An Improved Detection Method for Crop & Fruit Leaf Disease under Real-Field Conditions
Abstract
:1. Introduction
- A fine-tuned efficient model (based on YOLOv6s) was trained and optimized using Gaussian error linear unit (GELU) in the backbone of the model. That improved model’s generalization in detecting small and complex objects.
- Efficient channel attention was introduced in the basic Rep Block in the neck region of the base model (YOLOv6s) to improve the accuracy and recall of the detection model without any additional computational cost.
- To improve the regression accuracy, the Generalized-IoU (GIoU) loss in the base YOLOv6s model is replaced with the SCYLLA-IoU (SIoU) loss function in the proposed model.
- The authors present a self-collected dataset comprising 3305 images captured in real field conditions.
2. Materials and Methods
2.1. Object Detection
2.2. YOLOv6 Model
2.3. Efficient Channel Attention
2.4. The Proposed Methodology
2.4.1. RepEA Block
2.4.2. Gaussian Error Linear Unit (GELU)
2.4.3. Hyper-Parameter Tuning
2.4.4. SIOU Loss
2.4.5. The Complete Model
3. The Self-Collected Crop & Fruit Disease Dataset
- 4 classes of wheat, namely yellow rust, brown rust, stem rust, smut & healthy wheat
- 3 classes of mango leaves namely anthracnose, nutrient deficient & healthy leaf) and
- 2 classes of cotton namely cotton leaf curl & healthy leaf.
4. Experimentation
5. Results
Model | Image Size | Parameters (M) | Training Time (h) | Average Recall (AR) | mAP@50% |
---|---|---|---|---|---|
YOLOv5s | 416 | 7.2 | 1.5 | 49.66 | 60.87 |
YOLOv7(base) | 640 | 37 | 5.2 | 52.34 | 62.16 |
YOLOv8s | 800 | 11.2 | 3.21 | 69.88 | 71.87 |
YOLONASs | 640 | 22.2 | 2.5 | 50.22 | 55.49 |
YOLOSs (DETR) | 416 | 30.7 | 4.1 | 63.66 | 62.99 |
EfficientDet | 512 | 3.9 | 4.55 | 44.98 | 50.48 |
YOLOv6m | 640 | 21.2 | 2.37 | 65.59 | 75.29 |
YOLOv6s | 640 | 17.2 | 1.48 | 67.41 | 73.14 |
Our Proposed Model | 640 | 17.2 | 1.56 | 73.23 | 81.2 |
5.1. Ablation Experiments
5.2. Discussions on Results
6. Conclusions & Future Work
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Usman, M. Contribution of agriculture sector in the GDP growth rate of Pakistan. J. Glob. Econ. 2016, 4, 1–3. [Google Scholar]
- Shah, H.; Siderius, C.; Hellegers, P. Cost and effectiveness of in-season strategies for coping with weather variability in Pakistan’s agriculture. Agric. Syst. 2020, 178, 102746. [Google Scholar] [CrossRef]
- Akhtar, C. Principal diseases of major crops in Pakistan with reference to genetic resistance. In Genetic Diversity in Plants; Springer: Berlin/Heidelberg, Germany, 1977; pp. 179–191. [Google Scholar]
- Cheema, M.J.M.; Iqbal, T.; Daccache, A.; Hussain, S.; Awais, M. Precision agriculture technologies: Present adoption and future strategies. In Precision Agriculture; Elsevier: Amsterdam, The Netherlands, 2023; pp. 231–250. [Google Scholar]
- Noon, S.K.; Amjad, M.; Qureshi, M.A.; Mannan, A. Handling similar looking disease symptoms in plants using dilation and feature reuse. J. Intell. Fuzzy Syst. 2023, 45, 1–16. [Google Scholar] [CrossRef]
- Lu, J.; Tan, L.; Jiang, H. Review on convolutional neural network (CNN) applied to plant leaf disease classification. Agriculture 2021, 11, 707. [Google Scholar] [CrossRef]
- Saleem, R.; Shah, J.H.; Sharif, M.; Ansari, G.J. Mango Leaf Disease Identification Using Fully Resolution Convolutional Network. Comput. Mater. Contin. 2021, 69, 3581–3601. [Google Scholar] [CrossRef]
