An Integrated Statistical, Geostatistical and Hydrogeological Approach for Assessing and Modelling Groundwater Salinity and Quality in Nile Delta Aquifer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Location and Sampling Points
2.2. Hydrogeological Setting
2.3. Data Collection
2.4. Raw Chemical Data
2.5. Data Processing
3. Results
3.1. Exploratory Data Analysis
3.2. Raw Hydrochemical Data
3.3. Geostatistical Results
3.4. Spatial Distribution
- -
- In 1996, a regular piezometric distribution with almost homogeneous gradients and flow lines perpendicular to the coastline and parallel to the Damietta Branch of the Nile was established.
- -
- In 2007, less regular distribution of the piezometric surface was observed, with a lowering of the water level in the central and southern parts and the presence of concentrated recall zones in the central part.
- -
- In 2018, a further generalized reduction in water level was observed in the southern and northern portions of the study area, and there was a greater number of water recall areas than in 2007. In the central part, however, a recovery in the water level was observed, which gave rise to a lobed shape of the piezometric surface (encircled in red in Figure 3), which indicates an alternation of areas of probable attenuation of the pumping.
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hugo, G. Future demographic change and its interactions with migration and climate change. Glob. Environ. Change 2011, 21, S21–S33. [Google Scholar] [CrossRef]
- Shi, L.; Jiao, J.J. Seawater intrusion and coastal aquifer management in China: A review. Environ. Earth Sci. 2014, 72, 2811–2819. [Google Scholar] [CrossRef]
- Hounsinou, S.P. Assessment of potential seawater intrusion in a coastal aquifer system at Abomey-Calavi, Benin. Heliyon 2020, 6, e03173. [Google Scholar] [CrossRef]
- Jasechko, S.; Perrone, D.; Seybold, H.; Fan, Y.; Kirchner, J.W. Groundwater level observations in 250,000 coastal US wells reveal scope of potential seawater intrusion. Nat. Commun. 2020, 11, 3229. [Google Scholar] [CrossRef]
- El Shinawi, A.; Zeleňáková, M.; Nosair, A.M.; Abd-Elaty, I. Geo-spatial mapping and simulation of the sea level rise influence on groundwater head and upward land subsidence at the Rosetta coastal zone, Nile Delta, Egypt. J. King Saud Univ.-Sci. 2022, 34, 102145. [Google Scholar] [CrossRef]
- Werner, A.D.; Bakker, M.; Post, V.E.; Vandenbohede, A.; Lu, C.; Ataie-Ashtiani, B.; Simmons, C.T.; Barry, D.A. Seawater intrusion processes, investigation and management: Recent advances and future challenges. Adv. Water Resour. 2013, 51, 3–26. [Google Scholar] [CrossRef]
- Abu Salem, H.S.; Gemail, K.S.; Junakova, N.; Ibrahim, A.; Nosair, A.M. An integrated approach for deciphering hydrogeochemical processes during seawater intrusion in coastal aquifers. Water 2022, 14, 1165. [Google Scholar] [CrossRef]
- Robinson, G.; Hamill, G.; Ahmed, A.A. Automated image analysis for experimental investigations of salt water intrusion in coastal aquifers. J. Hydrol. 2015, 530, 350–360. [Google Scholar] [CrossRef]
- Sefelnasr, A.; Sherif, M. Impacts of seawater rise on seawater intrusion in the Nile Delta aquifer, Egypt. Groundwater 2014, 52, 264–276. [Google Scholar] [CrossRef]
