Acta Biotechnol. 2003, 23, 179–196. [Google Scholar] [CrossRef]
- Abaecherli, A.; Popa, V.I. Lignin in crop cultivations and bioremediation. Envir. Eng. Manag. J. 2005, 4, 273–292. [Google Scholar]
- Popa, V.I.; Stingu, A.P.; Volf, I. Lignins and polyphenols in bioremediation. In Bioremediation Technology: Recent Advances; Fulekar, M.H., Ed.; Springer: Dordrecht, The Netherlands, 2010; pp. 100–134. [Google Scholar]
- Weiss, R.; Ghitti, E.; Sumetzberger-Hasinger, M.; Guebitz, G.M.; Nyanhongo, G.S. Lignin-based pesticide delivery system. ACS Omega 2020, 5, 4322–4329. [Google Scholar] [CrossRef] [PubMed]
- Wurzer, G.K.; Hettegger, H.; Bischof, R.; Fackler, K.; Potthast, A.; Rosenau, T. Agricultural Utilization of Lignosulfonates. Holzforschung 2021, 76, 155–168. [Google Scholar] [CrossRef]
- Abbas, A.; Wang, Z.; Zhang, Y.; Peng, P.; She, D. Lignin-based controlled release fertilizers: A review. Int. J. Biolog. Macromol. 2022, 222, 1801–1817. [Google Scholar] [CrossRef] [PubMed]
- Liebner, F.; Pour, G.; Arranz, J.M.R.; Hilscher, A.; Rosenau, T.; Knicker, H. Ammonoxidized lignins as slow nitrogen-releasing soil amendments and CO2-binding matrix. Angew. Chem. 2011, 50, A11–A39. [Google Scholar]
- Bustamante, M.; Durán, N.; Diez, M.C. Biosurfactants are useful tools for the bioremediation of contaminated soil: A Review. J. Soil Sci. Plant Nutr. 2012, 12, 667–687. [Google Scholar] [CrossRef]
- Wang, L.; Rinklebe, J.; Tack, F.M.G.; Hou, D. A review of green remediation strategies for heavy metal contaminated soil. Soil Use Manag. 2021, 37, 936–963. [Google Scholar] [CrossRef]
- Haider, F.U.; Wang, X.; Zulfiqar, U.; Farooq, M.; Hussain, S.; Mehmood, T.; Naveed, M.; Li, Y.; Liqun, C.; Saeed, Q.; et al. Biochar application for remediation of organic toxic pollutants in contaminated soils; An update. Ecotoxicol. Environ. Saf. 2022, 248, 114322. [Google Scholar] [CrossRef]
- Zhao, X.; Yang, B.; Li, Y.; Tang, D.; Xu, K.; Li, D. Application of biochar in the remediation of contaminated soil with high concentration of lead and zinc. Adv. Civ. Eng. 2021, 2021, 6630982. [Google Scholar] [CrossRef]
- Ashiq, A.; Vithanage, M. Biochar-mediated soils for efficient use of agrochemicals. In Agrochemicals Detection, Treatment and Remediation; Prasad, M.N.V., Ed.; Butterworth-Heinemann: Oxford, UK, 2020; pp. 621–645. [Google Scholar]
- Narayanan, M.; Ma, Y. Influences of biochar on bioremediation/phytoremediation potential of metal-contaminated soils. Front. Microbiol. 2022, 13, 929730. [Google Scholar] [CrossRef] [PubMed]
- Ponnusamy, V.K.; Nguyen, D.D.; Dharmaraja, J.; Shobana, S.; Banu, J.R.; Saratale, R.G.; Chang, S.W.; Kumar, G. A review on lignin structure, pretreatments, fermentation reactions and biorefinery potential. Bioresour. Technol. 2019, 271, 462–472. [Google Scholar] [CrossRef]
- Dike, C.C.; Hakeem, I.G.; Rani, A.; Surapaneni, A.; Khudur, L.; Shah, K.; Ball, A.S. The co-application of biochar with bioremediation for the removal of petroleum hydrocarbons from contaminated soil. Sci. Total Environ. 2022, 849, 157753. [Google Scholar] [CrossRef]
- Dos Santos, D.A.S.; Rudnitskaya, A.; Evtuguin, D.V. Modified kraft lignin for bioremediation applications. J. Environ. Sci. Health 2012, 47, 298–307. [Google Scholar] [CrossRef] [PubMed]
- Dizhbite, T.; Jashina, L.; Dobele, G.; Andersone, A.; Evtuguin, D.; Bikovens, O.; Telysheva, G. Polyoxometalate (POM)-aided modification of lignin from wheat straw biorefinery. Holzforschung 2013, 67, 539–547. [Google Scholar] [CrossRef]
- Pinto, P.I.F.; Magina, S.; Budjav, E.; Pinto, P.C.R.; Liebner, F.; Evtuguin, D. Cationization of eucalyptus kraft lignoboost lignin: Preparation, properties, and potential applications. Ind. Eng. Chem. Res. 2022, 61, 3503–3515. [Google Scholar] [CrossRef]
- Andriani, F.; Karlsson, M.; Elder, T.; Lawoko, M. Lignin carboxymethylation: Probing fundamental insights into structure—Reactivity relationships. ACS Sustain. Chem. Eng. 2024, 12, 1705–1713. [Google Scholar] [CrossRef]