- Sangeetha, R.; Logeshwaran, J.; Rocher, J.; Lloret, J. An Improved Agro Deep Learning Model for Detection of Panama Wilts Disease in Banana Leaves. AgriEngineering 2023, 5, 660–679. [Google Scholar] [CrossRef]
- Noon, S.K.; Amjad, M.; Qureshi, M.A.; Mannan, A. Handling severity levels of multiple co-occurring cotton plant diseases using improved YOLOX model. IEEE Access 2022, 10, 134811–134825. [Google Scholar] [CrossRef]
- Noon, S.K.; Amjad, M.; Qureshi, M.A.; Mannan, A. Use of deep learning techniques for identification of plant leaf stresses: A review. Sustain. Comput. Inform. Syst. 2020, 28, 100443. [Google Scholar] [CrossRef]
- Ngongoma, M.S.; Kabeya, M.; Moloi, K. A Review of Plant Disease Detection Systems for Farming Applications. Appl. Sci. 2023, 13, 5982. [Google Scholar] [CrossRef]
- Du, X.; Cheng, H.; Ma, Z.; Lu, W.; Wang, M.; Meng, Z.; Jiang, C.; Hong, F. DSW-YOLO: A detection method for ground-planted strawberry fruits under different occlusion levels. Comput. Electron. Agric. 2023, 214, 108304. [Google Scholar] [CrossRef]
- Li, W.; Zhang, L.; Wu, C.; Cui, Z.; Niu, C. A new lightweight deep neural network for surface scratch detection. Int. J. Adv. Manuf. Technol. 2022, 123, 1999–2015. [Google Scholar] [CrossRef] [PubMed]
- Maheswaran, S.; Indhumathi, N.; Dhanalakshmi, S.; Nandita, S.; Mohammed Shafiq, I.; Rithka, P. Identification and Classification of Groundnut Leaf Disease Using Convolutional Neural Network. In Proceedings of the International Conference on Computational Intelligence in Data Science, Koceli, Turkey, 16–17 September 2022; Springer: Berlin/Heidelberg, Germany, 2022; pp. 251–270. [Google Scholar]
- Khirade, S.D.; Patil, A. Plant disease detection using image processing. In Proceedings of the 2015 International Conference on Computing Communication Control and Automation, IEEE, Pune, India, 26–27 February 2015; pp. 768–771. [Google Scholar]
- Paymode, A.S.; Malode, V.B. Transfer learning for multi-crop leaf disease image classification using convolutional neural network VGG. Artif. Intell. Agric. 2022, 6, 23–33. [Google Scholar] [CrossRef]
- Saleem, M.H.; Khanchi, S.; Potgieter, J.; Arif, K.M. Image-based plant disease identification by deep learning meta-architectures. Plants 2020, 9, 1451. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Yu, L.; Yang, J.; Dong, H. Dba_ssd: A novel end-to-end object detection algorithm applied to plant disease detection. Information 2021, 12, 474. [Google Scholar] [CrossRef]
- Alqahtani, Y.; Nawaz, M.; Nazir, T.; Javed, A.; Jeribi, F.; Tahir, A. An improved deep learning approach for localization and Recognition of plant leaf diseases. Expert Syst. Appl. 2023, 230, 120717. [Google Scholar] [CrossRef]
- Chowdhury, M.E.; Rahman, T.; Khandakar, A.; Ayari, M.A.; Khan, A.U.; Khan, M.S.; Al-Emadi, N.; Reaz, M.B.I.; Islam, M.T.; Ali, S.H.M. Automatic and reliable leaf disease detection using deep learning techniques. AgriEngineering 2021, 3, 294–312. [Google Scholar] [CrossRef]
- Wang, H.; Shang, S.; Wang, D.; He, X.; Feng, K.; Zhu, H. Plant disease detection and classification method based on the optimized lightweight YOLOv5 model. Agriculture 2022, 12, 931. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, G.; Chen, A.; He, M.; Li, J.; Hu, Y. A precise apple leaf diseases detection using BCTNet under unconstrained environments. Comput. Electron. Agric. 2023, 212, 108132. [Google Scholar] [CrossRef]
- Zhao, W.; Wu, D.; Zheng, X. Detection of Chrysanthemums Inflorescence Based on Improved CR-YOLOv5s Algorithm. Sensors 2023, 23, 4234. [Google Scholar] [CrossRef]
