Next Issue
Volume 4, March
Previous Issue
Volume 3, September
 
 

Acoustics, Volume 3, Issue 4 (December 2021) – 8 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
12 pages, 1197 KiB  
Article
Binaural Synthetic Aperture Imaging of the Field of Audition as the Head Rotates and Localisation Perception of Monophonic Sound Listened to through Headphones
by Duncan Tamsett
Acoustics 2021, 3(4), 723-734; https://doi.org/10.3390/acoustics3040046 - 14 Dec 2021
Cited by 1 | Viewed by 2770
Abstract
A human listening to monophonic sound through headphones perceives the sound to emanate from a point inside the head at the auditory centre at effectively zero range. The extent to which this is predicted by synthetic-aperture calculation performed in response to head rotation [...] Read more.
A human listening to monophonic sound through headphones perceives the sound to emanate from a point inside the head at the auditory centre at effectively zero range. The extent to which this is predicted by synthetic-aperture calculation performed in response to head rotation is explored. The instantaneous angle between the auditory axis and the acoustic source, lambda, for the zero inter-aural time delay imposed by headphones is 90°. The lambda hyperbolic cone simplifies to the auditory median plane, which intersects a spherical surface centred on the auditory centre, along a prime meridian lambda circle. In a two-dimensional (2-D) synthetic-aperture computation, points of intersection of all lambda circles as the head rotates constitute solutions to the directions to acoustic sources. Geometrically, lambda circles cannot intersect at a point representing the auditory centre; nevertheless, 2-D synthetic aperture images for a pure turn of the head and for a pure lateral tilt yield solutions as pairs of points on opposite sides of the head. These can reasonably be interpreted to be perceived at the sums of the position vectors of the pairs of points on the acoustic image, i.e., at the auditory centre. But, a turn of the head on which a fixed lateral tilt of the auditory axis is concomitant (as in species of owl) yields a 2-D synthetic-aperture image without solution. However, extending a 2-D synthetic aperture calculation to a three-dimensional (3-D) calculation will generate a 3-D acoustic image of the field of audition that robustly yields the expected solution. Full article
(This article belongs to the Special Issue Binaural Audition)
Show Figures

Figure 1

6 pages, 340 KiB  
Article
Factorized One-Way Wave Equations
by Oskar Bschorr and Hans-Joachim Raida
Acoustics 2021, 3(4), 717-722; https://doi.org/10.3390/acoustics3040045 - 9 Dec 2021
Cited by 4 | Viewed by 3729
Abstract
The method used to factorize the longitudinal wave equation has been known for many decades. Using this knowledge, the classical 2nd-order partial differential Equation (PDE) established by Cauchy has been split into two 1st-order PDEs, in alignment with D’Alemberts’s theory, to create forward- [...] Read more.
The method used to factorize the longitudinal wave equation has been known for many decades. Using this knowledge, the classical 2nd-order partial differential Equation (PDE) established by Cauchy has been split into two 1st-order PDEs, in alignment with D’Alemberts’s theory, to create forward- and backward-traveling wave results. Therefore, the Cauchy equation has to be regarded as a two-way wave equation, whose inherent directional ambiguity leads to irregular phantom effects in the numerical finite element (FE) and finite difference (FD) calculations. For seismic applications, a huge number of methods have been developed to reduce these disturbances, but none of these attempts have prevailed to date. However, a priori factorization of the longitudinal wave equation for inhomogeneous media eliminates the above-mentioned ambiguity, and the resulting one-way equations provide the definition of the wave propagation direction by the geometric position of the transmitter and receiver. Full article
(This article belongs to the Special Issue Elastic Wave Scattering in Heterogeneous Media)
22 pages, 8175 KiB  
Article
Sound Reduction of Ventilation Ducts through Walls: Experimental Results and Updated Models
by Erik Nilsson, Nikolaos-Georgios Vardaxis, Sylvain Ménard and Delphine Bard Hagberg
Acoustics 2021, 3(4), 695-716; https://doi.org/10.3390/acoustics3040044 - 12 Nov 2021
Cited by 5 | Viewed by 4123
Abstract
Ventilation ducts can have a negative effect on the sound reduction index between two rooms if they pass through the dividing structure without treatments. The overall sound reduction of a ventilation duct is dependent on several factors including the transmission loss when sound [...] Read more.
Ventilation ducts can have a negative effect on the sound reduction index between two rooms if they pass through the dividing structure without treatments. The overall sound reduction of a ventilation duct is dependent on several factors including the transmission loss when sound is breaking in and out from the duct. This study aims to model the sound reduction of a combined system with a separating wall and a ventilation duct through it. Three walls, characterized according to ISO 717-1, are combined with three different ventilation ducts, two circular and one rectangular with different dimensions. Laboratory measurement data are used to determine the sound reduction of the different configurations and the type of treatments needed for each configuration. A proposed model with existing theory for describing sound transmission losses of circular and rectangular ventilation ducts predicts the shape of the measurement data for many frequency bands. A new theory part is developed through an iterative process for circular ducts, which is based on measurements with previous methods and studies as a guide because the existing prediction scheme is somewhat perplexing. For rectangular ducts, the existing theory has been updated to better match measurement data. The application of the proposed theory and model in this article shows similar results when compared to measurements. The difference in weighted sound reduction index between developed theories and measurement data is 0–1 dB for every configuration. Full article
Show Figures

