Challenges of Digital Solutions in Sugarcane Crop Production: A Review
Abstract
:1. Introduction
2. Overview of Digital Work in Sugarcane
3. Digitalization and Transformation in Agriculture
4. Operations Related to Sugarcane Crop Production
5. Digital Solutions in Sugarcane Mechanization
6. Technological Implementation
7. Final Considerations
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Souza, C.H.W.; Lamparelli, R.A.C.; Rocha, J.V.; Magalhães, P.S.G. Mapping skips in sugarcane fields using object-based analysis of unmanned aerial vehicle (UAV) images. Comput. Electron. Agric. 2017, 143, 49–56. [Google Scholar] [CrossRef]
- Florentino, H.O.; Irawan, C.; Aliano, A.F.; Jones, D.F.; Cantane, D.R.; Nervis, J.J. A multiple objective methodology for sugarcane harvest management with varying maturation periods. Ann. Oper. Res. 2018, 267, 153–177. [Google Scholar] [CrossRef]
- Rocha, B.M.; Fonseca, A.U.; Pedrini, H.; Soares, F. Automatic detection and evaluation of sugarcane planting rows in aerial images. Inf. Process. Agric. 2023, 10, 400–415. [Google Scholar] [CrossRef]
- United States of Department of Agriculture (USDA). U.S. Sugar Production. 2021. Available online: https://www.ers.usda.gov/topics/crops/sugar-sweeteners/background/ (accessed on 26 January 2022).
- Food and Agriculture Organization of the United Nations (FAO). Sugarcane. 2023. Available online: http://www.fao.org/land-water/databases-and-software/crop-information/sugarcane/en/ (accessed on 10 October 2023).
- Companhia Nacional de Abastecimento (CONAB). Safra Brasileira de Cana-de-Açúcar. 2023. Available online: https://www.conab.gov.br/info-agro/safras/cana (accessed on 20 December 2023).
- Statistica. World Sugar Cane Production from 1965 to 2019 (in Million Metric Tons). 2019. Available online: https://www.statista.com/statistics/249604/sugar-cane-production-worldwide/ (accessed on 10 October 2021).
- Babu, K.S.D.; Janakiraman, V.; Palaniswamy, H.; Kasirajan, L.; Gomathi, R.; Ramkumar, T.R. A short review on sugarcane: Its domestication, molecular manipulations and future perspectives. Genet. Resour. Crop. Evol. 2022, 69, 2623–2643. [Google Scholar] [CrossRef] [PubMed]
- Organisation for Economic Co-Operation Development (OECD); Food and Agriculture Organization of the United Nations (FAO). OECD-FAO Agricultural Outlook 2020–2029; OECD: Rome, Italy; FAO: Paris, France, 2020. [Google Scholar] [CrossRef]
- Filoso, S.; Carmo, J.B.; Mardegan, S.F.; Lins, S.R.M.; Gomes, T.F.; Martinelli, L.A. Reassessing the environmental impacts of sugarcane ethanol production in Brazil to help meet sustainability goals. Renew. Sustain. Energy Rev. 2015, 52, 1847–1856. [Google Scholar] [CrossRef]
- Fioranelli, A.; Bizzo, W.A. Generation of surplus electricity in sugarcane mills from sugarcane bagasse and straw: Challenges, failures and opportunities. Renew. Sustain. Energy Rev. 2023, 186, 113647. [Google Scholar] [CrossRef]
- Mahasuweerachai, P.; Suksawat, J. Incentives for mechanized cane harvesting in Thailand: A choice experiment. J. Asian Econ. 2022, 78, 101434. [Google Scholar] [CrossRef]
- Esteban, D.A.A.; Souza, Z.M.; Tormena, C.A.; Lovera, L.H.; Lima, E.S.; Oliveira, I.N.; Ribeiro, N.P. Soil compaction, root system and productivity of sugarcane under different row spacing and controlled traffic at harvest. Soil Tillage Res. 2019, 187, 60–71. [Google Scholar] [CrossRef]
- Bolfe, E.L.; Jorge, L.A.C.; Sanches, I.D.; Luchiari Júnior, A.; Costa, C.C.; Victoria, D.C.; Inamasu, R.Y.; Grego, C.R.; Ferreira, V.R.; Ramirez, A.R. Precision and Digital Agriculture: Adoption of Technologias and Perception of Brazilian Farmers. Agriculture 2020, 10, 653. [Google Scholar] [CrossRef]
- McFadden, J.; Njuki, E.; Griffin, T. Precision Agriculture in the Digital Era: Recent Adoption on U.S. Farms; USDA Economic Research Service: Washington, DC, USA, 2023; Volume EIB-248.
- Carrer, M.J.; Souza Filho, H.M.; Vinholis, M.M.B.; Mozambani, C.I. Precision agriculture adoption and technicla efficiency: An analysis of sugarcane farms in Brazil. Technol. Forecast. Soc. Change 2022, 177, 121510. [Google Scholar] [CrossRef]
- Cicciu, B.; Schramm, F.; Scharamm, V.B. Multi-criteria decision making/aid methods for assessing agricultural sustainability: A literature review. Environ. Sci. Policy 2022, 138, 85–96. [Google Scholar] [CrossRef]
- GPS. Selective Availability. 2021. Available online: https://www.gps.gov/systems/gps/modernization/sa/ (accessed on 21 February 2024).