- Piao, Z.; Wang, J.; Tang, L.; Zhao, B.; Wang, W. AccLoc: Anchor-Free and two-stage detector for accurate object localization. Pattern Recognit. 2022, 126, 108523. [Google Scholar] [CrossRef]
- Kaur, P.; Harnal, S.; Gautam, V.; Singh, M.P.; Singh, S.P. An approach for characterization of infected area in tomato leaf disease based on deep learning and object detection technique. Eng. Appl. Artif. Intell. 2022, 115, 105210. [Google Scholar] [CrossRef]
- Liu, J.; Wang, X. Tomato diseases and pests detection based on improved Yolo V3 convolutional neural network. Front. Plant Sci. 2020, 11, 898. [Google Scholar] [CrossRef] [PubMed]
- Soeb, M.J.A.; Jubayer, M.F.; Tarin, T.A.; Al Mamun, M.R.; Ruhad, F.M.; Parven, A.; Mubarak, N.M.; Karri, S.L.; Meftaul, I.M. Tea leaf disease detection and identification based on YOLOv7 (YOLO-T). Sci. Rep. 2023, 13, 6078. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Li, L.; Jiang, H.; Weng, K.; Geng, Y.; Li, L.; Ke, Z.; Li, Q.; Cheng, M.; Nie, W.; et al. YOLOv6: A single-stage object detection framework for industrial applications. arXiv 2022, arXiv:2209.02976. [Google Scholar]
- Norkobil Saydirasulovich, S.; Abdusalomov, A.; Jamil, M.K.; Nasimov, R.; Kozhamzharova, D.; Cho, Y.I. A YOLOv6-based improved fire detection approach for smart city environments. Sensors 2023, 23, 3161. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Wang, Y.; Dayoub, F.; Sunderhauf, N. Varifocalnet: An iou-aware dense object detector. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 19–25 June 2021; pp. 8514–8523. [Google Scholar]
- Weng, K.; Chu, X.; Xu, X.; Huang, J.; Wei, X. EfficientRep: An Efficient Repvgg-style ConvNets with Hardware-aware Neural Network Design. arXiv 2023, arXiv:2302.00386. [Google Scholar]
- Zhang, J.L.; Su, W.H.; Zhang, H.Y.; Peng, Y. SE-YOLOv5x: An optimized model based on transfer learning and visual attention mechanism for identifying and localizing weeds and vegetables. Agronomy 2022, 12, 2061. [Google Scholar] [CrossRef]
- Zhao, Y.; Chen, J.; Xu, X.; Lei, J.; Zhou, W. SEV-Net: Residual network embedded with attention mechanism for plant disease severity detection. Concurr. Comput. Pract. Exp. 2021, 33, e6161. [Google Scholar] [CrossRef]
- Wang, Q.; Wu, B.; Zhu, P.; Li, P.; Zuo, W.; Hu, Q. ECA-Net: Efficient channel attention for deep convolutional neural networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 11534–11542. [Google Scholar]
- Ding, X.; Zhang, X.; Ma, N.; Han, J.; Ding, G.; Sun, J. Repvgg: Making vgg-style convnets great again. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 19–25 June 2021; pp. 13733–13742. [Google Scholar]
- Lee, M. Mathematical analysis and performance evaluation of the gelu activation function in deep learning. J. Math. 2023, 2023, 4229924. [Google Scholar] [CrossRef]
- Hendrycks, D.; Gimpel, K. Gaussian error linear units (gelus). arXiv 2016, arXiv:1606.08415. [Google Scholar]
- Noon, S.K.; Amjad, M.; Qureshi, M.A.; Mannan, A. Overfitting mitigation analysis in deep learning models for plant leaf disease recognition. In Proceedings of the 2020 IEEE 23rd International Multitopic Conference (INMIC), IEEE, Bahawalpur, Pakistan, 5–7 November 2020; pp. 1–5. [Google Scholar]
- Gevorgyan, Z. SIoU loss: More powerful learning for bounding box regression. arXiv 2022, arXiv:2205.12740. [Google Scholar]
- GETCH, O. Wheat Leaf Dataset. 2021. Available online: https://www.kaggle.com/datasets/olyadgetch/wheat-leaf-dataset (accessed on 3 November 2023).
