Unleashing the Potential of 5G for Smart Cities: A Focus on Real-Time Digital Twin Integration
Abstract
:Highlights
- 5G technology provides a seamless integration of IoT devices, live monitoring systems, and real-time digital twins, revolutionizing smart city frameworks.
- Key urban challenges like network overload, energy efficiency, and data security can be addressed through 5G, although infrastructure expenses and signal constraints present difficulties.
- The integration of 5G and real-time digital twins improves urban resource management, public safety, and overall system efficiency in smart cities.
- To address limitations and to realize scalable, secure, and sustainable smart city solutions driven by 5G, collaboration among stakeholders is essential.
Abstract
1. Introduction
2. Current Trends for 5G in Smart Cities
2.1. Technological Overview
2.2. Existing Applications of 5G in Smart Cities
2.3. Limitations of Applications of 5G in Smart Cities
3. Emerging Challenges in Smart City Deployments
4. Integrating 5G with Real-Time Digital Twins
5. Technological and Policy Recommendations
6. Conclusions and Future Recommendations
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Trindade, E.P.; Hinnig, M.P.F.; da Costa, E.M.; Marques, J.S.; Bastos, R.C.; Yigitcanlar, T. Sustainable development of smart cities: A systematic review of the literature. J. Open Innov. Technol. Mark. Complex. 2017, 3, 1–14. [Google Scholar] [CrossRef]
- Stratigea, A.; Papadopoulou, C.-A.; Panagiotopoulou, M. Tools and technologies for planning the development of smart cities. J. Urban Technol. 2015, 22, 43–62. [Google Scholar] [CrossRef]
- Korczak, J.; Kijewska, K. Smart Logistics in the development of Smart Cities. Transp. Res. Procedia 2019, 39, 201–211. [Google Scholar] [CrossRef]
- Stratigea, A. The concept of ‘smart cities’. Towards community development? Netcom. Réseaux Commun. Territ. 2012, 26, 375–388. [Google Scholar] [CrossRef]
- Islam, S.; Atallah, Z.A.; Budati, A.K.; Hasan, M.K.; Kolandaisamy, R.; Nurhizam, S. Mobile Networks Toward 5G/6G: Network Architecture, Opportunities and Challenges in Smart City. IEEE Open, J. Commun. Soc. 2024, 1. [Google Scholar] [CrossRef]
- Mishra, P.; Thakur, P.; Singh, G. Sustainable Smart City to Society 5.0: State-of-the-Art and Research Challenges. SAIEE Afr. Res. J. 2022, 113, 152–164. [Google Scholar] [CrossRef]
- Gür, G.; Kalla, A.; De Alwis, C.; Pham, Q.-V.; Ngo, K.-H.; Liyanage, M.; Porambage, P. Integration of ICN and MEC in 5G and beyond networks: Mutual benefits, use cases, challenges, standardization, and future research. IEEE Open, J. Commun. Soc. 2022, 3, 1382–1412. [Google Scholar] [CrossRef]
- Hofmann, F.; Wurster, S.; Ron, E.; Böhmecke-Schwafert, M. The immutability concept of blockchains and benefits of early standardization. In Proceedings of the 2017 ITU Kaleidoscope: Challenges for a Data-Driven Society (ITU K), Nanjing, China, 27–29 November 2017; pp. 1–8. [Google Scholar]
- Ferré-Bigorra, J.; Casals, M.; Gangolells, M. The adoption of urban digital twins. Cities 2022, 131, 103905. [Google Scholar] [CrossRef]
- Al-Sehrawy, R.; Kumar, B.; Watson, R. The pluralism of digital twins for urban management: Bridging theory and practice. J. Urban Manag. 2023, 12, 16–32. [Google Scholar] [CrossRef]
