Assessing the Effects of Free Fall Conditions on Damage to Corn Seeds: A Comprehensive Examination of Contributing Factors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample
2.2. Free Fall Test
2.3. Damage Assessment
- PPD: the percentage of physical damage (%).
- Wd: mass of seeds with physical damage.
- Wt: the original mass of the seed sample before the test.
2.4. Measurement of Seed Velocity
2.5. Statistical Analysis
3. Results and Discussion
4. Conclusions
- The study affirms that mechanical damage due to free fall significantly affects both physical and physiological attributes of corn seeds. This highlights the importance of evaluating both physical and physiological damage, as focusing solely on physical damage may not provide a comprehensive representation of the overall damage inflicted on the seeds.
- The findings emphasize the crucial role of drop heights and mass flow velocities in determining the extent of seed damage. Higher values of these parameters were associated with increased seed damage, whereas limiting the impact velocities to approximately 8 m/s at a 5-m drop height resulted in minimal damage among the tested treatments.
- The impact surfaces played a crucial role, where seeds dropping on hard surfaces such as metal or concrete incurred more damage than those dropping on seeds. This highlights the importance of careful selection of surface materials during handling.
- Ambient temperature demonstrated a significant inverse relationship with the total damage to corn seeds, suggesting that handling seeds at lower ambient temperatures should be minimized.
- The increase in seed moisture content resulted in a corresponding increase in physiological damage and a decrease in physical damage, highlighting the importance of managing moisture content to minimize overall seed damage. Determining the optimal moisture content for preserving corn seed quality requires more targeted studies.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, Z.; Wassgren, C.; Ambrose, K. A Review of Grain Kernel Damage: Mechanisms, Modeling, and Testing Procedures. Trans. ASABE 2020, 63, 455–475. [Google Scholar] [CrossRef]
- Nadimi, M.; Divyanth, L.G.; Paliwal, J. Automated detection of mechanical damage in flaxseeds using radiographic imaging and machine learning. Food Bioproc. Tech. 2023, 16, 526–536. [Google Scholar] [CrossRef]
- Chen, Z.; Wassgren, C.; Ambrose, R.K. Development and validation of a DEM model for predicting impact damage of maize kernels. Biosyst. Eng. 2022, 224, 16–33. [Google Scholar] [CrossRef]
- Statista. 2022. Available online: https://www.statista.com/statistics/1156213/global-corn-production/ (accessed on 18 December 2022).
- Guo, D. Kernel and Bulk Density Changes Due to Moisture Content, Mechanical Damage, and Insect Damage. Ph.D. Thesis, Purdue University, West Lafayette, IN, USA, 2015. [Google Scholar]
- Li, J.; Zhao, B.; Wu, J.; Zhang, S.; Lv, C.; Li, L. Stress-Crack detection in maize kernels based on machine vision. Comput. Electron. Agric. 2022, 194, 106795. [Google Scholar] [CrossRef]
- Li, X.; Du, Y.; Guo, J.; Mao, E. Design, Simulation, and Test of a New Threshing Cylinder for High Moisture Content Corn. Appl. Sci. 2020, 10, 4925. [Google Scholar] [CrossRef]
- Bartkowiak, A.; Gracz, W.; Marcinkowski, D.; Skrzypek, D.; Wojtaszyk, S. Research on quality of maize grain as a result of the application of an innovative system for storing grain under operating conditions. Agric. Eng. 2019, 23, 15–28. [Google Scholar]