- Alharbi, A.; Khan, M.U.G.; Tayyaba, B. Wheat Disease Classification using Continual Learning. IEEE Access 2023, 11, 90016–90026. [Google Scholar] [CrossRef]
Training Parameter | Value |
---|---|
Optimizer | SGD |
lr schedule | cosine |
Use DFL | False |
Batch size | 32 |
Base learning rate | 0.0036 |
Final learning rate | 0.13 |
Weight decay | 0.00035 |
Momentum | 0.849 |
Warmup epochs | 2 |
Class | No. of Images by Smartphone | No. of Images from Internet Sourced | No of Images from Public Dataset |
---|---|---|---|
wheat yellow rust | 128 | 58 | 35 |
stem rust | 20 | 36 | 39 |
smut | 194 | 51 | - |
mango Nutrient deficient | 105 | 8 | - |
mango healthy | 76 | 23 | - |
mango anthracnose | 97 | 29 | - |
leaf rust | 91 | 29 | 25 |
wheat healthy | 82 | 19 | 27 |
cotton healthy | 91 | - | - |
cotton curl | 85 | 5 | - |
Class | Images | Instances | AP | AR | mAP @ 0.50 | mAP @ 0.50:0.95 |
---|---|---|---|---|---|---|
All | 152 | 234 | 0.849 | 0.732 | 0.8124 | 0.472 |
cotton_curl | 152 | 13 | 0.788 | 0.923 | 0.979 | 0.735 |
cotton_healthy | 152 | 20 | 0.922 | 1 | 0.988 | 0.68 |
healthy | 152 | 29 | 0.774 | 0.483 | 0.626 | 0.31 |
leaf_rust | 152 | 12 | 0.959 | 0.833 | 0.94 | 0.501 |
mango_anthracnose | 152 | 37 | 0.792 | 0.721 | 0.701 | 0.413 |
mango_healthy | 152 | 22 | 0.841 | 0.864 | 0.916 | 0.655 |
mango_nutrient_deficient | 152 | 28 | 0.876 | 0.964 | 0.931 | 0.61 |
smut | 152 | 34 | 0.767 | 0.482 | 0.745 | 0.202 |
stem_rust | 152 | 21 | 0.753 | 0.381 | 0.422 | 0.223 |
yellow_rust | 152 | 18 | 0.987 | 0.667 | 0.876 | 0.39 |
YOLOv6s | Fine-Tuning | GELU | REPEA | mAP(%) | |
---|---|---|---|---|---|
√ | × | × | × | × | 73.14 |
√ | √ | × | × | × | |
√ | √ | √ | × | × | |
√ | √ | √ | √ | × | |
√ | √ | √ | √ | √ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Noon, S.K.; Amjad, M.; Qureshi, M.A.; Mannan, A.; Awan, T. An Improved Detection Method for Crop & Fruit Leaf Disease under Real-Field Conditions. AgriEngineering 2024, 6, 344-360. https://doi.org/10.3390/agriengineering6010021
Noon SK, Amjad M, Qureshi MA, Mannan A, Awan T. An Improved Detection Method for Crop & Fruit Leaf Disease under Real-Field Conditions. AgriEngineering. 2024; 6(1):344-360. https://doi.org/10.3390/agriengineering6010021
Chicago/Turabian StyleNoon, Serosh Karim, Muhammad Amjad, Muhammad Ali Qureshi, Abdul Mannan, and Tehreem Awan. 2024. "An Improved Detection Method for Crop & Fruit Leaf Disease under Real-Field Conditions" AgriEngineering 6, no. 1: 344-360. https://doi.org/10.3390/agriengineering6010021
APA StyleNoon, S. K., Amjad, M., Qureshi, M. A., Mannan, A., & Awan, T. (2024). An Improved Detection Method for Crop & Fruit Leaf Disease under Real-Field Conditions. AgriEngineering, 6(1), 344-360. https://doi.org/10.3390/agriengineering6010021