Figure 1

16 pages, 14103 KiB  
Article
Perforated Steel Stud to Improve the Acoustic Insulation of Drywall Partitions
by Arun Arjunan, Ahmad Baroutaji and John Robinson
Acoustics 2021, 3(4), 679-694; https://doi.org/10.3390/acoustics3040043 - 9 Nov 2021
Cited by 7 | Viewed by 5090
Abstract
Steel studs are an inevitable part of drywall construction as they are lightweight and offer the required structural stability. However, the studs act as sound bridges between the plasterboards, reducing the overall sound insulation of the wall. Overcoming this often calls for wider [...] Read more.
Steel studs are an inevitable part of drywall construction as they are lightweight and offer the required structural stability. However, the studs act as sound bridges between the plasterboards, reducing the overall sound insulation of the wall. Overcoming this often calls for wider cavity walls and complex stud decoupling fixtures that increase the installation cost while reducing the floor area. As an alternative approach, this research reveals the potential of perforated studs to improve the acoustic insulation of drywall partitions. The acoustic and structural performance is characterized using a validated finite element model that acted as a prediction tool in reducing the number of physical tests required. The results established that an acoustic numerical model featuring fluid-structure-interaction can predict the weighted sound reduction index of a stud wall assembly at an accuracy of ±1 dB. The model was used to analyze six perforated stud designs and found them to outperform the sound insulation of non-perforated drywall partitions by reducing the sound bridging. Overall, the best performing perforated stud design was found to offer improvements in acoustic insulation of up to 4 dB, while being structurally compliant. Full article
Show Figures

Figure 1

14 pages, 4376 KiB  
Article
Modelling of Microperforated Panel Absorbers with Circular and Slit Hole Geometries
by Pedro Cobo
Acoustics 2021, 3(4), 665-678; https://doi.org/10.3390/acoustics3040042 (registering DOI) - 4 Nov 2021
Cited by 2 | Viewed by 3475
Abstract
Although the original proposal of microperforated panels by Maa consisted of an array of minute circular holes evenly distributed in a thin plate, other hole geometries have been recently suggested that provide similar absorption curves to those of circular holes. With the arrival [...] Read more.
Although the original proposal of microperforated panels by Maa consisted of an array of minute circular holes evenly distributed in a thin plate, other hole geometries have been recently suggested that provide similar absorption curves to those of circular holes. With the arrival of modern machining technologies, such as 3D printing, panels microperforated with slit-shaped holes are being specially considered. Therefore, models able to predict the absorption performance of microperforated panels with variable hole geometry are needed. The aim of this article is to analyze three models for such absorbing systems, namely, the Maa model for circular holes, the Randeberg–Vigran model for slit-shaped holes, and the Equivalent Fluid model for both geometries. The absorption curves predicted for these three models are compared with the measured curves of three panels microperforated with spirally shaped slits. Full article
Show Figures