- Silveira, F.; Lermen, F.H.; Amaral, F.G. An overview of agriculture 4.0 development: Systematic review of descriptions, technologies, barriers, advantages, and disadvantages. Comput. Electron. Agric. 2021, 189, 106405. [Google Scholar] [CrossRef]
- Boursianis, A.D.; Papadopoulou, M.S.; Diamantoulakis, P.; Liopa-Tsakalidi, A.; Barouchas, P.; Salahas, G.; Karagiannidis, G.; Wan, S.; Goudos, S.K. Internet of Things (IoT) and Agricultural Unmanned Aerial Vehicles (UAVs) in smart farming: A comprehensive review. Internet Things 2020, 18, 100187. [Google Scholar] [CrossRef]
- El Chami, D.; Daccache, A.; Moujabber, M.E. What are the impacts of sugarcane production on ecosystem services and human well-being? A review. Ann. Agric. Sci. 2020, 65, 188–199. [Google Scholar] [CrossRef]
- Sanches, G.M.; Bordonal, R.O.; Magalhães, P.S.G.; Otto, R.; Chagas, M.F.; Cardoso, T.F.; Luciano, A.C.S. Towards greater sustainability of sugarcane production by precision agriculture to meet ethanol demands in south-central Brazil based on a life cycle assessmen. Biosyst. Eng. 2023, 229, 57–68. [Google Scholar] [CrossRef]
- Ulezko, A.V.; Reimer, V.V.; Ulezko, O. Theoretical and methodological aspects of digitalization in agriculture. IOP Conf. Ser. Earth Environ. Sci. 2019, 274, 012062. [Google Scholar] [CrossRef]
- Wolfert, S.; Ge, L.; Verdouw, C.; Bogaardt, M.J. Big data in smart farming—A review. Agric. Syst. 2017, 153, 69–80. [Google Scholar] [CrossRef]
- Annosi, M.C.; Brunetta, F.; Monti, A.; Nati, F. Is the trend your friend? An analysis of technology 4.0 investment decisions in agricultural SMEs. Comput. Ind. 2019, 109, 59–71. [Google Scholar] [CrossRef]
- European Union. EU Member States Join Forces on Digitalisation for European Agriculture and Rural Areas. 2019. Available online: https://digital-strategy.ec.europa.eu/en/news/eu-member-states-join-forces-digitalisation-european-agriculture-and-rural-areas (accessed on 14 October 2021).
- Braunbeck, O.A.; Magalhães, P.S.G. Avaliação Tecnológica da Mecanização da Cana-de-açúcar. In Bioetanol de Cana-de-Açúcar. P&D Para Produtividade e Sustentabilidade; Magalhães, P.S.G., Braunbeck, O.A., Eds.; Blucher: São Paulo, Brazil, 2010; pp. 451–503. [Google Scholar]
- Esteban, D.A.A.; Souza, Z.M.; Silva, R.B.; Lima, E.S.; Lovera, L.H.; Oliveira, I.N. Impact of permanent traffic lanes on the soil physical and mechanical properties in mechanized sugarcane fields with the use of automatic steering. Geoderma 2020, 362, 114097. [Google Scholar] [CrossRef]
- Tweddle, P.B.; Lyne, P.W.L.; van Antwerpen, R.; Lagerwall, G.L. A review and synthesis of sugarcane losses attributed to infield traffic. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: Cambridge, UK, 2021; pp. 197–250. [Google Scholar]
- Júnnyor, W.S.G.; De Maria, I.C.; Araujo-Junior, C.F.; Diserens, E.; Severiano, E.C.; Farhate, C.V.V.; Souza, Z.M. Conservation systems change soil resistance to compaction caused by mechanised harvesting. Ind. Crops Prod. 2022, 177, 114532. [Google Scholar] [CrossRef]
- Zhao, L.; Zhang, J.; Jiao, S.; Zheng, T.; Li, J.; Zhao, T. Ground surface detection method using ground penetrating radar signal for sugarcane harvester base-cutter control. Biosyst. Eng. 2022, 219, 103–123. [Google Scholar] [CrossRef]
- Digiscape Future Science Platform. Less Fertiliser: Same Profit. Developing a Drone-Guided Fertilisation Plan. 2018. Available online: https://research.csiro.au/digiscape/less-fertiliser-same-profit-developing-a-drone-guided-fertilisation-plan/ (accessed on 27 February 2024).
- Fleming, A.; Jakku, E.; Fielke, S.; Taylor, B.M.; Lacey, J.; Terhorst, A.; Stitzlein, C. Foresighting Australian digital agricultural futures: Applying responsible innovation thinking to anticipate research and development impact under different scenarios. Agric. Syst. 2021, 190, 103120. [Google Scholar] [CrossRef]
- Waltham, N.J.; Wegscheidl, C.; Volders, A.; Smart, J.C.R.; Hasan, S.; Lédée, E.; Waterhouse, J. Land use conversion to improve water quality in high DIN risk, low-lying sugarcane areas of the Great Barrier Reef catchments. Mar. Pollut. Bull. 2021, 167, 112373. [Google Scholar] [CrossRef] [PubMed]
- Deane, F.; Wilson, C.; Rowlings, D.; Webb, J.; Mitchell, E.; Hamman, E.; Sheppard, E.; Grace, P. Sugarcane farming and the Great Barrier Reef: The role of a principled approach to change. Land Use Policy 2018, 78, 691–698. [Google Scholar] [CrossRef]
- NovaCana. Mecanização da Cana-de-Açúcar. NovaCana: Curitiba, 2021. Available online: https://www.novacana.com/cana/mecanizacao-producao-cana-de-acucar (accessed on 22 December 2021).
- TT Global. Groove 1010—Minimum Tillage for Sugar Cane. 2023. Available online: https://tt-global.net/en/groove-1010.php# (accessed on 8 January 2024).
- Freitas, P.L. Plantio de Cana-de-Açúcar Após Reforma. 2017. Available online: https://www.embrapa.br/en/busca-de-imagens/-/midia/4046004/plantio-de-cana-de-acucar-apos-reforma (accessed on 8 January 2024).