- Rodrigo, M.S.; Rivera, D.; Moreno, J.I.; Àlvarez-Campana, M.; López, D.R. Digital twins for 5G networks: A modeling and deployment methodology. IEEE Access 2023, 11, 38112–38126. [Google Scholar] [CrossRef]
- Nguyen, H.X.; Trestian, R.; To, D.; Tatipamula, M. Digital twin for 5G and beyond. IEEE Commun. Mag. 2021, 59, 10–15. [Google Scholar] [CrossRef]
- Erunkulu, O.O.; Zungeru, A.M.; Lebekwe, C.K.; Mosalaosi, M.; Chuma, J.M. 5G mobile communication applications: A survey and comparison of use cases. IEEE Access 2021, 9, 97251–97295. [Google Scholar] [CrossRef]
- Navarro-Ortiz, J.; Romero-Diaz, P.; Sendra, S.; Ameigeiras, P.; Ramos-Munoz, J.J.; Lopez-Soler, J.M. A survey on 5G usage scenarios and traffic models. IEEE Commun. Surv. Tutor. 2020, 22, 905–929. [Google Scholar] [CrossRef]
- Jabagi, N.; Park, A.; Kietzmann, J. The 5G Revolution: Expectations versus reality. IT Prof. 2020, 22, 8–15. [Google Scholar] [CrossRef]
- Loghin, D.; Cai, S.; Chen, G.; Dinh, T.T.A.; Fan, F.; Lin, Q.; Ng, J.; Ooi, B.C.; Sun, X.; Ta, Q.-T. The disruptions of 5G on data-driven technologies and applications. IEEE Trans. Knowl. Data Eng. 2020, 32, 1179–1198. [Google Scholar] [CrossRef]
- Yang, Y.; Hua, K. Emerging technologies for 5G-enabled vehicular networks. IEEE Access 2019, 7, 181117–181141. [Google Scholar] [CrossRef]
- Tang, Y.; Dananjayan, S.; Hou, C.; Guo, Q.; Luo, S.; He, Y. A survey on the 5G network and its impact on agriculture: Challenges and opportunities. Comput. Electron. Agric. 2021, 180, 105895. [Google Scholar] [CrossRef]
- Gharaibeh, A.; Salahuddin, M.A.; Hussini, S.J.; Khreishah, A.; Khalil, I.; Guizani, M.; Al-Fuqaha, A. Smart cities: A survey on data management, security, and enabling technologies. IEEE Commun. Surv. Tutor. 2017, 19, 2456–2501. [Google Scholar] [CrossRef]
- Akpakwu, G.A.; Silva, B.J.; Hancke, G.P.; Abu-Mahfouz, A.M. A survey on 5G networks for the Internet of Things: Communication technologies and challenges. IEEE Access 2017, 6, 3619–3647. [Google Scholar] [CrossRef]
- 3GPP TR 38.913, Study on Scenarios and Requirements for Next Generation Access Technologies. 3rd Generation Partnership Project. 14 March 2017. Available online: https://www.3gpp.org/ftp/Specs/archive/38_series/38.913/ (accessed on 23 December 2024).
- ITU-R M.2083-0, IMT Vision—Framework for Future IMT for 2020 and Beyond. ITU (International Telecommunication Union). September 2015. Available online: https://www.itu.int/pub/R-REP-M.2083-2015 (accessed on 24 December 2024).
- Ericsson. Ericsson Mobility Report. June 2023. Available online: https://www.ericsson.com/en/reports-and-papers/mobility-report (accessed on 25 December 2024).
- Qualcomm. Qualcomm 5G Latency Analysis: A Technical Overview. 2020. Available online: https://www.qualcomm.com/research/5g (accessed on 28 December 2024).
- 3GPP TR 22.891, Feasibility Study on New Services and Markets Technology Enablers for 5G. 14 September 2016. Available online: https://www.3gpp.org/ftp/Specs/archive/22_series/22.891/ (accessed on 28 December 2024).
- Cisco. Cisco Annual Internet Report (2023–2028). March 2023. Available online: https://www.cisco.com/c/en/us/solutions/executive-perspectives/annual-internet-report/index.html (accessed on 28 December 2024).
- GSMA. 5G and IoT: The Path to 1 Million Devices per Square Kilometer. GSMA Intelligence Report. July 2022. Available online: https://www.gsma.com/futurenetworks/ (accessed on 2 January 2025).