Figure 1

23 pages, 41648 KiB  
Article
Sound Enhancement of Orthotropic Sound Radiation Plates Using Line Loads and Considering Resonance Characteristics
by Ahmad Nayan and Tai Yan Kam
Acoustics 2021, 3(4), 642-664; https://doi.org/10.3390/acoustics3040041 - 18 Oct 2021
Cited by 2 | Viewed by 3168
Abstract
A new vibro-acoustic method is presented to analyze the sound radiation behavior of orthotropic panel-form sound radiators using strip-type exciters to exert line loads to the panels for sound radiation. The simple first-order shear deformation theory together with the Ritz method is used [...] Read more.
A new vibro-acoustic method is presented to analyze the sound radiation behavior of orthotropic panel-form sound radiators using strip-type exciters to exert line loads to the panels for sound radiation. The simple first-order shear deformation theory together with the Ritz method is used to formulate the proposed method that makes the vibro-acoustic analysis of elastically restrained stiffened orthotropic plates more computationally efficient than the methods formulated on the basis of the other shear deformation theories. An elastically restrained orthotropic plate consisting of two parallel strip-type exciters was tested to measure the experimental sound pressure level curve for validating the effectiveness and accuracy of the proposed method. The resonance characteristics (natural frequency and mode shape) detrimental to sound radiation are identified in the vibro-acoustic analysis of the orthotropic plate. For any orthotropic sound radiation plate, based on the detrimental mode shapes, a practical procedure is presented to design the line load locations on the plate to suppress the major sound pressure level dips for enhancing the smoothness of the plate sound pressure level curve. For illustration, the sound radiation enhancement of orthotropic plates with different fiber orientations for aspect ratios equal to 3, 2, and 1 subjected to one or two line loads is conducted using the proposed procedure. The results for the cases with two line loads perpendicular to the fiber direction and located at the nodal lines of the major detrimental mode shape may find applications in designing orthotropic panel-form speakers with relatively smooth sound pressure level curves. Full article
(This article belongs to the Special Issue Resonators in Acoustics)
Show Figures

Figure 1

12 pages, 4107 KiB  
Article
Design, Manufacturing, and Acoustical Analysis of a Helmholtz Resonator-Based Metamaterial Plate
by Sourabh Dogra and Arpan Gupta
Acoustics 2021, 3(4), 630-641; https://doi.org/10.3390/acoustics3040040 - 16 Oct 2021
Cited by 15 | Viewed by 4905
Abstract
Acoustic metamaterials are materials artificially engineered to control sound waves, which is not possible with conventional materials. We have proposed a design of an acoustic metamaterial plate with inbuilt Helmholtz resonators. The plate is made of Polylactic acid (PLA) which is fabricated using [...] Read more.
Acoustic metamaterials are materials artificially engineered to control sound waves, which is not possible with conventional materials. We have proposed a design of an acoustic metamaterial plate with inbuilt Helmholtz resonators. The plate is made of Polylactic acid (PLA) which is fabricated using an additive manufacturing technique. It consists of Helmholtz resonator-shaped cavities of different sizes. In this paper, we have analyzed the acoustic properties of the Helmholtz resonators-based metamaterial plate experimentally as well as numerically. The experimental results are in good agreement with the numerical results. These types of 3D-printed metamaterial plates can find their application where high sound transmission loss is required to create a quieter ambience. There is an additional advantage of being lightweight because of the Helmholtz resonator-shaped cavities built inside the plate. Thus, these types of metamaterial plates can find their application in the design sector requiring lighter materials with high sound transmission loss. Full article
(This article belongs to the Special Issue Resonators in Acoustics)
Show Figures

Figure 1

19 pages, 6047 KiB  
Article
Underwater Target Localization Using Opportunistic Ship Noise Recorded on a Compact Hydrophone Array
by Mojgan Mirzaei Hotkani, Jean-Francois Bousquet, Seyed Alireza Seyedin, Bruce Martin and Ehsan Malekshahi
Acoustics 2021, 3(4), 611-629; https://doi.org/10.3390/acoustics3040039 - 8 Oct 2021
Cited by 5 | Viewed by 3792
Abstract
In this research, a new application using broadband ship noise as a source-of-opportunity to estimate the scattering field from the underwater targets is reported. For this purpose, a field trial was conducted in collaboration with JASCO Applied Sciences at Duncan’s Cove, Canada in [...] Read more.
In this research, a new application using broadband ship noise as a source-of-opportunity to estimate the scattering field from the underwater targets is reported. For this purpose, a field trial was conducted in collaboration with JASCO Applied Sciences at Duncan’s Cove, Canada in September 2020. A hydrophone array was deployed in the outbound shipping lane at a depth of approximately 71 m to collect broadband noise data from different ship types and effectively localize the underwater targets. In this experiment, a target was installed at a distance (93 m) from the hydrophone array at a depth of 25 m. In this study, a matched field processing (MFP) algorithm is utilized for localization. Different propagation models are presented using Green’s function to generate the replica signal; this includes normal modes in a shallow water waveguide, the Lloyd-mirror pattern for deep water, as well as the image model. We use the MFP algorithm with different types of underwater environment models and a proposed estimator to find the best match between the received signal and the replica signal. Finally, by applying the scatter function on the proposed multi-channel cross correlation coefficient time-frequency localization algorithm, the location of target is detected. Full article
(This article belongs to the Special Issue Underwater Acoustics)
Show Figures

Graphical abstract

Previous Issue
Next Issue
Back to TopTop