Comparative Experimental Effects of Intercropping and Cypermethrin on Insect Pest Infestation and Yield of Maize, Cowpea and Okra in Two Cameroonian Agro-Ecological Zones
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Precipitation, Temperature, Soil, and Vegetation
2.3. Experimental Set-Up, Sowing and Weeding
2.4. Fertilizer Amendment and Cypermethrin Application
2.5. Yield Parameters
2.5.1. Maize
2.5.2. Cowpea
2.5.3. Okra
2.6. Land Equivalent Ratio
Maize, Cowpea, Okra
2.7. Data Analysis
3. Results and Discussion
3.1. Yield
3.1.1. Maize
3.1.2. Cowpea
3.1.3. Okra
3.2. Land Equivalent Ratio
3.3. Cost and Benefit
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dhaliwal, G.S.; Jindal, V.; Dhawan, A.K. Insect pest problems and crop losses: Changing trends. Indian J. Ecol. 2010, 37, 1–7. [Google Scholar]
- Pretty, J.; Bharucha, P.Z. Integrated Pest Management for Sustainable Intensification of Agriculture in Asia and Africa. Insects 2015, 6, 152–182. [Google Scholar] [CrossRef] [PubMed]
- Prokopy, R.J.; Mason, J.; Christie, M.; Wright, S.E. Arthropod pest and natural enemy abundance under second-level versus first-level integrated pest management practices in apple orchards. Agric. Ecosyst. Environ. 1995, 57, 35–47. [Google Scholar] [CrossRef]
- Cross, J.V.; Solomon, M.G.; Babandreier, D.; Blommers, L.; Easterbrook, M.A.; Jay, C.; Jenser, G.; Jolly, R.; Kuhlmann, U.; Lilley, R.; et al. Biocontrol of pests of apples and pears in northern and central Europe. Biol. Sci. Technol. 1999, 9, 277–314. [Google Scholar] [CrossRef]
- Aman, S.; Bhuvnesh, Y.; Shipra, R.; Baljeet, Y. Cypermethrin Toxicity: A Review. J. For. Sci. Crim. Investig. 2018, 9, 555–767. [Google Scholar]
- Kumar, V.; Kumar, P. Pesticides in agriculture and environment: Impacts on human health. In Contaminants in Agriculture and Environment: Health Risks and Remediation; Agro Environ Media: Haridwar, India, 2019; Volume 1, pp. 76–95. [Google Scholar] [CrossRef]
- Gombac, P.; Trdan, S. The efficacy of intercropping with birdsfoot trefoil and summer savoury in reducing damage inflicted by onion thrips (Thrips tabaci, Thysanoptera, Thripidae) on four leek cultivars. J. Plant Dis. Prot. 2014, 121, 117–124. [Google Scholar] [CrossRef]
- Afrin, S.; Latif, A.; Banu, A.M.N.; Kabir, M.M.M.; Haque, S.S.; Ahmed, E.; Tonnu, N.N.; Ali, P.M. Intercropping empowder reduces insect pest and increases biodiversity in agro-Ecosystem. Agric. Sci. 2017, 8, 1120–1134. [Google Scholar]
- Sharaby, A.; Abdel-Rahman, H.; Sabry, S. Intercropping system for protection the potato plant from insect infestation. Ecol. Balka. 2015, 7, 87–92. [Google Scholar]
- Perrin, R.M.; Phillips, M.L. Some effects of mixed cropping on the population dynamics of insect pests. Entomol. Exp. Appl. 1978, 24, 585–593. [Google Scholar] [CrossRef]
- Cook, S.M.; Khan, Z.R.; Pickett, J.A. The use of push–pull strategies in integrated pest management. Annu. Rev. Entomol. 2007, 52, 375–400. [Google Scholar] [CrossRef] [Green Version]
- Scherber, C.; Eisenhauer, N.; Weisser, W.W.; Schmid, B.; Voigt, W.; Fischer, M. Bottom-up effects of plant diversity on multitrophic interactions in a biodiversity experiment. Nature 2010, 468, 553–556. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Wolfgang, W.W.; Rachid, H.; Raissa, H.; Sharon, E.Z. Reduce pests, enhance production: Benefits of intercropping at high densities for okra farmers in Cameroon. Pest Manag. Sci. 2017, 73, 2017–2027. [Google Scholar] [CrossRef] [PubMed]
- Nyukuri, R.W.; Kirui, S.C.; Cheramgoi, E.; Chirchir, E.; Mwale, R. Role of refugia graminae in push-pull management of stem borer species of Zea Mays L. and Sorghum bicolor L. Afr. J. Food Sci. Technol. 2014, 5, 29–36. [Google Scholar]
- Finch, S.; Collier, R. Host-plant selection by insects- a theory based on appropriate/inappropriate landings by pest insects of cruciferous plants. Entomol. Exp. Appl. 2000, 96, 91–102. [Google Scholar] [CrossRef]
- Historical Weather Data in Cameroon. Available online: https://en.tutiempo.net/climate/cameroon.html (accessed on 18 November 2019).