- Paulsen, M.R.; Singh, M.; Singh, V. Measurement and Maintenance of Corn Quality. In Corn; AACC International Press: Washington, DC, USA, 2019; pp. 165–211. [Google Scholar] [CrossRef]
- Shahbazi, R.; Shahbazi, F. Effects of cushion box and closed let-down ladder usage on mechanical damage during corn kernel handling: Cracking. J. Stored Prod. Res. 2022, 99, 102006. [Google Scholar] [CrossRef]
- Eckhoff, S.R.; Paulsen, M.R. Maize. In Cereal Grain Quality; Herny, R.J., Kettlewell, P.S., Eds.; Springer Science & Business Media: Berlin/Heidelberg, Germany; Chapman and Hall: London, UK, 2012; pp. 77–112. [Google Scholar]
- Rybchynskyi, R. Change of stress crack in corn kernel during its preparation for processing. Grain Prod. Mix. Fodd. 2020, 20, 14–18. [Google Scholar] [CrossRef]
- Nadimi, M.; Loewen, G.; Paliwal, J. Assessment of mechanical damage to flaxseeds using radiographic imaging and tomography. Smart Agric. Technol. 2022, 2, 100057. [Google Scholar] [CrossRef]
- Oliveira, G.R.F.D.; Cicero, S.M.; Krzyzanowski, F.C.; Gomes-Junior, F.G.; Batista, T.B.; França-Neto, J.D.B. Treatment of soybean seeds with mechanical damage: Effects on their physiological potential. J. Seed Sci. 2021, 43. [Google Scholar] [CrossRef]
- Ning, X.; Yang, D.; Gong, Y.; Han, C.; Liu, D. Seeds of soybean with internal mechanical damage feature and influence to its germination. Eng. Agric. Environ. Food 2014, 7, 59–63. [Google Scholar] [CrossRef]
- Fan, Y.; Jacob, K.V.; Freireich, B.; Lueptow, R.M. Segregation of granular materials in bounded heap flow: A review. Powder Technol. 2017, 312, 67–88. [Google Scholar] [CrossRef]
- Narendran, R.B.; Jian, F.; Jayas, D.S.; Fields, P.G.; White, N.D. Segregation of canola, kidney bean, and soybean in wheat bulks during bin loading. Powder Technol. 2019, 344, 307–313. [Google Scholar] [CrossRef]
- Deng, T.; Garg, V.; Salehi, H.; Bradley, M.S. Correlations between segregation intensity and material properties such as particle sizes and adhesions and novel methods for assessment. Powder Technol. 2021, 387, 215–226. [Google Scholar] [CrossRef]
- Nadimi, M.; Hawley, E.; Liu, J.; Hildebrand, K.; Sopiwnyk, E.; Paliwal, J. Enhancing traceability of wheat quality through the supply chain. Compr. Rev. Food Sci. Food Saf. 2023, 1–28. [Google Scholar] [CrossRef]
- Erkinbaev, C.; Paliwal, J.; Morrison, J. Assessment of seed germinability of mechanically-damaged soybeans using near-infrared hyperspectral imaging technique. Can. Biosyst. Eng. 2019, 61, 7.1–7.8. [Google Scholar]
- Shah, F.S.; Watson, C.E.; Meredith, N.D.; Bohn, P.A.; Martin, B. Effect of bean ladder usage on mechanical damage during soybean seed conditioning. Seed Technol. 2021, 23, 92–97. [Google Scholar]
- Li, X.; Ma, F.; Gao, L. Dropping impact experiment on corn seeds. Trans. Chin. Soc. Agric. Eng. 2009, 25, 113–116. [Google Scholar]
- Shahbazi, R.; Shahbazi, F. Effects of cushion box and closed let-down ladder usage on impact damage to corn kernel during handling. Food Sci. Nutr. 2022, 11, 2243–2253. [Google Scholar] [CrossRef]
- Delwiche, S.R.; Yang, I.-C.; Graybosch, R.A. Multiple view image analysis of freefalling U.S. wheat grains for damage assessment. Comput. Electron. Agric. 2013, 98, 62–73. [Google Scholar] [CrossRef]
- Copeland, L.O.; McDonald, M.F. Principles of Seed Science and Technology; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- In S352.2; Moisture Measurement—Unground Grain and Seeds. American Society of Agricultural and Bio-logical Engineers: St. Joseph, MI, USA, 2006.