- Vasconcelos, J.C.S.; Speranza, E.A.; Antunes, J.F.G.; Barbosa, L.A.F.; Christofoletti, D.; Severino, F.J.; Almeida Cançado, G.M. Development and Validation of a Model Based on Vegetation Indices for the Prediction of Sugarcane Yield. AgriEngineering 2023, 5, 698–719. [Google Scholar] [CrossRef]
- Rossetto, R.; Ramos, N.P.; Pires, R.C.M.; Xavier, M.A.; Cantarella, H.; Landell, M.G.A. Sustainability in Sugarcane Supply Chain in Brazil: Issues and Way Forward. Sugar Tech. 2022, 24, 941–966. [Google Scholar] [CrossRef]
- John Deere. John Deere Brasil. 2022. Available online: https://www.deere.com.br/ (accessed on 8 January 2024).
- Chen, J.; Wu, J.; Qiang, H.; Zhou, B.; Xu, G.; Wang, Z. Sugarcane nodes identification algorithm based on sum of local pixel of minimum points of vertical projection function. Comput. Electron. Agric. 2021, 182, 105994. [Google Scholar] [CrossRef]
- Zhou, D.; Fan, Y.; Deng, G.; He, F.; Wang, M. A new design of sugarcane seed cutting systems based on machine vision. Comput. Electron. Agric. 2020, 175, 105611. [Google Scholar] [CrossRef]
- Zacharias, R.; Santos, F.L.; Jesus, V.A.M. Custos operacionais do plantio mecanizado e semimecanizado de cana-de-açúcar. Eng. Agric. 2011, 19, 118–124. [Google Scholar] [CrossRef]
- Amorim, F.R.; Patino, M.T.O.; Santos, D.F.L. Soil tillage and sugarcane planting: An assessment of cost and economic viability. Sci. Agric. 2022, 79, e20190317. [Google Scholar] [CrossRef]
- Li, S.P.; Huang, Z.X.; Zhang, W.; Wang, M.P.; Mo, H.N. Experiments and Design on Single-rolled Seed-sowing System of pre-seed-cutting Sugarcane Planters with Wide and Narrow Row Spacing. Trans. Chin. Soc. Agric. Mach. 2020, 51, 113–121. [Google Scholar]
- Yang, H.Q.; Guo, Z.J.; Chen, S.H.; Yan, X.Y.; Kang, N.; Yang, M.; Zhang, Y.X.; Yang, G.Q. Influence of planting method and density on economic traits of sugarcane cultivar Yunzhe 03–194. Sugar Crops China 2015, 37, 18–20. [Google Scholar]
- Xie, Z.; Li, Y.; Xiao, Y.; Diao, Y.; Liao, H.; Zhang, Y.; Chen, X.; Wu, W.; Wen, C.; Li, S. Sugarcane stem node identification algorithm based on improved YOLOv5. PLoS ONE 2024, 19, e0298247. [Google Scholar] [CrossRef] [PubMed]
- Álvarez-Sánchez, G.F.; la Cruz, H.L.; Salgado-García, S.; Córdova-Sánchez, S.; Ortiz-Laurel, H.; Castelán-Estrada, M.; la Cruz, R.G.; Castañeda-Ceja, R. Development of artificial sugarcane seed CP-54 from three cultivars (cv MEX 69-290; cv MEX 68-P-23; cv. CP 72-2086) using polymers in Tabasco, Mexico. Acta Agron. 2018, 67, 94–100. [Google Scholar] [CrossRef]
- Passarin, D.M.M.; Fernandes, R.Z.; Perticarrari, J.G. Method for Obtaining Plant Propagules for Sugar Cane Micropropagation, for Producing Synthetic Sugar Cane Seeds, for Storing Synthetic Seeds, for Producing Viable Sugar Cane Seedlings Propagules and Synthetic Seeds; WIPO: Geneva, Switzerland, 28 March 2013. [Google Scholar]
- Oliveira, I.N.; Souza, Z.M.; Bolonhezi, D.; Totti, M.C.V.; Moraes, M.T.; Lovera, L.H.; Lima, E.S.; Esteban, D.A.A.; Oliveira, C.F. Tillage systems impact on soil physical attributes, sugarcane yield and root system propagated by pre-sprouted seedlings. Soil Tillage Res. 2022, 223, 105460. [Google Scholar] [CrossRef]
- Ajayi, O.G.; Ashi, J. Effect of varying training epochs of a Faster Region-Based Convolutional Neural Network on the Accuracy of an Automatic Weed Classification Scheme. Smart Agric. Technol. 2023, 3, 100128. [Google Scholar] [CrossRef]
- Maldaner, L.F.; Molin, J.P.; Martello, M.; Tavares, T.R.; Dias, F.L.F. Identification and measurement of gaps within sugarcane rows for site-specific management: Comparing different sensor-based approaches. Biosyst. Eng. 2021, 209, 64–73. [Google Scholar] [CrossRef]
- Cardoso, T.F.; Watanabe, M.D.B.; Souza, A.; Chagas, M.F.; Cavalett, O.; Morais, E.R.; Nogueira, L.A.H.; Leal, M.R.L.V.; Braunbeck, O.A.; Cortez, L.A.B.; et al. A regional approach to determine economic, environmental and social impacts of different sugarcane production systems in Brazil. Biomass Bioenergy 2019, 120, 9–20. [Google Scholar] [CrossRef]