- Lu, C.; Xin, P.; Li, L.; Luo, J. Seawater intrusion in response to sea-level rise in a coastal aquifer with a general-head inland boundary. J. Hydrol. 2015, 522, 135–140. [Google Scholar] [CrossRef]
- Abdoulhalik, A.; Ahmed, A.A. The effectiveness of cutoff walls to control saltwater intrusion in multi-layered coastal aquifers: Experimental and numerical study. J. Environ. Manag. 2017, 199, 62–73. [Google Scholar] [CrossRef]
- Pulido-Velazquez, D.; Renau-Pruñonosa, A.; Llopis-Albert, C.; Morell, I.; Collados-Lara, A.-J.; Senent-Aparicio, J.; Baena-Ruiz, L. Integrated assessment of future potential global change scenarios and their hydrological impacts in coastal aquifers—A new tool to analyse management alternatives in the Plana Oropesa-Torreblanca aquifer. Hydrol. Earth Syst. Sci. 2018, 22, 3053–3074. [Google Scholar] [CrossRef]
- Nlend, B.; Celle-Jeanton, H.; Huneau, F.; Ketchemen-Tandia, B.; Fantong, W.; Boum-Nkot, S.N.; Etame, J. The impact of urban development on aquifers in large coastal cities of West Africa: Present status and future challenges. Land Use Policy 2018, 75, 352–363. [Google Scholar] [CrossRef]
- Abija, F.; Abam, T.; Teme, S.; Eze, C. Relative sea level rise, coastline variability and coastal erosion in the Niger Delta, Nigeria: Implications for climate change adaptation and coastal zone management. Earth Sci. Clim. Change 2020, 11, 9. [Google Scholar]
- Prusty, P.; Farooq, S.H. Seawater intrusion in the coastal aquifers of India-A review. HydroResearch 2020, 3, 61–74. [Google Scholar] [CrossRef]
- Arslan, H.; Demir, Y. Impacts of seawater intrusion on soil salinity and alkalinity in Bafra Plain, Turkey. Environ. Monit. Assess. 2013, 185, 1027–1040. [Google Scholar] [CrossRef]
- Qu, W.; Li, H.; Huang, H.; Zheng, C.; Wang, C.; Wang, X.; Zhang, Y. Seawater-groundwater exchange and nutrients carried by submarine groundwater discharge in different types of wetlands at Jiaozhou Bay, China. J. Hydrol. 2017, 555, 185–197. [Google Scholar] [CrossRef]
- Boumaiza, L.; Walter, J.; Chesnaux, R.; Zahi, F.; Huneau, F.; Garel, É.; Stotler, R.L.; Bordeleau, G.; Johannesson, K.H.; Vystavna, Y. Combined effects of seawater intrusion and nitrate contamination on groundwater in coastal agricultural areas: A case from the Plain of the El-Nil River (North-Eastern Algeria). Sci. Total Environ. 2022, 851, 158153. [Google Scholar] [CrossRef]
- Ferguson, G.; Gleeson, T. Vulnerability of coastal aquifers to groundwater use and climate change. Nat. Clim. Change 2012, 2, 342–345. [Google Scholar] [CrossRef]
- Vespasiano, G.; Cianflone, G.; Romanazzi, A.; Apollaro, C.; Dominici, R.; Polemio, M.; De Rosa, R. A multidisciplinary approach for sustainable management of a complex coastal plain: The case of Sibari Plain (Southern Italy). Mar. Pet. Geol. 2019, 109, 740–759. [Google Scholar] [CrossRef]
- Elewa, H.H.; Nosair, A.M.; Zelenakova, M.; Mikita, V.; Abdel Moneam, N.A.; Ramadan, E.M. Environmental sustainability of water resources in coastal aquifers, case study: El-Qaa Plain, South Sinai, Egypt. Water 2023, 15, 1118. [Google Scholar] [CrossRef]
- Kouzana, L.; Mammou, A.B.; Felfoul, M.S. Seawater intrusion and associated processes: Case of the Korba aquifer (Cap-Bon, Tunisia). Comptes Rendus. Géosci. 2009, 341, 21–35. [Google Scholar] [CrossRef]