- Foukas, X.; Patounas, G.; Elmokashfi, A.; Marina, M.K. Network slicing in 5G: Survey and challenges. IEEE Commun. Mag. 2017, 55, 94–100. [Google Scholar] [CrossRef]
- Li, X.; Samaka, M.; Chan, H.A.; Bhamare, D.; Gupta, L.; Guo, C.; Jain, R. Network slicing for 5G: Challenges and opportunities. IEEE Internet Comput. 2017, 21, 20–27. [Google Scholar] [CrossRef]
- Wijethilaka, S.; Liyanage, M. Survey on network slicing for Internet of Things realization in 5G networks. IEEE Commun. Surv. Tutor. 2021, 23, 957–994. [Google Scholar] [CrossRef]
- Ravindran, R.; Chakraborti, A.; Amin, S.O.; Azgin, A. 5G-ICN: Delivering ICN services over 5G using network slicing. IEEE Commun. Mag. 2017, 55, 101–107. [Google Scholar] [CrossRef]
- Yang, C.; Liang, P.; Fu, L.; Cui, G.; Huang, F.; Teng, F.; Bangash, Y.A. Using 5G in smart cities: A systematic mapping study. Intell. Syst. Appl. 2022, 14, 200065. [Google Scholar] [CrossRef]
- Shehab, M.J.; Kassem, I.; Kutty, A.A.; Kucukvar, M.; Onat, N.; Khattab, T. 5G networks towards smart and sustainable cities: A review of recent developments, applications and future perspectives. IEEE Access 2021, 10, 2987–3006. [Google Scholar] [CrossRef]
- Santos, J.; Leroux, P.; Wauters, T.; Volckaert, B.; De Turck, F. Anomaly detection for smart city applications over 5g low power wide area networks. In Proceedings of the NOMS 2018—2018 IEEE/IFIP Network Operations and Management Symposium, Taipei, Taiwan, 23–27 April 2018; pp. 1–9. [Google Scholar]
- Dua, A.; Dutta, A.; Zaman, N.; Kumar, N. Blockchain-based E-waste management in 5G smart communities. In Proceedings of the IEEE INFOCOM 2020—IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Toronto, ON, Canada, 6–9 July 2020; pp. 195–200. [Google Scholar]
- Banda, L.; Mzyece, M.; Mekuria, F. 5G-IoT and Sustainability: Smart City Use Case. In Proceedings of the 2024 IEEE 100th Vehicular Technology Conference (VTC2024-Fall), Washington, DC, USA, 7–10 October 2024; pp. 1–5. [Google Scholar]
- Lv, Z.; Hu, B.; Lv, H. Infrastructure monitoring and operation for smart cities based on IoT system. IEEE Trans. Ind. Inform. 2019, 16, 1957–1962. [Google Scholar] [CrossRef]
- Bacco, M.; Delmastro, F.; Ferro, E.; Gotta, A. Environmental monitoring for smart cities. IEEE Sens. J. 2017, 17, 7767–7774. [Google Scholar] [CrossRef]
- Segura-Garcia, J.; Calero, J.M.A.; Pastor-Aparicio, A.; Marco-Alaez, R.; Felici-Castell, S.; Wang, Q. 5G IoT system for real-time psycho-acoustic soundscape monitoring in smart cities with dynamic computational offloading to the edge. IEEE Internet Things, J. 2021, 8, 12467–12475. [Google Scholar] [CrossRef]
- Elassy, M.; Al-Hattab, M.; Takruri, M.; Badawi, S. Intelligent transportation systems for sustainable smart cities. Transp. Eng. 2024, 16, 100252. [Google Scholar] [CrossRef]
- Mamun, M.I.; Rahman, A.; Khaleque, M.A.; Mridha, M.F.; Hamid, M.A. Healthcare monitoring system inside self-driving smart car in 5G cellular network. In Proceedings of the 2019 IEEE 17th International Conference on Industrial Informatics (INDIN), Helsinki, Finland, 22–25 July 2019; Volume 1, pp. 1515–1520. [Google Scholar]
- Hakak, S.; Gadekallu, T.R.; Maddikunta, P.K.R.; Ramu, S.P.; Parimala, M.; De Alwis, C.; Liyanage, M. Autonomous Vehicles in 5G and beyond: A Survey. Veh. Commun. 2023, 39, 100551. [Google Scholar] [CrossRef]
- Khorov, E.; Krasilov, A.; Selnitskiy, I.; Akyildiz, I.F. A framework to maximize the capacity of 5G systems for ultra-reliable low-latency communications. IEEE Trans. Mob. Comput. 2020, 20, 2111–2123. [Google Scholar] [CrossRef]
- Sutton, G.J.; Zeng, J.; Liu, R.P.; Ni, W.; Nguyen, D.N.; Jayawickrama, B.A.; Huang, X.; Abolhasan, M.; Zhang, Z.; Dutkiewicz, E. Enabling technologies for ultra-reliable and low latency communications: From PHY and MAC layer perspectives. IEEE Commun. Surv. Tutor. 2019, 21, 2488–2524. [Google Scholar] [CrossRef]