- Aliano Filho, A.; Melo, T.; Pato, M.V. A bi-objective mathematical model for integrated planning of sugarcane harvesting and transport operations. Comput. Oper. Res. 2021, 134, 105419. [Google Scholar] [CrossRef]
- Xie, L.; Wang, J.; Cheng, S.; Zeng, B.; Yang, Z. Performance Evaluation of a Chopper System for Sugarcane Harvester. Sugar Tech. 2019, 21, 825–837. [Google Scholar] [CrossRef]
- Xie, L.; Wang, J.; Cheng, S.; Zeng, B.; Yang, Z. Optimisation and dynamic simulation of a conveying and top breaking system for whole-stalk sugarcane harvesters. Biosyst. Eng. 2020, 197, 156–169. [Google Scholar] [CrossRef]
- Wu, T.; Liang, X.L.; Liu, Q.T.; Zhang, Z.X.; Xu, H.; Huang, J.B.; Li, J.X.; Zou, X.P. Chopper Sugarcane Combine Harvester with Middle-Mounted Primary Extractor. Sugar Tech. 2020, 22, 589–595. [Google Scholar] [CrossRef]
- Santoro, E.; Soler, E.M.; Cherri, A.C. Route optimization in mechanized sugarcane harvesting. Comput. Electron. Agric. 2017, 141, 140–146. [Google Scholar] [CrossRef]
- Almeida, G.M.; Pereira, G.T.; Bahia, A.S.R.S.; Fernandes, K.; Marques Júnior, J. Machine learning in the prediction of sugarcane production environments. Comput. Electron. Agric. 2021, 190, 106452. [Google Scholar] [CrossRef]
- Neves, M.F.; Gray, A.; Valerio, F.R.; Martinez, L.F.; Rodrigues, J.M.; Kalaki, R.B.; Marques, V.N.; Cambaúva, V. Food and Agribusiness in 2030: A Roadmap; Wageningen Academic Publishers: Noordwijk, The Netherlands, 2020. [Google Scholar]
- Scheidl, H.A.; Simon, A.T. Avaliação do processo de terceirização do corte mecanizado, carregamento e transporte de cana-de-açúcar. Rev. Ciênc. Tecnol. 2012, 17, 103–118. [Google Scholar] [CrossRef]
- Naik, R.; Annamalai, S.J.K.; Nair, N.V.; Prasad, N.R. Studies on mechanisation of planting of sugarcane bud chip settlings raised in Protrays. Sugar Tech. 2013, 15, 27–35. [Google Scholar] [CrossRef]
- Nare, B.; Tewari, V.K.; Chandel, A.K.; Kumar, S.P.; Chethan, C.R. A mechatronically integrated autonomous seed material generation system for sugarcane: A crop of industrial significance. Ind. Crops Prod. 2019, 128, 1–12. [Google Scholar] [CrossRef]
- Huang, Y.; Chen, Z.; Tao, Y.; Huang, X.; Gu, X.-F. Agricultural remote sensing big data: Management and applications. J. Integr. Agric. 2018, 17, 1915–1931. [Google Scholar] [CrossRef]
- Debauche, O.; Trani, J.P.; Mahmoudi, S.; Manneback, P.; Bindelle, J.; Mahmoudi, S.A.; Guttadauria, A.; Lebeau, F. Data management and internet of things: A methodological review in smart farming. Internet Things 2021, 14, 100378. [Google Scholar] [CrossRef]
- Amaral, L.R.; Molin, J.P.; Portz, G.; Finazzi, F.B.; Cortinove, L. Comparison of crop canopy reflectance sensors used to identify sugarcane biomass and nitrogen status. Precis. Agric. 2015, 16, 15–28. [Google Scholar] [CrossRef]
- Shendryk, Y.; Sofonia, J.; Garrard, R.; Rist, Y.; Skocaj, D.; Thorburn, P. Fine-scale prediction of biomass and leaf nitrogen content in sugarcane using UAV LiDAR and multispectral imaging. Int. J. Appl. Earth Obs. Geoinf. 2020, 92, 102177. [Google Scholar] [CrossRef]
- Portz, G.; Molin, J.P.; Canata, T.F.; Adamchuk, V.I. Integration of ultrasonic and optical sensing systems to assess sugarcane biomass and N-uptake. Precis. Agric. 2023, 25, 83–99. [Google Scholar] [CrossRef]
- Luna, I.; Lobo, A. Mapping Crop Planting Quality in Sugarcane from UAV Imagery: A Pilot Study in Nicaragua. Remote Sens. 2016, 8, 500. [Google Scholar] [CrossRef]
- Barbosa Júnior, M.R.; Tedesco, D.; Corrêa, R.G.; Moreira, B.R.A.; Silva, R.P.; Zerbato, C. Mapping Gaps in Sugarcane by UAV RGB Imagery: The Lower and Earlier the Flight, the More Accurate. Agronomy 2021, 11, 2578. [Google Scholar] [CrossRef]
- Cavalcanti, R.Q.; Rolim, M.M.; Lima, R.P.; Ortiz, P.F.S.; Pedrosa, E.M.R.; Rodrigues, J.A.M. Sugarcane Row Gaps Assessment over Successive Burned and Unburned Annual Harvests. Agronomy 2023, 13, 2545. [Google Scholar] [CrossRef]
- Maldaner, L.F.; Molin, J.P.; Silva, E.R.O. Spatial–Temporal Analysis to Investigate the Influence of in-Row Plant Spacing on the Sugarcane Yield. Sugar Tech. 2023, 26, 194–206. [Google Scholar] [CrossRef]
