Precision Monitoring of Dead Chickens and Floor Eggs with a Robotic Machine Vision Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bird Management
2.2. Robotic System for Collecting Dead Chickens and Egg Samples
2.3. Data Processing and Analysis
2.4. Detection Methods
2.5. Model Evaluation
3. Results and Discussion
3.1. The Influence of Robotics on Chicken Activity
3.2. Model Comparison
3.3. YOLOv8m Algorithm Detection
3.4. Comparison with Related Research
3.5. Future Studies
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Correction Statement
References
- Chang, C.-L.; Xie, B.-X.; Wang, C.-H. Visual Guidance and Egg Collection Scheme for a Smart Poultry Robot for Free-Range Farms. Sensors 2020, 20, 6624. [Google Scholar] [CrossRef] [PubMed]
- Hewson, C.J. What is animal welfare? Common definitions and their practical consequences. Can. Vet. J. 2003, 44, 496–499. [Google Scholar]
- Shields, S.; Duncan, I. A Comparison of the Welfare of Hens in Battery Cages and Alternative Systems; Impacts on Farm Animals Report; The Humane Society Institute for Science and Policy: Potomac, MD, USA, 2009. [Google Scholar]
- Mullally, C.; Lusk, J.L. The Impact of Farm Animal Housing Restrictions on Egg Prices, Consumer Welfare, and Production in California. Am. J. Agric. Econ. 2018, 100, 649–669. [Google Scholar] [CrossRef]
- Bist, R.B.; Subedi, S.; Yang, X.; Chai, L. Automatic Detection of Cage-Free Dead Hens with Deep Learning Methods. AgriEngineering 2023, 5, 1020–1038. [Google Scholar] [CrossRef]
- Yang, X.; Chai, L.; Bist, R.B.; Subedi, S.; Wu, Z. A Deep Learning Model for Detecting Cage-Free Hens on the Litter Floor. Animals 2022, 12, 1983. [Google Scholar] [CrossRef]
- Sheela, A.; Prithivi, K.; Nivesh, N.S.; Pavithran, A.; Pradeep, C.; Babu, K.P. Automation in egg collecting system in poultry farms. In Proceedings of the 4th National Conference on Current and Emerging Process Technologies e-CONCEPT-2021, Erode, India, 20 February 2021; AIP Publishing: Melville, NY, USA, 2021; Volume 2387. [Google Scholar]
- Vroegindeweij, B.A.; Kortlever, J.W.; Wais, E.; Henten, E. Development and test of an egg collecting device for floor eggs in loose housing systems for laying hens. In Proceedings of the International Conference of Agricultural Engineering, Zurich, Switzerland, 6–10 July 2014. [Google Scholar]
- Ren, G.; Lin, T.; Ying, Y.; Chowdhary, G.; Ting, K.C. Agricultural robotics research applicable to poultry production: A review. Comput. Electron. Agric. 2020, 169, 105216. [Google Scholar] [CrossRef]
- Rubio, F.; Valero, F.; Llopis-Albert, C. A review of mobile robots: Concepts, methods, theoretical framework, and applications. Int. J. Adv. Robot. Syst. 2019, 16, 1729881419839596. [Google Scholar] [CrossRef]
- Gopalakrishnan, B.; Tirunellayi, S.; Todkar, R. Design and development of an autonomous mobile smart vehicle: A mechatronics application. Mechatronics 2004, 14, 491–514. [Google Scholar] [CrossRef]
- Vroegindeweij, B.A.; van Willigenburg, G.L.; Koerkamp, P.W.G.; van Henten, E.J. Path planning for the autonomous collection of eggs on floors. Biosyst. Eng. 2014, 121, 186–199. [Google Scholar] [CrossRef]
- Bao, Y.; Lu, H.; Zhao, Q.; Yang, Z.; Xu, W. Detection system of dead and sick chickens in large scale farms based on artificial intelligence. Math. Biosci. Eng. 2021, 18, 6117–6135. [Google Scholar] [CrossRef]
- Hentout, A.; Aouache, M.; Maoudj, A.; Akli, I. Human–robot interaction in industrial collaborative robotics: A literature review of the decade 2008–2017. Adv. Robot. 2019, 33, 764–799. [Google Scholar] [CrossRef]