- Holmes, C.K. South Africa’s Readiness of the Smart Built Environment Towards 2035; Nelson Mandela University, Faculty of Business and Economic Sciences: Gqeberha, South Africa, 2019. [Google Scholar]
- Duca, F.; Mutua, A.; Tetley-Brown, L.; Karuri-Sebina, G.; Backhouse, J. Smart cities governance in the Southern African Development Community (SADC) region: A systematic review of the literature. Res. Sq. 2024. [Google Scholar] [CrossRef]
- Aoki, S.; Rajkumar, R. Dynamic intersections and self-driving vehicles. In Proceedings of the 2018 ACM/IEEE 9th International Conference on Cyber-Physical Systems (ICCPS), Porto, Portugal, 11–13 April 2018; pp. 320–330. [Google Scholar]
- Panwar, S. Breaking the millisecond barrier: Robots and self-driving cars will need completely reengineered networks. IEEE Spectr. 2020, 57, 44–49. [Google Scholar] [CrossRef]
- Ndikumana, A.; Tran, N.H.; Kim, K.T.; Hong, C.S. Deep learning based caching for self-driving cars in multi-access edge computing. IEEE Trans. Intell. Transp. Syst. 2020, 22, 2862–2877. [Google Scholar] [CrossRef]
- Ramu, S.P.; Boopalan, P.; Pham, Q.-V.; Maddikunta, P.K.R.; Huynh-The, T.; Alazab, M.; Nguyen, T.T.; Gadekallu, T.R. Federated learning enabled digital twins for smart cities: Concepts, recent advances, and future directions. Sustain. Cities Soc. 2022, 79, 103663. [Google Scholar] [CrossRef]
- Ali, K.; Nguyen, H.X.; Vien, Q.-T.; Shah, P.; Raza, M.; Paranthaman, V.V.; Er-Rahmadi, B.; Awais, M.; ul Islam, S.; Rodrigues, J.J. Review and implementation of resilient public safety networks: 5G, IoT, and emerging technologies. IEEE Netw. 2021, 35, 18–25. [Google Scholar] [CrossRef]
- Sheraz, M.; Chuah, T.C.; Lee, Y.L.; Alam, M.M.; Al-Habashna, A.A.; Han, Z. A Comprehensive Survey on Revolutionizing Connectivity Through Artificial Intelligence-Enabled Digital Twin Network in 6G. IEEE Access 2024, 12, 49184–49215. [Google Scholar] [CrossRef]
- Wang, S.; Qureshi, M.A.; Miralles-Pechuán, L.; Huynh-The, T.; Gadekallu, T.R.; Liyanage, M. Explainable AI for 6G Use Cases: Technical Aspects and Research Challenges. IEEE Open, J. Commun. Soc. 2024, 5, 2490–2540. [Google Scholar] [CrossRef]
- Banerjee, A.; Costa, B.; Forkan, A.R.M.; Kang, Y.-B.; Marti, F.; McCarthy, C.; Ghaderi, H.; Georgakopoulos, D.; and Jayaraman, P.P. 5G enabled smart cities: A real-world evaluation and analysis of 5G using a pilot smart city application. Internet Things 2024, 28, 101326. [Google Scholar] [CrossRef]
- Agiwal, M.; Roy, A.; Saxena, N. Next generation 5G wireless networks: A comprehensive survey. IEEE Commun. Surv. Tutor. 2016, 18, 1617–1655. [Google Scholar] [CrossRef]
- Wu, Q.; Li, G.Y.; Chen, W.; Ng, D.W.K.; Schober, R. An overview of sustainable green 5G networks. IEEE Wirel. Commun. 2017, 24, 72–80. [Google Scholar] [CrossRef]
- Williams, L.; Sovacool, B.K.; Foxon, T.J. The energy use implications of 5G: Reviewing whole network operational energy, embodied energy, and indirect effects. Renew. Sustain. Energy Rev. 2022, 157, 112033. [Google Scholar] [CrossRef]
- Carrera, B.; Peyrard, S.; Kim, K. Meta-regression framework for energy consumption prediction in a smart city: A case study of Songdo in South Korea. Sustain. Cities Soc. 2021, 72, 103025. [Google Scholar] [CrossRef]
- Raman, R.; Kumar, V.; Sanjay, C.; Rabadiya, D.; Patre, S.; Meenakshi, R. Optimizing Power Consumption for Business Networks through Cooperative Communication in Mixed Wireless Environments. In Proceedings of the 2024 International Conference on Knowledge Engineering and Communication Systems (ICKECS), Chikkaballapur, India, 18–19 April 2024; Volume 1, pp. 1–5. [Google Scholar]