- Jiao, G.-J.; Peng, P.; Sun, S.-L.; Geng, Z.-C.; She, D. Amination of biorefinery technical lignin by mannich reaction for preparing highly efficient nitrogen fertilizer. Int. J. Biol. Macromol. 2019, 127, 544–554. [Google Scholar] [CrossRef]
- Li, Z.; Ge, Y. Application of lignin and its derivatives in adsorption of heavy metal ions in water: A Review. ACS Sustain. Chem. Eng. 2018, 6, 7181–7192. [Google Scholar]
- Singh, A.K.; Bilal, M.; Iqbal, H.M.N.; Meyer, A.S.; Raj, A. Bioremediation of lignin derivatives and phenolics in wastewater with lignin modifying enzymes: Status, opportunities and challenges. Sci. Total Environ. 2021, 777, 145988. [Google Scholar] [CrossRef] [PubMed]
- Vescovi, M.; Melegari, M.; Gazzurelli, C.; Maffini, M.; Mucchino, C.; Mazzeo, P.P.; Carcelli, M.; Perego, J.; Migliori, A.; Leonardi, G.; et al. Industrial lignins as efficient biosorbents for Cr(VI) water remediation: Transforming a waste into an added value material. RSC Sustain. 2023, 1, 1423–1435. [Google Scholar] [CrossRef]
- Wang, Y.; Yu, X.; Ma, S.; Cao, S.; Yuan, X.; Zhu, W.; Wang, H. High-value utilization of lignin: Construction of an intelligent release system for targeting the delivery of pesticides. Green Chem. 2024, 26, 42–56. [Google Scholar] [CrossRef]
- Khan, P.; Ali, S.; Jan, R.; Kim, K.-M. Lignin nanoparticles: Transforming environmental remediation. Nanomaterials 2024, 14, 1541. [Google Scholar] [CrossRef]
- Pereira, A.E.S.; Oliveira, J.L.; Savassa, S.M.; Rogério, C.B.; Medeiros, G.A.; Fraceto, L.F. Lignin nanoparticles: New insights for a sustainable agriculture. J. Clean. Prod. 2022, 345, 131145. [Google Scholar] [CrossRef]
- Ela, R.C.A.; Heiden, P.A. Lignin smart nanoparticles for effective and eco-friendly resource recovery from wastewater: Status, challenges, and opportunities. ACS Sustain. Resour. Manag. 2024, 1, 1302–1325. [Google Scholar]
- Grifoni, M.; Franchi, E.; Fusini, D.; Vocciante, M.; Barbafieri, M.; Pedron, F.; Rosellini, I.; Petruzzelli, G. Soil remediation: Towards a resilient and adaptive approach to deal with the ever-changing environmental challenges. Environments 2022, 9, 18. [Google Scholar] [CrossRef]
Soil Samples Characterization Parameters | ||
---|---|---|
Physical | Chemical | Biological |
Moisture Content Field capacity Temperature Oxygen availability Type/size of debris Dioxins/furans, radionuclides, asbestos Particle size distribution Clay content | Total Organic carbon Chemical Oxygen demand Redox potential Carbon/Nitrogen/Phosphorus ratio Metals (total and leachable) Cation exchange capacity; pH | Soil incubation tests Culture studies Bacterial enumeration tests Microbial toxicity/growth inhibition tests Electrolytic respirometer test |
Methods | Principles | References |
---|---|---|
Natural Attenuation In situ | Natural attenuation is an in situ treatment method that uses natural processes to contain the spread of contamination from chemical spills and reduce the concentration of pollutants. The process can be categorized as destructive or non-destructive depending on whether it destroys the contaminant or just reduces its concentration. Natural attenuation relies on the existence of indigenous microorganisms capable of degrading the contaminants, and it is a proactive approach that focuses on verifying and monitoring natural remediation processes instead of relying solely on engineered processes. | [58,103,108,109] |
Bioaugmentation In situ | Bioaugmentation is the process of enhancing the performance of microorganism populations by adding genetically engineered bacteria, isolated bacterial strains, or enrichment consortia with specific catabolic activities to increase the rate of degradation. This method involves the addition of exogenous microorganisms that can degrade contaminants that are recalcitrant to the indigenous microbiota. | [99,100,103,110] |
Bio stimulation In situ | Biostimulation is a process that involves adjusting environmental parameters, such as the addition of limiting nutrients like slow-release fertilizers, biosurfactants, and biopolymers, to stimulate the growth microorganisms, which in turn increases their metabolic activity and elevates the degradation rate. | [99,100,103] |