- Oliveira, M.P.; Cardoso, P.H.; Oliveira, R.P.; Barbosa Júnior, M.R.; Silva, R.P. Mapping Gaps in Sugarcane Fields Using UAV-RTK Platform. Agriculture 2023, 13, 1241. [Google Scholar] [CrossRef]
- Modi, R.U.; Chandel, A.K.; Chandel, N.S.; Dubey, K.; Subeesh, A.; Singh, A.K.; Jat, D.; Kancheti, M. State-of-the-art computer vision techniques for automated sugarcane lodging classification. Field Crops Res. 2023, 291, 108797. [Google Scholar] [CrossRef]
- Som-ard, J.; Hossain, M.D.; Ninsawat, S.; Veerachitt, V. Pre-harvest sugarcane yield estimation using UAV-based RGB images and ground observation. Sugar Tech. 2018, 20, 645–657. [Google Scholar] [CrossRef]
- Maldaner, L.F.; Molin, J.P. Data processing within rows for sugarcane yield mapping. Sci. Agric. 2020, 77, e20180391. [Google Scholar] [CrossRef]
- Yu, D.; Zha, Y.; Shi, L.; Jin, X.; Hu, S.; Yang, Q.; Huang, K.; Zeng, W. Improvement of sugarcane yield estimation by assimilating UAV-derived plant height observations. Eur. J. Agron. 2020, 121, 126159. [Google Scholar] [CrossRef]
- Canata, T.F.; Wei, M.C.F.; Maldaner, L.F.; Molin, J.P. Sugarcane yield mapping using high-resolution imagery data and machine learning technique. Remote Sens. 2021, 13, 232. [Google Scholar] [CrossRef]
- Maldaner, L.F.; Corrêdo, L.P.; Canata, T.F.; Molin, J.P. Predicting the sugarcane yield in real-time by harvester engine parameters and machine learning approaches. Comput. Electron. Agric. 2021, 181, 105945. [Google Scholar] [CrossRef]
- Maldaner, L.F.; Canata, T.F.; Molin, J.P. An approach to sugarcane yield estimation using sensors in the harvester and ZigBee Technology. Sugar Tech. 2022, 24, 813–821. [Google Scholar] [CrossRef]
- Das, A.; Kumar, M.; Kushwaha, A.; Dave, R.; Dakhore, K.K.; Chaudhari, K.; Bhattacharya, B.K. Machine learning model ensemble for predicting sugarcane yield through synergy of optical and SAR remote sensing. Remote Sens. Appl. Soc. Environm. 2023, 30, 100962. [Google Scholar] [CrossRef]
- Kanke, Y.; Tubaña, B.; Dalen, M.; Lofton, J.; Viator, H. Relation between early season–measured agronomic variables and sugar yield responses to nitrogen. Agron. J. 2016, 108, 794–804. [Google Scholar] [CrossRef]
- Kumar, S.; Mishra, S.; Khanna, P.; Pragya. Precision Sugarcane Monitoring Using SVM Classifier. Procedia Comput. Sci. 2017, 122, 881–887. [Google Scholar] [CrossRef]
- Ong, P.; Jian, J.; Li, X.; Zou, C.; Yin, J.; Ma, G. New approach for sugarcane disease recognition through visible and near-infrared spectroscopy and a modified wavelength selection method using machine learning models. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2023, 302, 123037. [Google Scholar] [CrossRef] [PubMed]
- Yano, I.H.; Alves, J.R.; Santiago, W.E.; Mederos, B.J.T. Identification of weeds in sugarcane fields through images taken by UAV and Random Forest classifier. IFAC-PapersOnLine 2016, 49, 415–420. [Google Scholar] [CrossRef]
- Spekken, M.; Molin, J.P.; Romanelli, T.L. Cost of boundary manoeuvres in sugarcane production. Biosyst. Eng. 2015, 129, 112–126. [Google Scholar] [CrossRef]
- Junqueira, R.A.R.; Morabito, R. Modeling and solving a sugarcane harvest front scheduling problem. Int. J. Prod. Econ. 2019, 213, 150–160. [Google Scholar] [CrossRef]
- Chavez, M.M.M.; Sarache, W.; Costa, Y.; Soto, J. Multiobjective stochastic scheduling of upstream operations in a sustainable sugarcane supply chain. J. Clean. Prod. 2020, 276, 123305. [Google Scholar] [CrossRef]
- Wu, T.; Zhang, O.; Wu, J.; Liu, Q.; Su, J.; Li, H. An improved YOLOv5s model for effectively predict sugarcane seed replenishment positions verified by a field re-seeding robot. Comput. Electron. Agric. 2023, 214, 108280. [Google Scholar] [CrossRef]
- Som-ard, J.; Immitzer, M.; Vuolo, F.; Atzberger, C. Sugarcane yield estimation in Thailand at multiple scales using the integration of UAV and Sentinel-2 imagery. Precis. Agric. 2024. [Google Scholar] [CrossRef]
- Australian Controlled Traffic Farming Association (ACTFA). What Is Controlled Traffic Farming? 2021. Available online: https://www.actfa.net/controlled-traffic-farming/ (accessed on 14 October 2021).