- Kuru, K.; Ansell, D. TCitySmartF: A comprehensive systematic framework for transforming cities into smart cities. IEEE Access 2020, 8, 18615–18644. [Google Scholar] [CrossRef]
- Neirotti, P.; De Marco, A.; Cagliano, A.C.; Mangano, G.; Scorrano, F. Current trends in Smart City initiatives: Some stylised facts. Cities 2014, 38, 25–36. [Google Scholar] [CrossRef]
- Jalali, R.; El-Khatib, K.; McGregor, C. Smart city architecture for community level services through the internet of things. In Proceedings of the 2015 18th International Conference on Intelligence in Next Generation Networks, Paris, France, 17–19 February 2015; pp. 108–113. [Google Scholar]
- Vetrivel, S.; Vidhyapriya, P.; Arun, V. Evaluating the Economic Impact of 5G-6G Implementations Across Diverse Industry Sectors. In 5G/6G Advancements in Communication Technologies for Agile Management; IGI Global Scientific Publishing: Hershey, PA, USA, 2025; pp. 83–116. [Google Scholar]
- Kokkinis, D.; Ioannou, N.; Katsianis, D.; Varoutas, D. A Techno-Economic Modeling Approach to 6G Network Deployment: Exploring Costs and Use Case Feasibility. IEEE Access 2025, 13, 35597–35608. [Google Scholar] [CrossRef]
- Riadh, A.-D. Dubai, the sustainable, smart city. Renew. Energy Environ. Sustain. 2022, 7, 3. [Google Scholar]
- Ye, N.; Miao, S.; Pan, J.; Xiang, Y.; Mumtaz, S. Dancing with Chains: Spaceborne Distributed Multi-User Detection under Inter-Satellite Link Constraints. IEEE J. Sel. Top. Signal Process. 2025, 1–16. [Google Scholar] [CrossRef]
- Mylonas, G.; Kalogeras, A.; Kalogeras, G.; Anagnostopoulos, C.; Alexakos, C.; Muñoz, L. Digital twins from smart manufacturing to smart cities: A survey. IEEE Access 2021, 9, 143222–143249. [Google Scholar] [CrossRef]
- Ahmadi, H.; Nag, A.; Khar, Z.; Sayrafian, K.; Rahardja, S. Networked twins and twins of networks: An overview on the relationship between digital twins and 6G. IEEE Commun. Stand. Mag. 2021, 5, 154–160. [Google Scholar] [CrossRef]
- Zhou, Z.; Jia, Z.; Liao, H.; Lu, W.; Mumtaz, S.; Guizani, M.; Tariq, M. Secure and latency-aware digital twin assisted resource scheduling for 5G edge computing-empowered distribution grids. IEEE Trans. Ind. Inform. 2021, 18, 4933–4943. [Google Scholar] [CrossRef]
- Sun, W.; Zhang, H.; Wang, R.; Zhang, Y. Reducing offloading latency for digital twin edge networks in 6G. IEEE Trans. Veh. Technol. 2020, 69, 12240–12251. [Google Scholar] [CrossRef]
- Tao, F.; Zhang, H.; Liu, A.; Nee, A.Y. Digital twin in industry: State-of-the-art. IEEE Trans. Ind. Inform. 2018, 15, 2405–2415. [Google Scholar] [CrossRef]
- Ma, S.; Flanigan, K.A.; Bergés, M. State-of-the-art review and synthesis: A requirement-based roadmap for standardized predictive maintenance automation using digital twin technologies. Adv. Eng. Inform. 2024, 62, 102800. [Google Scholar] [CrossRef]
- Hribernik, K.; Cabri, G.; Mandreoli, F.; Mentzas, G. Autonomous, context-aware, adaptive Digital Twins—State of the art and roadmap. Comput. Ind. 2021, 133, 103508. [Google Scholar] [CrossRef]
- Karamchandani, A.; Sanz, M.; Burgaleta, Á.; De La Cal, L.; Mozo, A.; Moreno, J.I.; Pastor, A.; López, D.R. Design of an AI-driven Network Digital Twin for advanced 5G-6G network management. In Proceedings of the NOMS 2024—2024 IEEE Network Operations and Management Symposium, Seoul, Republic of Korea, 6–10 May 2024; pp. 1–7. [Google Scholar]
- Rebecchi, F.; Pastor, A.; Mozo, A.; Lombardo, C.; Bruschi, R.; Aliferis, I.; Doriguzzi-Corin, R.; Gouvas, P.; Romero, A.A.; Angelogianni, A. A digital twin for the 5G era: The SPIDER cyber range. In Proceedings of the 2022 IEEE 23rd International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM), Belfast, UK, 14–17 June 2022; pp. 567–572. [Google Scholar]