- Hamma, I.L.; Yusuf, S.M.; Idris, U.D. Evaluation of Maize (Zea Mays L.) and Okra (Abelmoschus Esculentus (L.) Moench) intercropping system at Samaru, Zaria. J. Adv. Res. 2015, 2, 16–22. [Google Scholar]
- Ijoyah, M.O.; Dzer, D.M. Yield performance of okra (Abelmoschus esculentus L. Moench) and maize (Zea mays L.) as affected by time of planting maize in Makurdi, Nigeria. Int. Sch. Res. Not. 2012, 6, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Gandébé, M.; Ngakou, A.; Tabi, I.; Amougou, F. Altering the time of intercropping cowpea (Vigna unguiculata (L) Walp.) relative to maize (Zea mays): A food production strategy to increase crop yield attributes in Adamaoua-Cameroon. World J. Agric. Sci. 2010, 6, 473–479. [Google Scholar]
- Mead, R.; Willey, R.W. The Concept of Land Equivalent Ratio and Advantages in Yields from Intercropping. Exp. Agric. 1980, 16, 217–228. [Google Scholar] [CrossRef] [Green Version]
- AGRI-STAT. Agriculture, Annuaire Statistique; Institut National de Statistique: Yaoundé, Cameroun, 2015; pp. 1–24. [Google Scholar]
- Ndemah, R.; Schulthess, F. Yield of maize in relation to natural field infestations and damage by lepidopteran borers in the forest and forest/savanna transition zones of Cameroon. Int. J. Trop. Insect Sci. 2002, 22, 183–192. [Google Scholar] [CrossRef]
- Day, R.; Abrahams, P.; Bateman, M.; Beak, T.; Clotty, V.; Cock, M.; Colmenarey, Y.; Corniani, N.; Early, R.; Godwin, J.; et al. Fall armyworm: Impacts and implications for Africa. Outlooks Pest Manag. 2017, 28, 196–201. [Google Scholar] [CrossRef] [Green Version]
- Kansiime, K.M.; Mugambi, I.; Rwomushana, I.; Nunda, W.; Lamontagne, G.J.; Rware, H.; Phiri, A.N.; Chipabika, G.; Ndlovu, M.; Day, R. Farmer perception of fall armyworm (Spodoptera frugiperda J.E. Smith) and farm-level management practices in Zambia. Pest Manag. Sci. 2019, 75, 2840–2850. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okigbo, B.N.; Greenland, D.J. Intercropping Systems in Tropical Africa in Multiple Cropping. Agric. Ecosyst. Environ. 1976, 65, 73–83. [Google Scholar]
- Maluleke, M.H.; Addo-Bediako, A.; Ayisi, K.K. Influence of Maize/Lablab intercropping on lepidopterous stem borer infestation in maize. J. Econ. Entomol. 2005, 98, 384–388. [Google Scholar] [CrossRef] [PubMed]
- Kfir, R. Competitive displacement of Busseola fusca (Lepidoptera: Noctuidae) by Chilo partellus (Lepidoptera: Pyralidae). Ann. Entomol. Soc. Am. 1997, 90, 619–624. [Google Scholar] [CrossRef]
- Mpairwe, D.R.; Sabiiti, E.N.; Ummana, N.N.; Tegegne, A.; Osuju, P. Effects of intercropping cereal crops with forage legumes and source of nutrients on cereal grain yield and fodder dry matter yields. Afr. Crop Sci. J. 2002, 10, 81–97. [Google Scholar] [CrossRef]
- Dapaah, H.K.; Asafu-Agyei, J.N.; Ennin, S.A.; Yamoah, C. Yield stability of cassava, maize, soya bean and cowpea intercrops. J. Agric. Sci. 2003, 140, 73–82. [Google Scholar] [CrossRef]