- Gírio, L.A.S.; Silva, R.P.; Menezes, P.C.; Carneiro, F.M.; Zerbato, C.; Ormond, A.T.S. Quality of multi-row harvesting in sugarcane plantations established from pre-sprouted seedlings and billets. Ind. Crops Prod. 2019, 142, 111831. [Google Scholar] [CrossRef]
- Passalaqua, B.P.; Molin, J.P. Path errors in sugarcane transshipment trailers. Eng. Agríc. 2020, 40, 223–231. [Google Scholar] [CrossRef]
- Araújo, G.M.; Santos, F.F.L.; Almeida, S.L.H.; Martins, R.N.; Voltarelli, M.A.; Paixão, C.S.S.; Pinto, F.A.C. Sugarcane harvesting quality by digital image processing. Sugar Tech. 2021, 23, 209–218. [Google Scholar] [CrossRef]
- Momin, M.A.; Wempe, P.A.; Grift, T.E.; Hansen, A.C. Effects of four base cutter blade designs on sugarcane stem cut quality. Trans. ASABE 2017, 60, 1551–1560. [Google Scholar] [CrossRef]
- Qiu, M.; Meng, Y.; Li, Y.; Shen, X. Sugarcane stem cut quality investigated by finite element simulation and experiment. Biosyst. Eng. 2021, 206, 135–149. [Google Scholar] [CrossRef]
- Qiu, Z.; Wang, Y.; Tang, Y.; Luo, W.; Ye, Z. Analysis of blockage and wrapping by leaves in the cutting mechanism of a sugarcane leaf shredder. Biosyst. Eng. 2021, 211, 152–166. [Google Scholar] [CrossRef]
- Yang, W.; Zhao, W.; Liu, Y.; Chen, Y.; Yang, J. Simulation of forces acting on the cutter blade surfaces and root system of sugarcane using FEM and SPH coupled method. Comput. Electron. Agric. 2021, 180, 105893. [Google Scholar] [CrossRef]
- Corrêdo, L.P.; Canata, T.F.; Maldaner, L.F.; Lima, J.J.A.; Molin, J.P. Sugarcane Harvester for In-field Data Collection: State of the Art, Its Applicability and Future Perspectives. Sugar Tech 2021, 23, 1–14. [Google Scholar] [CrossRef]
- Cox, G.J.; Harris, H.D.; Cox, D.R. Application of Precision Agriculture to Sugarcane. In Proceeding of the Fourth International Conference on Precision Agriculture, Saint Paul, Italy, 19–22 July 1998; Robert, P.C., Rust, R.H., Larson, W.E., Eds.; ASA/CSSA/SSSA: Minneapolis, MN, USA, 1998; pp. 753–765. [Google Scholar]
- Benjamin, C.E.; Price, R.R.; Mailander, M.P. Sugar Cane Monitoring System; ASAE: St. Joseph, MI, USA, 2001. [Google Scholar]
- Molin, J.P.; Meneggati, L.A.A. Field-testing of a sugarcane yield monitor in Brazil. In Proceedings of the ASAE/CSAE Annual International Meeting, ASAE, Las Vegas, NV, USA, 1–4 August 2004. [Google Scholar]
- Hernandez, B.; Fernandez, F.; Ponce, E.; Quintana, L.; Esquivel, M.; Rodriguez, J. Sugarcane yield mapping from the harvester biomass input flux. In Proceedings of the 4th European Conference on Precision Agriculture, Berlin, Germany, 16–19 June 2003. [Google Scholar]
- Hernandez, B.; Fernandez, F.; Ponce, E.; Esquivel, M.; Rodriguez, J.; Quintana, L.; Interian, S.; Alvarez, R. Application of precision farming technologies for sugarcane crop. In Proceedings of the 5th European Conference on Precision Agriculture, Uppsala, Sweden, 9–12 June 2005; Stafford, J.V., Ed.; Wageningen Academic Publishers: Noordwijk, The Netherlands, 2023. [Google Scholar]
- Cerri, D.G.P.; Magalhães, P.S.G. Sugar Cane Yield Monitor. In Proceedings of the ASAE Annual Meeting, ASAE, St. Joseph, MI, USA, 17–20 July 2005. [Google Scholar]
- Price, R.R.; Johnson, R.M.; Viator, R.P.; Larsen, J.; Peters, A. Fiber Optic yield monitor for a sugarcane harvester. Trans. ASABE 2011, 54, 31–39. [Google Scholar] [CrossRef]
- Just, J. A Non-Contact Volumetric Based Approach Using a Stereo Camera for Measuring Yield on Sugarcane Harverters. Master’s Dissertation, Iowa State University, Ames, IA, USA, 2014. [Google Scholar]
- Darr, M.J.; Corbett, D.J.; Herman, H.; Vallespi-Gonzalez, C.; Dugas, B.E.; Badino, H. Yield Measurement and Base Cutter Height Control Systems for a Harvester. US20150124054A1, 6 August 2019. [Google Scholar]
- Momin, M.A.; Grift, T.E.; Valente, D.S.; Hansen, A.C. Sugarcane yield mapping based on vehicle tracking. Precis. Agric. 2019, 20, 896–910. [Google Scholar] [CrossRef]
- Lima, J.J.A.; Maldaner, L.F.; Molin, J.P. Sensor Fusion with NARX Neural Network to Predict the Mass Flow in a Sugarcane Harvester. Sensors 2021, 21, 4530. [Google Scholar] [CrossRef]
- Sanches, G.M.; Duft, D.G.; Kölln, O.T.; Luciano, A.C.S.; Castro, S.G.Q.; Okuno, F.M.; Franco, H.C.J. The potential for RGB images obtained using unmanned aerial vehicle to assess and predict yield in sugarcane fields. Int. J. Remote Sens. 2018, 39, 5402–5414. [Google Scholar] [CrossRef]
- Ferreira, A.S.; Marcato Junior, J.; Pistori, H.; Melgani, F.; Gonçalves, W.N. Unsupervised domain adaptation using transformers for sugarcane rows and gaps detection. Comput. Electron. Agric. 2022, 203, 107480. [Google Scholar] [CrossRef]
- Corrêdo, L.P.; Molin, J.P.; Canal Filho, R. Is It Possible to Measure the Quality of Sugarcane in Real-Time during Harvesting Using Onboard NIR Spectroscopy? AgriEngineering 2024, 6, 64–80. [Google Scholar] [CrossRef]
- Wang, E.; Attard, S.; Linton, A.; McGlinchey, M.; Xiang, W.; Philippa, B.; Everingham, Y. Development of a closed-loop irrigation system for sugarcane farms using the Internet of Things. Comput. Electron. Agric. 2020, 172, 105376. [Google Scholar] [CrossRef]
- Garcia, A.P.; Umezu, C.K.; Polania, E.C.M.; Dias Neto, A.F.; Rossetto, R.; Albiero, D. Sensor-Based Technologies in Sugarcane Agriculture. Sugar Tech. 2022, 24, 679–698. [Google Scholar] [CrossRef]
- Rodrigues, L.F.; Morabito, R.; Chiyoshi, F.Y.; Iannoni, A.P.; Saydam, C. Analyzing an emergency maintenance system in the agriculture stage of a Brazilian sugarcane mill using an approximate hypercube method. Comput. Electron. Agric. 2018, 151, 441–452. [Google Scholar] [CrossRef]
- Ramos, P.L.; Nascimento, D.C.; Cocolo, C.; Nicola, M.J.; Alonso, C.; Ribeiro, L.G.; Ennes, A.; Louzada, F. Reliability-Centered Maintenance: Analyzing Failure in Harvest Sugarcane Machine Using Some Generalizations of the Weibull Distribution. Model. Simul. Eng. 2018, 2018, 1241856. [Google Scholar] [CrossRef]
- Afsharnia, F.; Marzban, A.; Asoodar, M.A. Preventive maintenance optimization of sugarcane harvester machine based on FT-Bayesian network realiability. Int. J. Qual. Reliab. Manag. 2021, 38, 722–750. [Google Scholar] [CrossRef]
- Kong, Q.; Kuriyan, K.; Shah, N.; Guo, M. Development of a responsive optimisation framework for decision-making in precision agriculture. Comput. Chem. Eng. 2019, 131, 106585. [Google Scholar] [CrossRef]
- Eurostat. Study on Broadband Coverage in Europe. 2019. Available online: https://digital-strategy.ec.europa.eu/en/library/study-broadband-coverage-europe-2018 (accessed on 4 November 2023).