- Mohan, J.P.; Sugunaraj, N.; Ranganathan, P. Cyber security threats for 5G networks. In Proceedings of the 2022 IEEE International Conference on Electro Information Technology (eIT), Mankato, MN, USA, 19–21 May 2022; pp. 446–454. [Google Scholar]
- Maksimović, M.; Jokić, S.; Bošković, M.Č. Digital Twins and 5G: Unlocking the Potential in the Energy Sector. In Proceedings of the 2024 23rd International Symposium INFOTEH-JAHORINA (INFOTEH), East Sarajevo, Bosnia and Herzegovina, 20–22 March 2024; pp. 1–6. [Google Scholar]
Limitation | Description | Implications | Current Solutions |
---|---|---|---|
High Infrastructure Costs | 5G requires dense and expensive infrastructure. | Limits rollout in low-budget areas. | Shared funding and phased deployment. |
Ongoing maintenance is required. | Delays the full implementation. | Cost-efficient hardware in development. | |
Limited Coverage | 5G signals are short-range, blocked easily. | Requires many base stations for full city coverage. | Smart antennas and hybrid networks. |
Hard to maintain strong, city-wide signal. | Reduces network reliability. | AI-based signal optimization. | |
High Energy Use | More base stations and data load raise energy demand. | Increases energy costs and environmental impact. | Energy-saving hardware and renewable sources. |
May conflict with green city goals. | Limits sustainability. | Sleep modes and smart grids in testing. | |
Security and Privacy Risks | More devices and real-time data increase cyberattack risks. | Threatens privacy and safety. | Encryption and secure 5G frameworks. |
Sensitive data need better protection. | High cost to protect infrastructure. | Blockchain and intrusion detection tools. | |
Interoperability Concerns | Devices and platforms often use different standards. | Hard to integrate systems. | Open standards and unified APIs. |
Vendors use proprietary protocols. | Increases customization costs and limits scalability. | Cross-vendor frameworks in development. | |
Regulatory and Policy Barriers | Deployment restricted by local rules and spectrum policies. | Slows infrastructure rollout. | Policy alignment and reforms. |
Health concerns can cause resistance. | May block installation of base stations. | Awareness campaigns and safety reviews. | |
Device Readiness | Older devices lack 5G support. | Costly to upgrade or replace systems. | Backward-compatible upgrades. |
Few universal device standards. | Slows smart city integration. | Industry push for standardization. | |
Digital Divide and Accessibility | High costs and limited rollout may exclude low-income areas. | Unequal access to smart city benefits. | Subsidies and inclusive policies. |
Coverage often favors wealthy or commercial zones. | Worsens inequality in tech access. | Community-driven deployment models. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahomed, A.S.; Saha, A.K. Unleashing the Potential of 5G for Smart Cities: A Focus on Real-Time Digital Twin Integration. Smart Cities 2025, 8, 70. https://doi.org/10.3390/smartcities8020070
Mahomed AS, Saha AK. Unleashing the Potential of 5G for Smart Cities: A Focus on Real-Time Digital Twin Integration. Smart Cities. 2025; 8(2):70. https://doi.org/10.3390/smartcities8020070
Chicago/Turabian StyleMahomed, Afsaana Sultaana, and Akshay Kumar Saha. 2025. "Unleashing the Potential of 5G for Smart Cities: A Focus on Real-Time Digital Twin Integration" Smart Cities 8, no. 2: 70. https://doi.org/10.3390/smartcities8020070
APA StyleMahomed, A. S., & Saha, A. K. (2025). Unleashing the Potential of 5G for Smart Cities: A Focus on Real-Time Digital Twin Integration. Smart Cities, 8(2), 70. https://doi.org/10.3390/smartcities8020070