- Khazaie, J.; Shahbazi, F.; Massah, J.; Nikravesh, M.; Kianmehr, M.H. Evaluation and modeling of physical and phys-iological damage to wheat seeds under successive impact loadings: Mathematical and neural networks modeling. Crop Sci. 2008, 48, 1532–1544. [Google Scholar] [CrossRef]
- Jian, F.; Tang, P.; Al Mamun, A.; Jayas, D.S. Effect of Field Treatment on Microfloral Respiration and Storability of Canola under Different Storage Conditions. Am. J. Plant Sci. 2019, 10, 1989–2001. [Google Scholar] [CrossRef] [Green Version]
- Olisa, B.S.; Awosanmi, F.E.; Akinropo, M.S.; Ojo, P.O.; Ishiak, K.; Danlami, A.; Egbo, N.J.; Okeke, C.U. Differential response of commercial hybrid and open pollinated maize seeds to mechanical damage during seed processing. Not. Sci. Biol. 2021, 13, 10738. [Google Scholar] [CrossRef]
- Shahbazi, F.; Saffar, A.; Analooei, M. Mechanical damage to pinto beans as affected by moisture content and impact energy. Int.J. Food. Eng. 2012, 7, 1–12. [Google Scholar] [CrossRef]
- Tang, J.; Sokhansanj, S.; Sosulski, F. Determination of the breakage susceptibility of lentil seed. Cereal Chem. 1991, 68, 647–650. [Google Scholar]
- Kim, T.H.; Hampton, J.; Opara, U.L.; Hardacre, A.K.; Mackay, B.R. Effects of maize grain size, shape and hardness on drying rate and the occurrence of stress cracks. J. Sci. Food Agric. 2002, 82, 1232–1239. [Google Scholar] [CrossRef]
- Chen, Z.; Wassgren, C.; Ambrose, R.K. Measured damage resistance of corn and wheat kernels to compression, friction, and repeated impacts. Powder Technol. 2021, 380, 638–648. [Google Scholar] [CrossRef]
- Gu, R.-L.; Huang, R.; Jia, G.-Y.; Yuan, Z.-P.; Ren, L.-S.; Li, L.; Wang, J.-H. Effect of mechanical threshing on damage and vigor of maize seed threshed at different moisture contents. J. Integr. Agric. 2019, 18, 1571–1578. [Google Scholar] [CrossRef]
- Su, Y.; Cui, T.; Zhang, D.; Xia, G.; Gao, X.; He, X.; Xu, Y. MLR and experimental testing for characterization and classifi-cation of damage resistance of maize hybrids based on mechanical properties. J. Food Process Eng. 2019, 42, e13262. [Google Scholar] [CrossRef]
- Su, Y.; Cui, T.; Zhang, D.; Xia, G.; Gao, X.; He, X.; Xu, Y. Damage resistance and compressive properties of bulk maize kernels at varying pressing factors: Experiments and modeling. J. Food Process. Eng. 2019, 42, e13267. [Google Scholar] [CrossRef]
- Su, Y.; Cui, T.; Zhang, D.; Xia, G.; Gao, X.; He, X.; Xu, Y. Effects of shape feature on compression characteristics and crack rules of maize kernel. J. Food Process. Preserv. 2020, 44, e14307. [Google Scholar] [CrossRef]
- Shahbazi, R.; Shahbazi, F. Effects of cushion box and closed let-down ladder usage on damage to corn during handling: Physiological deterioration. Plant Methods 2022, 18, 142. [Google Scholar] [CrossRef]
- Huber, J.; Chaluppa, N.; Voit, B.; Steinkellner, S.; Killermann, B. Damage potential of the broad bean beetle (Bruchus rufimanus Boh.) on seed quality and yield of faba beans (Vicia faba L.). Crop. Prot. 2023, 168, 106227. [Google Scholar] [CrossRef]