- Gemail, K.; Samir, A.; Oelsner, C.; Mousa, S.; Ibrahim, S. Study of saltwater intrusion using 1D, 2D and 3D resistivity surveys in the coastal depressions at the eastern part of Matruh area, Egypt. Near Surf. Geophys. 2004, 2, 103–109. [Google Scholar] [CrossRef]
- Agoubi, B. A review: Saltwater intrusion in North Africa’s coastal areas—Current state and future challenges. Environ. Sci. Pollut. Res. 2021, 28, 17029–17043. [Google Scholar] [CrossRef]
- Carreira, P.M.; Bahir, M.; Salah, O.; Fernandes, P.G.; Nunes, D. Tracing salinization processes in coastal aquifers using an isotopic and geochemical approach: Comparative studies in western Morocco and southwest Portugal. Hydrogeol. J. 2018, 26, 2595–2615. [Google Scholar] [CrossRef]
- Campillo, A.; Taupin, J.-D.; Betancur, T.; Patris, N.; Vergnaud, V.; Paredes, V.; Villegas, P. A multi-tracer approach for understanding the functioning of heterogeneous phreatic coastal aquifers in humid tropical zones. Hydrol. Sci. J. 2021, 66, 600–621. [Google Scholar] [CrossRef]
- Xiao, H.; Wang, D.; Medeiros, S.C.; Hagen, S.C.; Hall, C.R. Assessing sea-level rise impact on saltwater intrusion into the root zone of a geo-typical area in coastal east-central Florida. Sci. Total Environ. 2018, 630, 211–221. [Google Scholar] [CrossRef]
- Mastrocicco, M.; Busico, G.; Colombani, N.; Vigliotti, M.; Ruberti, D. Modelling actual and future seawater intrusion in the Variconi coastal wetland (Italy) due to climate and landscape changes. Water 2019, 11, 1502. [Google Scholar] [CrossRef]
- Younes, A.; Koohbor, B.; Belfort, B.; Ackerer, P.; Doummar, J.; Fahs, M. Modeling variable-density flow in saturated-unsaturated porous media: An advanced numerical model. Adv. Water Resour. 2022, 159, 104077. [Google Scholar] [CrossRef]
- Xiong, G.; Chen, G.; Wu, J.; Fu, T.; Yang, Y.; Xu, X.; Zhu, X.; Yu, H.; Liu, S.; Gao, M. Seawater intrusion-retreat processes and groundwater evolution in intruded coastal aquifers with land reclamation: A case study of Eastern Jiangsu, China. Lithosphere 2022, 2021, 1308487. [Google Scholar] [CrossRef]
- Lal, A.; Datta, B. Development and implementation of support vector machine regression surrogate models for predicting groundwater pumping-induced saltwater intrusion into coastal aquifers. Water Resour. Manag. 2018, 32, 2405–2419. [Google Scholar] [CrossRef]
- Nosair, A.M.; Shams, M.Y.; AbouElmagd, L.M.; Hassanein, A.E.; Fryar, A.E.; Abu Salem, H.S. Predictive model for progressive salinization in a coastal aquifer using artificial intelligence and hydrogeochemical techniques: A case study of the Nile Delta aquifer, Egypt. Environ. Sci. Pollut. Res. 2022, 29, 9318–9340. [Google Scholar] [CrossRef]
- Panagiotou, C.F.; Kyriakidis, P.; Tziritis, E. Application of geostatistical methods to groundwater salinization problems: A review. J. Hydrol. 2022, 615, 128566. [Google Scholar] [CrossRef]
- Tizro, A.T.; Fryar, A.E.; Voudouris, K.; Talebi, M. Prediction of water-level variations using a combined time series-geostatistical model in an aquifer surrounded by karstic formation: A case study from the semi-arid Hamadan province, Iran. 2023; preprint. [Google Scholar]
- Zhou, S.; Gao, Y.; Zhang, J.; Pang, J.; Hamani, A.K.M.; Xu, C.; Dang, H.; Cao, C.; Wang, G.; Sun, J. Impacts of Saline Water Irrigation on Soil Respiration from Cotton Fields in the North China Plain. Agronomy 2023, 13, 1197. [Google Scholar] [CrossRef]