- Ogah, E.O.; Ogbodo, E.N. Assessing the Impact of Biodiversity Conservation in the Management of Maize Stalk Borer (Busseola fusca, F.) in Nigeria. Curr. Trends Technol. Sci. Vol. II Issue IIPg 2012, 2, 234–237. [Google Scholar]
- Li, L.; Zhang, F.; Li, X.; Christie, P.; Sun, J.; Yang, S.; Tang, C. Interspecific facilitation of nutrient uptake by intercropped maize and faba bean. Nutr. Cycl. Agroecosyst. 2003, 65, 61–71. [Google Scholar] [CrossRef]
- Muofhe, M.L.; Dakora, F.D. Modification of rhizosphere pH by the symbiotic legume Aspalathus linearis growing in a sandy acidic soil. Funct. Plant Biol. 2000, 27, 1169–1173. [Google Scholar] [CrossRef]
- Omo-Ikerodah, E.E.; Fatokun, C.A.; Fawole, I. Genetic analysis of resistance to flower bud thrips (Megalurothrips sjostedti) in cowpea (Vigna unguiculata [L.] Walp.). Euphytica 2009, 165, 145–154. [Google Scholar] [CrossRef] [Green Version]
- Athanassiou, G.C.; Kavallieratos, G.N.; Arthur, H.F.; Nakas, T.C. Rating knockdown of flour beetles after exposure to two insecticides as an indicator of mortality. Sci. Rep. 2021, 11, 1145–1153. [Google Scholar] [CrossRef] [PubMed]
- Mwamlima, L.H.; Kabambe, V.H.; Nyirenda, G.K.C.; Mhango, W.G. Effects of intercropping systems and foliar pesticides applied to control cotton (Gossypium hirsutum L) pests on incidences of cowpea (Vigna unguiculata L. Walp) pests. Agric. Sci. Res. J. 2016, 6, 313–321. [Google Scholar]
- Chemeda, F. Effects of planting pattern, relative planting date and intra-row spacing on a haricot bean/maize intercrop. Afr. Crop Sci. J. 1997, 5, 15–22. [Google Scholar]
- Lesoing, W.G.; Francis, C.A. Strip intercropping effects on yield and yield components of corn, grain sorghum, and soybean. Agron. J. 1999, 91, 807–813. [Google Scholar] [CrossRef]
- Ofori, F.; Stern, R. Relative sowing time and density of component crops in a maize/cowpea intercropping system. Exp. Agric. 1987, 23, 41–52. [Google Scholar] [CrossRef]
- Tamoghna, S.; Mohmmad, A.; Nithya, C.; Ray, S.N. Temporal dynamics of sucking pest and field response of promising insecticidal molecules in okra. J. Appl. Nat. Sci. 2016, 8, 392–397. [Google Scholar]
- Ajayi, O.E.; Adeoye, B.I.; Shittu, A.O. Economics analysis of intercropping okra with legumes. J. Agric. Sci. 2017, 62, 193–202. [Google Scholar] [CrossRef]
- Diebel, P.L.; Williams, J.R.; Llewelyn, R.V. An economic comparison of conventional and alternative cropping systems for a representative northeast Kansas farm. Rev. Agric. Econ. 1995, 17, 323–335. [Google Scholar] [CrossRef]
- Clark, M.S.; Ferris, H.; Klonsky, K.; Lanini, W.T.; Van Bruggen, A.; Zalom, F.G. Agronomic, economic, and environmental comparison of pest management in conventional and alternative tomato and corn systems in northern California. Agric. Ecosyst. Environ. 1998, 68, 51–71. [Google Scholar] [CrossRef]