- Kotwaliwale, N.; Singh, K.; Kalne, A.; Jha, S.N.; Seth, N.; Kar, A. X-ray imaging methods for internal quality evalua-tion of agricultural produce. J. Food Sci. Technol. 2014, 51, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, Z.; Hu, Y.; Ali Buttar, N.; Mahmood, A. X-ray computed tomography for quality inspection of agricultural products: A review. Food Sci. Nutr. 2019, 7, 3146–3160. [Google Scholar] [CrossRef] [PubMed]
- Schoeman, L.; Williams, P.; du Plessis, A.; Manley, M. X-ray micro-computed tomography (μCT) for non-destructive characterisation of food microstructure. Trends Food Sci. Technol. 2016, 47, 10–24. [Google Scholar] [CrossRef]
- Li, L.; Chen, S.; Deng, M.; Gao, Z. Optical techniques in non-destructive detection of wheat quality: A review. Grain Oil Sci. Technol. 2020, 5, 44–57. [Google Scholar] [CrossRef]
- Wang, L.; Huang, Z.; Wang, R. Discrimination of cracked soybean seeds by near-infrared spectroscopy and random forest variable selection. Infrared Phys. Technol. 2021, 115, 103731. [Google Scholar] [CrossRef]
- Williams, P.J.; Kucheryavskiy, S. Classification of maize kernels using NIR hyperspectral imaging. Food Chem. 2016, 209, 131–138. [Google Scholar] [CrossRef]
- Yang, X.; Hong, H.; You, Z.; Cheng, F. Spectral and Image Integrated Analysis of Hyperspectral Data for Waxy Corn Seed Variety Classification. Sensors 2015, 15, 15578–15594. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Liu, F.; He, Y.; Li, X. Application of hyperspectral imaging and chemometric calibrations for variety dis-crimination of maize seeds. Sensors 2012, 12, 17234–17246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Source | DF | Types of Damage | Total Damage | |
---|---|---|---|---|
PPD | PLG | |||
Impact surface (S) | 2 | 579.54 ** | 266.93 ** | 1626.95 ** |
Drop height (H) | 2 | 347.30 ** | 189.57 ** | 1012.77 ** |
S H | 4 | 36.64 ** | 0.46 ** | 42.45 ** |
Moisture content (MC) | 3 | 562.39 ** | 110.27 ** | 186.76 ** |
S MC | 6 | 16.18 ** | 0.26 * | 13.55 ** |
H MC | 6 | 13.18 ** | 0.26 * | 10.95 ** |
S H MC | 12 | 4.07 ** | 0.26 * | 4.531 ** |
Temperature (T) | 1 | 582.20 ** | 46.07 ** | 955.84 ** |
S T | 2 | 19.30 ** | 0.07 ns | 21.59 ** |
H T | 2 | 13.99 ** | 0.06 ns | 15.50 ** |
MC T | 3 | 11.26 ** | 1.14 ** | 9.915 ** |
S H T | 6 | 0.98 ns | 0.06 ns | 0.86 ns |
S MC T | 6 | 0.12 ns | 0.02 ns | 0.05 ns |
H MC T | 6 | 0.41 ns | 0.02 ns | 0.30 ns |
S H MC T | 12 | 0.84 ns | 0.02 ns | 0.88 ns |
Error | 144 | 0.65 | 0.10 | 0.77 |
Drop Height (m) | Moisture Content (%) | PPD (%) | PLG (%) | Total Damage (PPD + PLG) (%) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Concrete | Metal | Seed/Seed | Concrete | Metal | Seed/Seed | Concrete | Metal | Seed/Seed | ||
T = 20 °C | ||||||||||
5 | 10 | 6.17 | 6.49 | 2.77 | 2.20 | 3.00 | 0.80 | 8.37 | 9.49 | 3.57 |
15 | 4.20 | 4.48 | 0.95 | 3.23 | 4.03 | 0.91 | 7.43 | 8.51 | 1.86 | |
20 | 1.54 | 2.43 | 0.31 | 4.40 | 5.20 | 1.40 | 5.94 | 7.63 | 1.71 | |
25 | 0.73 | 0.82 | 0.30 | 5.53 | 6.33 | 2.53 | 6.26 | 7.15 | 2.83 | |
10 | 10 | 8.38 | 9.50 | 4.60 | 4.80 | 5.60 | 1.80 | 13.18 | 15.1 | 6.4 |
15 | 5.56 | 9.04 | 1.58 | 5.83 | 6.63 | 2.83 | 11.39 | 15.67 | 4.41 | |
20 | 3.50 | 5.39 | 0.88 | 7.00 | 7.80 | 4.00 | 10.5 | 13.19 | 4.88 | |