- Ayers, R.S.; Westcot, D.W. Water Quality for Agriculture; FAO Irrigation and Drainage, Paper 29; Food and Agriculture Organization: Rome, Italy, 1985. [Google Scholar]
- Sherif, M.; Sefelnasr, A.; Javadi, A. Incorporating the concept of equivalent freshwater head in successive horizontal simulations of seawater intrusion in the Nile Delta aquifer, Egypt. J. Hydrol. 2012, 464, 186–198. [Google Scholar] [CrossRef]
- Mazi, K.; Koussis, A.D.; Destouni, G. Intensively exploited Mediterranean aquifers: Resilience to seawater intrusion and proximity to critical thresholds. Hydrol. Earth Syst. Sci. 2014, 18, 1663–1677. [Google Scholar] [CrossRef]
- Webster, R.; Oliver, M.A. Geostatistics for Environmental Scientists; John Wiley & Sons: Hoboken, NJ, USA, 2007. [Google Scholar]
- Castrignanò, A.; Buttafuoco, G.; Conforti, M.; Maesano, M.; Moresi, F.V.; Mugnozza, G.S. Improving the Spatial Prediction of Sand Content in Forest Soils Using a Multivariate Geostatistical Analysis of LiDAR and Hyperspectral Data. Remote Sens. 2023, 15, 4416. [Google Scholar] [CrossRef]
- Mohammed, M.S.; Elbeih, S.F.; Mohamed, E.A.; Abu Salem, H.S.; Ibrahim, M.; ElSayed, E.E. Spectral indices based study to evaluate and model surface water quality of Beni Suef Governorate. Egypt. Egypt. J. Chem. 2022, 65, 631–645. [Google Scholar] [CrossRef]
- El-Marsafawy, S.; Bakr, N.; El-Bana, T.; El-Ramady, H. Climate. In The Soils of Egypt; World Soils Book Series; El-Ramady, H., Alshaal, T., Bakr, N., Elbana, T., Mohamed, E., Belal, A.-A., Eds.; Springer: Cham, Switzerland, 2019. [Google Scholar] [CrossRef]
- Elewa, H.H.; Shohaib, R.E.; Qaddah, A.A.; Nousir, A.M. Determining groundwater protection zones for the Quaternary aquifer of northeastern Nile Delta using GIS-based vulnerability mapping. Environ. Earth Sci. 2013, 68, 313–331. [Google Scholar] [CrossRef]
- Sallouma, M.K.M. Hydrogeological and Hydrochemical Assessment of the Quaternary Aquifer in the Eastern Nile Delta, Egypt. Ph.D. Thesis, Ain Shams University, Cairo, Egypt, 1983. [Google Scholar]
- Said, R. The Geological Evolution of the River Nile; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1981; 151p. [Google Scholar]
- Ismael, A.M.A.A. Applications of Remote Sensing, GIS, and Groundwater Flow Modeling in Evaluating Groundwater Resources: Two Case Studies; East Nile Delta, Egypt and Gold Valley, California, USA; The University of Texas at El Paso: El Paso, TX, USA, 2007. [Google Scholar]
- Ramadan, E.M.; Fahmy, M.R.; Nosair, A.M.; Badr, A.M. Using geographic information system (GIS) modeling in evaluation of canals water quality in Sharkia Governorate, East Nile Delta, Egypt. Model. Earth Syst. Environ. 2019, 5, 1925–1939. [Google Scholar] [CrossRef]
- Tantawi, M. Hydrogeochemical and isotopic assessment of the Quaternary aquifer in the Eastern Nile Delta, Egypt. El-Minia Sci. Bull. 1998, 11, 17–45. [Google Scholar]
- Rizk, T. Hydrogeological Studies on El Salhyia District, East Nile Delta, Egypt. Master’s Thesis, Mansoura University, Mansoura, Egypt, 1997. [Google Scholar]
- Di Curzio, D.; Castrignanò, A.; Fountas, S.; Romić, M.; Rossel, R.A.V. Multi-source data fusion of big spatial-temporal data in soil, geo-engineering and environmental studies. Sci. Total. Environ. 2021, 788, 147842. [Google Scholar] [CrossRef]