- Aktar, M.W.; Sengupta, D.; Chowdhury, A. Impact of pesticides use in agriculture: Their benefits and hazards. Interdiscip. Toxicol. 2009, 2, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Fianko, R.J.; Donkor, A.; Lowor, T.S.; Yeboah, O.P. Agrochemicals and the Ghanaian Environment, a Review. J. Environ. Prot. 2011, 2, 221–230. [Google Scholar] [CrossRef] [Green Version]
Locality | PO43− mg/ 100 g Soil | Mg mg/ 100 g Soil | Ca mg/ 100 g Soil | K mg/ 100 g Soil | pH | Total C/N | Total N% | Total C% |
---|---|---|---|---|---|---|---|---|
Gouna | 0.36 | 6.88 | 46.47 | 10.87 | 5.03 | 20.30 | 0.03 | 0.67 |
Dang | 0.55 | 15.80 | 78.55 | 16.92 | 4.38 | 15.73 | 0.16 | 2.47 |
Monoculture | Intercropping |
---|---|
Maize | Maize + Cowpea |
Cowpea | Maize + Okra |
Okra | Okra + Cowpea |
Maize + Okra + Cowpea |
Treatments | Dang 2016 | Dang 2017 | ||||
Unsprayed | Sprayed | t | Unsprayed | Sprayed | t | |
M | 2.31 ± 0.12 ab | 3.67 ± 0.17 a | 6.60 *** | 2.27 ± 0.26a | 2.99 ± 0.33 a | 7.31 *** |
MC | 2.60 ± 0.13 a | 3.03 ± 0.16 b | 2.17 * | 2.27 ± 0.04 a | 2.64 ± 0.03 b | 7.34 *** |
MO | 2.23 ± 0.09 ab | 2.58 ± 0.14 bc | 2.07 * | 2.23 ± 0.08 a | 2.62 ± 0.05 b | 4.06 *** |
MCO | 1.86 ± 0.14 b | 2.06 ± 0.16 c | 1.86 | 1.95 ± 0.06 b | 2.17 ± 0.04 c | 0.57 |
Mean | 2.25 ± 0.08 | 2.83 ± 0.08 | 5.27 *** | 2.18 ± 0.03 | 2.60 ± 0.03 | 8.86 *** |
F(3, 156) | 3.93 ** | 30.16 *** | 9.07 *** | 27.52 *** | ||
Treatments | Gouna 2016 | Gouna 2017 | ||||
Unsprayed | Sprayed | t | Unsprayed | Sprayed | t | |
M | 4.62 ± 0.29 a | 4.98 ± 0.19 a | 1.07 | 4.16 ± 0.19 a | 4.37 ± 0.14 a | 1.56 |
MC | 4.14 ± 0.10 ab | 4.30 ± 0.13 b | 1.03 | 4.06 ± 0.10 a | 4.08 ± 0.11 a | 0.03 |
MO | 3.83 ± 0.11 b | 3.87 ± 0.11 b | 0.23 | 3.40 ± 0.05 b | 3.87 ± 0.09 ab | 2.29 * |
MCO | 2.97 ± 0.06 c | 3.19 ± 0.13 c | 1.73 | 2.91 ± 0.14 c | 3.35 ± 0.12 b | 2.01 |
Mean | 3.89 ± 0.08 | 4.08 ± 0.10 | 1.54 | 3.76 ± 0.06 | 3.80 ± 0.08 | 0.42 |
F(3, 156) | 26.27 *** | 19.70 *** | 32.48 *** | 13.13 *** |
Treatments | Dang 2016 | Dang 2017 | ||||
Unsprayed | Sprayed | t | Unsprayed | Sprayed | t | |
C | 0.87 ± 0.06 a | 1.65 ± 0.12 a | 5.72 *** | 0.85 ± 0.07 a | 1.69 ± 0.14 a | 6.15 *** |
MC | 0.75 ± 0.05 ab | 0.95 ± 0.05 b | 2.74 * | 0.65 ± 0.06 ab | 0.89 ± 0.07 b | 2.58 * |
OC | 0.61 ± 0.04 b | 0.88 ± 0.06 b | 3.89 *** | 0.63 ± 0.09 b | 1.01 ± 0.04 b | 3.51 ** |
MCO | 0.42 ± 0.04 c | 0.54 ± 0.03 c | 2.38 * | 0.56 ± 0.06 b | 0.59 ± 0.03 c | 0.44 |
Mean | 0.66 ± 0.03 | 1.01 ± 0.04 | 6.15 *** | 0.67 ± 0.03 | 1.04 ± 0.05 | 6.12 *** |
F(3, 156) | 14.91 *** | 39.88 *** | 5.29 ** | 28.13 *** | ||
Treatments | Gouna 2016 | Gouna 2017 | ||||
Unsprayed | Sprayed | t | Unsprayed | Sprayed | t | |
C | 0.65 ± 0.04 a | 1.76 ± 0.09 a | 11.54 *** | 0.73 ± 0.04 a | 1.64 ± 0.07 a | 11.36 *** |
MC | 0.66 ± 0.05 a | 0.96 ± 0.06 b | 4.04 *** | 0.76 ± 0.06 a | 0.92 ± 0.05 b | 2.10 * |
OC | 0.55 ± 0.04 ab | 0.92 ± 0.07 b | 4.89 *** | 0.57 ± 0.04 b | 0.90 ± 0.05 b | 5.22 *** |
MCO | 0.46 ± 0.05 b | 0.58 ± 0.04 c | 1.90 | 0.42 ± 0.04 b | 0.60 ± 0.04 c | 3.09 ** |
Mean | 0.58 ± 0.02 | 1.05 ± 0.05 | 9.10 *** | 0.62 ± 0.03 | 1.01 ± 0.04 | 8.34 *** |