- Instituto Brasileiro de Geografia e Estatística (IBGE). Censo Agropecuário: Resultados Definitivos/IBGE; IBGE: Rio de Janeiro, Brazil, 2017. Available online: https://biblioteca.ibge.gov.br/visualizacao/periodicos/3096/agro_2017_resultados_definitivos.pdf (accessed on 14 October 2021).
- Bacco, M.; Barsocchi, P.; Ferro, E.; Gotta, A.; Ruggeri, M. The Digitisation of Agriculture: A Survey of Research Activities on Smart Farming. Array 2019, 3–4, 100009. [Google Scholar] [CrossRef]
- Ferreira, G.C.; Barreto, P.S.; Caetano, M.F.; Alchieri, E.; Araujo, D.C.; Cavalcanti, R.P.; Sousa, D.A. 5G-RCOLAB: A system level simulator for 5G and beyond in rural areas. Comput. Commun. 2023, 212, 161–181. [Google Scholar] [CrossRef]
- Milanez, A.Y.; Mancuso, R.V.; Maia, G.B.S.; Guimarães, D.D.; Alves, C.E.A.; Madeira, R.F. Conectividade rural: Situação atual e alternativas para superação da principal barreira à agricultura 4.0 no Brasil. BNDES 2020, 26, 7–43. [Google Scholar]
- IAMAI. Mobile Internet Report. 2017. Available online: https://cms.iamai.in/Content/ResearchPapers/ (accessed on 28 February 2024).
- Prathap, D.P.; Murali, P.; Venkatasubramanian, V. Barriers to ICT Usage: An Assessment Among the Sugarcane Farmers in Disadvantaged Districts of Tamil Nadu, India. Sugar Tech. 2021, 23, 286–295. [Google Scholar] [CrossRef]
- Barnes, A.P.; Soto, I.; Eory, V.; Beck, B.; Balafoutis, A.; Sánchez, B.; Vangeyte, J.; Fountas, S.; van der Wal, T.; Gómez-Barbero, M. Exploring the adoption of precision agricultural technologies: A cross regional study of EU farmers. Land Use Policy 2019, 80, 163–174. [Google Scholar] [CrossRef]
- Luqman, M.; Yaseen, M.; Ashraf, S.; Mehmood, M.U.; Karim, M. Factors influencing use of information and communication technologies among farmers in rural Punjab, Pakistan. J. Agric. Ext. 2019, 23, 101. [Google Scholar] [CrossRef]
- Mozambani, C.I.; Souza Filho, H.M.; Vinholis, M.M.B.; Carrer, M.J. Adoption of precision agriculture technologies by sugarcane farmers in the state of São Paulo, Brazil. Precis. Agric. 2023, 24, 1813–1835. [Google Scholar] [CrossRef]
- Zhong, Y. Economic Analysis of the Best Management Practices (BMPS) in Louisiana Sugarcane Production. Master’s Thesis, Louisiana State University and Agricultural and Mechanical College, Baton Rouge, LA, USA, 2003. Available online: https://repository.lsu.edu/cgi/viewcontent.cgi?article=4236&context=gradschool_theses (accessed on 17 March 2024).
- Ministry of Agriculture and Livestock Development. State Department for Crop Development. Policy on Revitalization of the Sugar Industry. 2023. Available online: https://kilimo.go.ke/wp-content/uploads/2023/06/Policy-on-Revitalization-of-the-Sugar-Industry-After-SWAG-20.05.2023-for-validation-27th-June-2023.pdf (accessed on 17 March 2024).
- Companhia Nacional de Abastecimento (CONAB). Perfil do Setor do Açúcar e do Etanol no Brasil: Edição para a safra 2014/15. 2017. Available online: https://www.conab.gov.br/info-agro/safras/cana (accessed on 17 January 2024).