- Chiles, J.-P.; Delfiner, P. Geostatistics: Modeling Spatial Uncertainty; John Wiley & Sons: New York, NY, USA, 2012; Volume 713. [Google Scholar]
- Wackernagel, H. Multivariate Geostatistics: An Introduction with Applications; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2003. [Google Scholar]
- Howarth, R. Journel and (Ch. J.) Huijbregts. Mining Geostatistics. London & New York (Academic Press), 1978. x+ 600 pp. 267 figs. Price£ 32· 00. Mineral. Mag. 1979, 43, 563–564. [Google Scholar]
- Goovaerts, P. Geostatistics for Natural Resources Evaluation; Oxford University Press: Oxford, UK, 1997; Volume 483. [Google Scholar]
- Rivoirard, J. Which models for collocated cokriging? Math. Geol. 2001, 33, 117–131. [Google Scholar] [CrossRef]
- Castrignanò, A. Introduction to Spatial Data Analysis; Aracne: Rome, Italy, 2011. [Google Scholar]
- Cressie, N.A.C. Statistics for Spatial Data; John Wiley and Sons Inc.: Hoboken, NJ, USA, 1993. [Google Scholar]
- Abu Salem, H.S.; El Fallah, O.A.; El Kammar, M.M. Hydrochemical study of groundwater in Tazerbo, Libya, using statistical analysis and geochemical modeling. J. Afr. Earth Sci. 2024, 218, 105362. [Google Scholar] [CrossRef]
- Hussein, H.; El Maghraby, M.M.; Abu Salem, H.S. Application of water quality index and statistical-hydrochemical techniques in groundwater assessment of the Quaternary aquifer, southwest Nile Delta of Egypt. Appl. Water Sci. 2024, 14, 143. [Google Scholar] [CrossRef]
- Castrignanò, A.; Giugliarini, L.; Risaliti, R.; Martinelli, N. Study of spatial relationships among some soil physico-chemical properties of a field in central Italy using multivariate geostatistics. Geoderma 2000, 97, 39–60. [Google Scholar] [CrossRef]
- Appelo, C.A.J.; Postma, D. Geochemistry, Groundwater and Pollution; CRC Press: Rotterdam, The Netherlands, 2004. [Google Scholar]
- Arafa, N.A.; Salem, Z.E.; Abdeldayem, A.L.; Ghorab, M.A.; Moustafa, Y.M.; Soliman, S.A.; Purohit, S.; Elhag, M.; Youssef, Y.M. Advancing Deltaic Aquifer Vulnerability Mapping to Seawater Intrusion and Human Impacts in Eastern Nile Delta: Insights from Machine Learning and Hydrochemical Perspective. Earth Syst. Environ. 2024, 8, 1–26. [Google Scholar] [CrossRef]
Year | Number of Points | Depth Range | Reference |
---|---|---|---|
1996 | 56 | 20–140 m | [48,49] |
2007 | 67 | 10–120 m | [46] |
2018 | 60 | 18–120 m | [32] |
Year | Number of Point Samples | Point Sample Variables | Number of Auxiliary Variables Points Based on 1000 m × 1000 m Grid | Auxiliary Variables |
---|---|---|---|---|
1996 | 56 | Water level, pH, EC, Na, K, Ca, Mg, Cl, HCO3, SO4 | 4322 | Minimum distances from Damietta branch, lake Manzala and Suez Canal |
2007 | 67 | Water level, pH, EC, Na, K, Ca, Mg, Cl, HCO3, SO4 | 4322 | Minimum distances from Damietta branch, lake Manzala and Suez Canal |
2018 | 60 | Water level, pH, EC, Na, K, Ca, Mg, Cl, HCO3, SO4 | 4322 | Minimum distances from Damietta branch, lake Manzala and Suez Canal |
Statistic | Sampling Year | Total Depth (m) | Water Level (m) | pH | EC dSm−1 | Ion Concentration in mg/L | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
K | Na | Mg | Ca | Cl | SO4 | HCO3 | ||||||
Mean | 1996 | 76.5 | 6.85 | 8.4 | 2.78 | 11 | 377 | 78 | 131 | 643 | 362 | 267 |
STD | 32.2 | 2.62 | 0.6 | 5.26 | 17 | 721 | 167 | 287 | 1675 | 1017 | 175 | |