F(3, 156) | 5.38 ** | 57.37 *** | 14.65 *** | 60.30 *** |
Treatments | Dang 2016 | Dang 2017 | ||||
Unsprayed | Sprayed | t | Unsprayed | Sprayed | t | |
O | 3.99 ± 0.28 a | 5.30 ± 0.34 a | 3.01 ** | 3.84 ± 0.32 a | 6.84 ± 0.35 a | 6.33 *** |
MO | 3.50 ± 0.17 ab | 3.98 ± 0.23 bc | 2.97 ** | 2.96 ± 0.18 b | 4.65 ± 0.23 b | 5.76 *** |
OC | 2.83 ± 0.34 bc | 4.83 ± 0.24 ab | 3.16 ** | 3.96 ± 0.27 a | 6.25 ± 0.26 a | 6.11 *** |
MCO | 2.18 ± 0.18 c | 3.14 ± 0.29 c | 3.04 ** | 2.60 ± 0.20 c | 3.57 ± 0.24 c | 2.69 * |
Mean | 3.12 ± 0.12 | 3.72 ± 0.11 | 5.80 *** | 3.34 ± 0.13 | 4.33 ± 0.12 | 9.25 *** |
F(3, 156) | 12.47 *** | 9.97 *** | 7.23 *** | 29.82 *** | ||
Treatments | Gouna 2016 | Gouna 2017 | ||||
Unsprayed | Sprayed | t | Unsprayed | Sprayed | t | |
O | 3.83 ± 0.35 a | 4.99 ± 0.28 a | 2.57 ** | 3.90 ± 0.26 a | 5.38 ± 0.36 a | 3.13 ** |
MO | 3.45 ± 0.26 a | 4.20 ± 0.20 a | 3.11 *** | 3.04 ± 0.26 b | 3.52 ± 0.20 b | 1.48 |
OC | 2.96 ± 0.35 b | 4.93 ± 0.33 a | 3.05 ** | 4.03 ± 0.34 a | 5.27 ± 0.33 a | 2.60 * |
MCO | 2.47 ± 0.22 c | 2.45 ± 0.21 b | 1.05 | 2.22 ± 0.22 c | 2.45 ± 0.22 c | 0.00 |
Mean | 3.29 ± 0.15 | 3.36 ± 0.14 | 2.67 ** | 3.30 ± 0.15 | 3.69 ± 0.12 | 3.43 ** |
F(3, 156) | 7.93 *** | 19.02 *** | 9.00 *** | 21.72 *** |
Treatments | Dang 2016 | Gouna 2016 | Dang 17 | Gouna 2017 |
---|---|---|---|---|
MC | 1.99 | 1.91 | 1.76 | 2.02 |
MC + I | 1.40 | 1.41 | 1.41 | 1.49 |
MO | 1.67 | 1.73 | 1.75 | 1.71 |
MO + I | 1.61 | 1.62 | 1.56 | 1.43 |
OC | 1.32 | 1.62 | 1.77 | 1.81 |
OC + I | 1.79 | 1.51 | 1.51 | 1.53 |
MCO | 1.81 | 2.00 | 2.19 | 1.84 |
MCO + I | 1.48 | 1.46 | 1.60 | 1.59 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farsia Djidjonri, P.; Nchiwan, N.E.; Koehler, H. Comparative Experimental Effects of Intercropping and Cypermethrin on Insect Pest Infestation and Yield of Maize, Cowpea and Okra in Two Cameroonian Agro-Ecological Zones. AgriEngineering 2021, 3, 383-393. https://doi.org/10.3390/agriengineering3020025
Farsia Djidjonri P, Nchiwan NE, Koehler H. Comparative Experimental Effects of Intercropping and Cypermethrin on Insect Pest Infestation and Yield of Maize, Cowpea and Okra in Two Cameroonian Agro-Ecological Zones. AgriEngineering. 2021; 3(2):383-393. https://doi.org/10.3390/agriengineering3020025
Chicago/Turabian StyleFarsia Djidjonri, Patient, Nukenine Elias Nchiwan, and Hartmut Koehler. 2021. "Comparative Experimental Effects of Intercropping and Cypermethrin on Insect Pest Infestation and Yield of Maize, Cowpea and Okra in Two Cameroonian Agro-Ecological Zones" AgriEngineering 3, no. 2: 383-393. https://doi.org/10.3390/agriengineering3020025
APA StyleFarsia Djidjonri, P., Nchiwan, N. E., & Koehler, H. (2021). Comparative Experimental Effects of Intercropping and Cypermethrin on Insect Pest Infestation and Yield of Maize, Cowpea and Okra in Two Cameroonian Agro-Ecological Zones. AgriEngineering, 3(2), 383-393. https://doi.org/10.3390/agriengineering3020025