- Gonçalves, F.; Perna, R.; Lopes, E.; Maciel, R.; Tovar, L.; Lopes, M. Strategies to improve the environmental efficiency and the profitability of sugarcane mills. Biomass Bioenergy 2021, 148, 106052. [Google Scholar] [CrossRef]
- Silva, C.B.; Moraes, M.A.F.D.; Molin, J.P. Adoption and use of precision agriculture technologies in the sugarcane industry of São Paulo state, Brazil. Precis. Agric. 2011, 12, 67–81. [Google Scholar] [CrossRef]
- Backman, J.; Linkolehto, R.; Koistinen, M.; Nikander, J.; Ronkainen, A.; Kaivosoja, J.; Suomi, P.; Pesonen, L. Cropinfra research data collection platform for ISO 11783 compatible and retrofit farm equipment. Comput. Electron. Agric. 2019, 166, 105008. [Google Scholar] [CrossRef]
- Paraforos, D.S.; Sharipov, G.M.; Griepentrog, H.W. ISO 11783-compatible industrial sensor and control systems and related research: A review. Comput. Electron. Agric. 2019, 163, 104863. [Google Scholar] [CrossRef]
- Jahns, G.; Speckmann, H. Agricultural Electronics on Farm Machinery Needs Standardized Data Transfer—A Concept; ASAE Paper; ASAE: St. Joseph, MI, USA, 1984. [Google Scholar]
- Auernhammer, H. Agrotique 89. In Proceedings of the Second International Conference, Bordeaux, France, 26–28 September 1989; pp. 395–402. [Google Scholar]
- ISO 11783-1:2017; Tractors and Machinery for Agriculture and Forestry—Serial Control and Communications Data Network—Part 1: General Standard for Mobile Data Communication. International Organization for Standardization (ISO): Geneva, Switzerland, 2017. Available online: https://www.iso.org/standard/57556.html (accessed on 14 October 2021).
- ISO 11783-7:2015; Tractors and Machinery for Agriculture and Forestry—Serial Control and Communications Data Network—Part 7: Implement Messages Application Layer. International Organization for Standardization (ISO): Geneva, Switzerland, 2017. Available online: https://www.iso.org/standard/59380.html (accessed on 14 October 2021).
- AgGateway. ADAPT (Inter-Operability). 2023. Available online: https://www.aggateway.org/GetConnected/ADAPT(inter-operability).aspx (accessed on 28 October 2023).
- Amiri-Zarandi, M.; Dara, R.A.; Duncan, E.; Fraser, E.D.G. Big data privacy in smart farming: A review. Sustainability 2022, 14, 9120. [Google Scholar] [CrossRef]
- Yano, I.H.; Castro, A.; Cançado, G.M.A.; Silva, F.C. Storing Data of Sugarcane Industry Processes Using Blockchain Technology. In Enegep 2020, Proceedings of the XL Encontro Nacional de Engenharia de Produção, Foz do Iguaçu, Brazil, 20–23 October 2020; Enegep: Foz do Iguaçu, Brazil, 2020. [Google Scholar]
- Embrapa. Sibraar—Brazilian Agro-Traceability System. 2022. Available online: https://www.embrapa.br/en/agricultura-digital/busca-de-solucoes-tecnologicas/-/produto-servico/8599/sibraar---sistema-brasileiro-de-agrorrastreabilidade (accessed on 28 February 2024).
- Brasil. Lei Geral de Proteção de Dados Pessoais (LGPD). Lei N° 13.709, de 14 de Agosto de 2018. 2018. Available online: https://www.planalto.gov.br/ccivil_03/_ato2015-2018/2018/lei/l13709.htm (accessed on 28 February 2024).
- Palazzi, R.B.; Quintino, D.D.; Ferreira, P.J.S.; Bekun, F.V. Exploring the potential of the carbon credit program for hedging energy prices in Brazil. Environ. Sci. Pollut. Res. 2024, 31, 20678–20688. [Google Scholar] [CrossRef] [PubMed]
- Park, A.; Li, H. The Effect of Blockchain Technology on Supply Chain Sustainability Performances. Sustainability 2021, 13, 1726. [Google Scholar] [CrossRef]
- Tan, Y.; Zhu, Z. The effect of ESG rating events on corporate green innovation in China: The mediating role of financial constraints and managers’ environmental awareness. Technol. Soc. 2022, 68, 101906. [Google Scholar] [CrossRef]
- Forney, J.; Epiney, L. Governing Farmers through data? Digitization and the Question of Autonomy in Agri-environmental governance. J. Rural. Stud. 2022, 95, 173–182. [Google Scholar] [CrossRef]
Authors | Measure Principle | Sensor Position in the Harvester |
---|---|---|
[101] | Pressure | Chopper and Elevator |
[102] | Scale | Elevator |
[103] | Scale | Elevator |
[104] | Displacement sensor | Rolls |
[105] | Displacement sensor | Rolls |
[106] | Scale | Elevator |
[107] | Fiber optical sensor | Elevator |
[108] | Optical sensor | Elevator |
[109] | Optical sensor (3D) | Elevator |
[110] | Wagon displacement | Filling moment at the wagon |
[111] | Mass flow | Multiple places |
[80] | Mass flow | Elevator base/Harvester data |
[81] | Mass flow | Chopper |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Molin, J.P.; Wei, M.C.F.; da Silva, E.R.O. Challenges of Digital Solutions in Sugarcane Crop Production: A Review. AgriEngineering 2024, 6, 925-946. https://doi.org/10.3390/agriengineering6020053
Molin JP, Wei MCF, da Silva ERO. Challenges of Digital Solutions in Sugarcane Crop Production: A Review. AgriEngineering. 2024; 6(2):925-946. https://doi.org/10.3390/agriengineering6020053
Chicago/Turabian StyleMolin, José Paulo, Marcelo Chan Fu Wei, and Eudocio Rafael Otavio da Silva. 2024. "Challenges of Digital Solutions in Sugarcane Crop Production: A Review" AgriEngineering 6, no. 2: 925-946. https://doi.org/10.3390/agriengineering6020053
APA StyleMolin, J. P., Wei, M. C. F., & da Silva, E. R. O. (2024). Challenges of Digital Solutions in Sugarcane Crop Production: A Review. AgriEngineering, 6(2), 925-946. https://doi.org/10.3390/agriengineering6020053