Variance | 1039.6 | 6.88 | 0.4 | 27.66 | 299 | 519,669 | 27,985 | 82,401 | 2,805,187 | 1,033,345 | 30,593 | |
Kurtosis | −0.6 | −1.53 | 4.5 | 14.84 | 15 | 13 | 15 | 17 | 18 | 32 | 6.6 | |
Skewness | −0.17 | 0.02 | −1.8 | 3.82 | 3.7 | 3.6 | 3.9 | 4 | 4.2 | 5.4 | 2.3 | |
Minimum | 20 | 1.8 | 6.3 | 0.34 | 1 | 27 | 8 | 10 | 18 | 10 | 19 | |
Maximum | 140 | 10.75 | 9.7 | 26.75 | 90 | 3620 | 850 | 1623 | 9500 | 6900 | 1006 | |
Count | 56 | 56 | 56 | 56 | 56 | 56 | 56 | 56 | 56 | 56 | 56 | |
Mean | 2007 | 50.2 | 5.53 | 7.5 | 2.38 | 8 | 325 | 45 | 113 | 461 | 202 | 295 |
STD | 23.9 | 1.78 | 0.3 | 3.70 | 6 | 460 | 91 | 166 | 1118 | 207 | 85 | |
Variance | 572.4 | 3.16 | 0.09 | 13.69 | 42 | 211,539 | 8331 | 27,707 | 1,250,968 | 42,795 | 7311 | |
Kurtosis | −1.17 | 0.00 | 1.1 | 20.92 | 10.7 | 16 | 24 | 21 | 24 | 3 | 0.01 | |
Skewness | 0.15 | 0.80 | 1 | 4.51 | 3 | 3.8 | 4.9 | 4.4 | 4.9 | 1.8 | −0.41 | |
Minimum | 15 | 2.5 | 7.0 | 0.40 | 1.7 | 28 | 3.6 | 12 | 17.8 | 10 | 65 | |
Maximum | 105 | 10 | 8.5 | 20.73 | 39 | 2560 | 545 | 1020 | 6560 | 887 | 480 | |
Count | 67 | 67 | 67 | 67 | 67 | 67 | 67 | 67 | 67 | 67 | 67 | |
Mean | 2018 | 48.7 | 4.11 | 7.57 | 5.43 | 24 | 734 | 146 | 227 | 1459 | 654 | 227 |
STD | 31.2 | 1.45 | 0.38 | 8.14 | 26 | 1131 | 242 | 366 | 2556 | 1147 | 129 | |
Variance | 975.4 | 2.12 | 0.15 | 66.18 | 702 | 1,279,571 | 58,457 | 134,023 | 6,535,520 | 1,315,862 | 16,709 | |
Kurtosis | −0.02 | −0.52 | 3.08 | 2.35 | 8.8 | 2.3 | 3.8 | 4 | 3.7 | 4.3 | 5.8 | |
Skewness | 1.12 | −0.02 | 1.55 | 1.94 | 2.8 | 1.9 | 2.2 | 2.2 | 2.2 | 2.3 | 1.9 | |
Minimum | 18 | 0.75 | 6.9 | 0.389 | 4.5 | 16 | 13 | 15 | 30 | 15 | 72 | |
Maximum | 120 | 6.7 | 8.9 | 30.03 | 146 | 4350 | 960 | 1554 | 10,120 | 4560 | 810 | |
Count | 60 | 60 | 60 | 60 | 60 | 60 | 60 | 60 | 60 | 60 | 60 |
Year | Structures | Range |
---|---|---|
1996 | Spherical k-Bessel | 1200 m 100,000 m |
2007 | Spherical k-Bessel | 10000 m 100,000 m |
2018 | Spherical k-Bessel | 1000 m 100,000 m |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shaddad, S.; Castrignanò, A.; Di Curzio, D.; Rusi, S.; Abu Salem, H.S.; Nosair, A.M. An Integrated Statistical, Geostatistical and Hydrogeological Approach for Assessing and Modelling Groundwater Salinity and Quality in Nile Delta Aquifer. AgriEngineering 2025, 7, 34. https://doi.org/10.3390/agriengineering7020034
Shaddad S, Castrignanò A, Di Curzio D, Rusi S, Abu Salem HS, Nosair AM. An Integrated Statistical, Geostatistical and Hydrogeological Approach for Assessing and Modelling Groundwater Salinity and Quality in Nile Delta Aquifer. AgriEngineering. 2025; 7(2):34. https://doi.org/10.3390/agriengineering7020034
Chicago/Turabian StyleShaddad, Sameh, Annamaria Castrignanò, Diego Di Curzio, Sergio Rusi, Hend S. Abu Salem, and Ahmed M. Nosair. 2025. "An Integrated Statistical, Geostatistical and Hydrogeological Approach for Assessing and Modelling Groundwater Salinity and Quality in Nile Delta Aquifer" AgriEngineering 7, no. 2: 34. https://doi.org/10.3390/agriengineering7020034
APA StyleShaddad, S., Castrignanò, A., Di Curzio, D., Rusi, S., Abu Salem, H. S., & Nosair, A. M. (2025). An Integrated Statistical, Geostatistical and Hydrogeological Approach for Assessing and Modelling Groundwater Salinity and Quality in Nile Delta Aquifer. AgriEngineering, 7(2), 34. https://doi.org/10.3390/agriengineering7020034