Biofilters In situ | Application of bacterial filters in the decontamination of polluted water and waste. | [103] |
Biopiling Ex situ | Bioremediation through biopiles involves piling contaminated soil over an aerated system and adding nutrients to promote biodegradation, mainly by improving microbial activity. The technology relies on watering, aeration, and leaching, and is cost-effective and efficient, if nutrients, temperature, and aeration are well controlled. | [3,103,111,112] |
Bioventing In situ | Bioventing is a process that adds oxygen to soil to promote the growth of microorganisms, with anaerobic conditions being necessary for their growth. It involves venting the soil to remove volatile compounds and using bioremediation to degrade organic contaminants by combining the oxygen with them. | [99,103,113,114] |
Composting Ex situ | Composting is an aerobic process that decomposes organic waste through thermophilic biological agents, resulting in compost. Optimal biodegradation rates require a temperature between 40 and 70 °C, high nutrient availability, including oxygen, and a neutral pH. The process involves adding nutrients to soil, which is mixed to increase the aeration and activation of indigenous microorganisms. | [3,104,115,116] |
Landfarming Ex situ/In situ | Landfarming is a soil bioremediation technique in which soil is arranged in piles and periodically turned over by agricultural practices to stimulate the degradation by indigenous microorganisms. This technique is particularly effective in treating soils contaminated with petroleum hydrocarbons, such as crude oil, diesel, or gasoline, as well as certain organic chemicals. It is a low-cost and low-footprint technology that can be conducted either ex situ or in situ. | [3,117,118] |
Utilizations | Lignin/Lignin Derivatives |
---|---|
Non-conventional fertilizers | Lignosulfonates, ammoniated lignosulfonates and hydrolysis lignin, oxiammonolyzed lignosulfonates and hydrolysis lignin [fertilizers with N slow release, granulation (bonding agents), micronutrients, chelating agents (microelements)], oxidized lignin–lignosulfonates, hydrolysis lignin, kraft lignin [using O2 (air)/ammonia with/without catalysts, H2O2, persulfates]. |
Slow release for pesticides, insecticides, herbicides | Crosslinked lignin with epichlorhydrine, kraft lignin, Alcell lignin, lignosulfonates (non-or modified), sulfonated kraft lignin, alkali lignin. |
Growth stimulators | Aqueous soluble lignin, oxidized lignins (oxyammonolysis of lignosulfonates, hydrolysis lignin), nitration or oxidative nitration of hydrolysis lignin, lignocellulose, ammoniated nitrolignin, condensed lignosulfonates with urea, polyphenols. |
Seed coatings | Lignosulfonates (Na, Ca), sugar-free lignosulfonates, desulfonated lignosulfonates. |
Chelating agents | Hydrolysis lignin, lignin and lignin derivatives. |
Soil conditioners | Kraft lignin, oxidized kraft lignin, grafted lignosulfonates with acrylic/methacrylic acids or acrylonitrile, composted hydrolysis lignin (HL) or ammonized HL, lignosulfonates (NH4+, Na+), alkali-treated lignin, followed by activation with CuO. |
Bioremediation | Hydrolysis lignin, lignosulfonates, alkali lignin, polyphenols. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, M.; Rebola, S.; Evtuguin, D.V. Soil Remediation: Current Approaches and Emerging Bio-Based Trends. Soil Syst. 2025, 9, 35. https://doi.org/10.3390/soilsystems9020035
Santos M, Rebola S, Evtuguin DV. Soil Remediation: Current Approaches and Emerging Bio-Based Trends. Soil Systems. 2025; 9(2):35. https://doi.org/10.3390/soilsystems9020035
Chicago/Turabian StyleSantos, Micaela, Sofia Rebola, and Dmitry V. Evtuguin. 2025. "Soil Remediation: Current Approaches and Emerging Bio-Based Trends" Soil Systems 9, no. 2: 35. https://doi.org/10.3390/soilsystems9020035
APA StyleSantos, M., Rebola, S., & Evtuguin, D. V. (2025). Soil Remediation: Current Approaches and Emerging Bio-Based Trends. Soil Systems, 9(2), 35. https://doi.org/10.3390/soilsystems9020035