25 | 0.69 | 2.34 | 0.47 | 8.13 | 8.93 | 5.13 | 8.82 | 11.27 | 5.6 | |
15 | 10 | 10.31 | 17.33 | 5.69 | 5.40 | 6.20 | 2.40 | 15.71 | 23.53 | 8.09 |
15 | 7.31 | 8.70 | 3.59 | 6.43 | 7.23 | 3.43 | 13.74 | 15.93 | 7.02 | |
20 | 4.69 | 6.71 | 0.55 | 7.60 | 8.40 | 4.60 | 12.29 | 15.11 | 5.15 | |
25 | 3.43 | 4.61 | 0.52 | 8.73 | 9.53 | 5.73 | 12.16 | 14.14 | 6.25 | |
T = −10 °C | ||||||||||
5 | 10 | 9.84 | 10.87 | 5.57 | 3.03 | 3.83 | 1.07 | 12.87 | 14.70 | 6.64 |
15 | 7.84 | 8.33 | 3.30 | 4.40 | 5.20 | 1.40 | 12.24 | 13.53 | 4.7 | |
20 | 4.17 | 4.27 | 1.04 | 5.00 | 5.80 | 2.00 | 9.17 | 10.07 | 3.04 | |
25 | 3.28 | 2.37 | 0.47 | 6.77 | 7.57 | 3.77 | 10.05 | 9.94 | 4.24 | |
10 | 10 | 12.88 | 14.97 | 7.38 | 5.63 | 6.43 | 2.63 | 18.51 | 21.41 | 10.01 |
15 | 9.90 | 12.04 | 4.30 | 7.00 | 7.80 | 4.00 | 16.9 | 19.84 | 8.3 | |
20 | 7.04 | 9.18 | 2.26 | 7.60 | 8.40 | 4.60 | 14.64 | 17.58 | 6.86 | |
25 | 3.63 | 4.27 | 1.20 | 9.37 | 10.17 | 6.37 | 13 | 14.44 | 7.57 | |
15 | 10 | 16.14 | 22.18 | 9.81 | 6.23 | 7.03 | 3.23 | 22.37 | 29.21 | 13.04 |
15 | 11.77 | 15.21 | 6.63 | 7.60 | 8.40 | 4.60 | 19.37 | 23.61 | 11.23 | |
20 | 8.96 | 12.08 | 3.04 | 8.20 | 9.00 | 5.20 | 17.16 | 21.08 | 8.24 | |
25 | 6.60 | 9.68 | 2.31 | 9.97 | 10.77 | 6.97 | 16.57 | 20.45 | 9.28 |
Independent Variable | Dependent Variable | ||
---|---|---|---|
PPD (%) | PLG (%) | Total Damage (%) | |
Impact surface | |||
Concrete | 6.61 b* | 6.25 b | 12.86 b |
Metal | 8.47 a | 7.05 a | 15.52 a |
Seed/seed | 2.90 c | 3.39 c | 6.29 c |
Drop height | |||
5 m | 3.86 c | 3.73 c | 7.59 c |
10 m | 5.88 b | 6.19 b | 12.07 b |
15 m | 8.24 a | 6.79 a | 15.03 a |
Temperature | |||
−10 °C | 7.63 a | 6.03 a | 13.66 a |
20 °C | 4.35 b | 5.11 b | 9.46 b |
Moisture content | |||
10% | 10.05 a | 3.96 d | 14.01 a |
15% | 6.93 b | 5.05 c | 11.98 b |
20% | 4.34 c | 5.90 b | 10.24 c |
25% | 2.65 d | 7.35 a | 10.00 c |
Drop Height (m) | Velocity (Single Seed) (m/s) | Velocity (Mass Flow) (m/s) |
---|---|---|
5 | 7.25 | 7.85 |
10 | 9.45 | 10.12 |
15 | 11.02 | 13.90 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shahbazi, R.; Shahbazi, F.; Nadimi, M.; Paliwal, J. Assessing the Effects of Free Fall Conditions on Damage to Corn Seeds: A Comprehensive Examination of Contributing Factors. AgriEngineering 2023, 5, 1104-1117. https://doi.org/10.3390/agriengineering5020070
Shahbazi R, Shahbazi F, Nadimi M, Paliwal J. Assessing the Effects of Free Fall Conditions on Damage to Corn Seeds: A Comprehensive Examination of Contributing Factors. AgriEngineering. 2023; 5(2):1104-1117. https://doi.org/10.3390/agriengineering5020070
Chicago/Turabian StyleShahbazi, Reza, Feizollah Shahbazi, Mohammad Nadimi, and Jitendra Paliwal. 2023. "Assessing the Effects of Free Fall Conditions on Damage to Corn Seeds: A Comprehensive Examination of Contributing Factors" AgriEngineering 5, no. 2: 1104-1117. https://doi.org/10.3390/agriengineering5020070
APA StyleShahbazi, R., Shahbazi, F., Nadimi, M., & Paliwal, J. (2023). Assessing the Effects of Free Fall Conditions on Damage to Corn Seeds: A Comprehensive Examination of Contributing Factors. AgriEngineering, 5(2), 1104-1117. https://doi.org/10.3390/agriengineering5020070