- Reese, R.; Kovarovics, A.; Charles, A.; Koduru, C.; Tanveer, M.H.; Voicu, R.C. Optimizing Data Capture Through Object Recognition for Efficient Sensor and Camera Management with a Quadruped Robot. In Proceedings of the Southeast Con 2024, Atlanta, GA, USA, 15–24 March 2024; IEEE: New York, NY, USA, 2024; pp. 1125–1130. [Google Scholar]
- Martinez Angulo, A.; Henry, S.; Tanveer, M.H.; Voicu, R.; Koduru, C. The Voice-To-Text Implementation with ChatGPT in Unitree Go1 Programming. In Proceedings of the 28th Symposium of Student Scholars, Kennesaw, GA, USA, 17–19 April 2024. [Google Scholar]
- Sharma, A.; Singh, P.K.; Khurana, P. Analytical review on object segmentation and recognition. In Proceedings of the 2016 6th International Conference—Cloud System and Big Data Engineering (Confluence), Noida, India, 14–15 January 2016; IEEE: New York, NY, USA, 2016; pp. 524–530. [Google Scholar]
- Jiang, H.; Zhang, C.; Qiao, Y.; Zhang, Z.; Zhang, W.; Song, C. CNN feature based graph convolutional network for weed and crop recognition in smart farming. Comput. Electron. Agric. 2020, 174, 105450. [Google Scholar] [CrossRef]
- Liu, H.-W.; Chen, C.-H.; Tsai, Y.-C.; Hsieh, K.-W.; Lin, H.-T. Identifying Images of Dead Chickens with a Chicken Removal System Integrated with a Deep Learning Algorithm. Sensors 2021, 21, 3579. [Google Scholar] [CrossRef]
- Jonker, L.M. Robotic Bin-Picking Pipeline for Chicken Fillets with Deep Learning-Based Instance Segmentation Using Synthetic Data. Master’s Thesis, University of Twente, Enschede, The Netherlands, 2023. Available online: https://essay.utwente.nl/94881/ (accessed on 6 July 2024).
- Yang, D.; Cui, D.; Ying, Y. Development and trends of chicken farming robots in chicken farming tasks: A review. Comput. Electron. Agric. 2024, 221, 108916. [Google Scholar] [CrossRef]
- Yang, X.; Bist, R.B.; Paneru, B.; Chai, L. Deep Learning Methods for Tracking the Locomotion of Individual Chickens. Animals 2024, 14, 911. [Google Scholar] [CrossRef]
- Li, G.; Huang, Y.; Chen, Z.; Chesser, G.D.; Purswell, J.L.; Linhoss, J.; Zhao, Y. Practices and Applications of Convolutional Neural Network-Based Computer Vision Systems in Animal Farming: A Review. Sensors 2021, 21, 1492. [Google Scholar] [CrossRef]
- Seo, J.; Sa, J.; Choi, Y.; Chung, Y.; Park, D.; Kim, H. A YOLO-based Separation of Touching-Pigs for Smart Pig Farm Applications. In Proceedings of the 2019 21st International Conference on Advanced Communication Technology (ICACT), PyeongChang, Republic of Korea, 17–20 February 2019; IEEE: New York, NY, USA, 2019; pp. 395–401. [Google Scholar]
- Tong, Q.; Zhang, E.; Wu, S.; Xu, K.; Sun, C. A real-time detector of chicken healthy status based on modified YOLO. Signal Image Video Process. 2023, 17, 4199–4207. [Google Scholar] [CrossRef]
- Zhang, X.; Zhu, R.; Zheng, W.; Chen, C. Detection of Leg Diseases in Broiler Chickens Based on Improved YOLOv8 X-Ray Images. IEEE Access 2024, 12, 47385–47401. [Google Scholar] [CrossRef]
- Yang, X.; Dai, H.; Wu, Z.; Bist, R.B.; Subedi, S.; Sun, J.; Lu, G.; Li, C.; Liu, T.; Chai, L. An innovative segment anything model for precision poultry monitoring. Comput. Electron. Agric. 2024, 222, 109045. [Google Scholar] [CrossRef]
- Gunaratnam, A.; Thayananthan, T.; Thangathurai, K.; Abhiram, B. Computer vision in livestock management and production. In Engineering Applications in Livestock Production; Tarafdar, A., Pandey, A., Gaur, G.K., Singh, M., Pandey, H.O., Eds.; Academic Press: Cambridge, MA, USA, 2024; pp. 93–128. ISBN 978-0-323-98385-3. [Google Scholar]
- Kim, M.; Shin, U.; Kim, J.-Y. Learning Quadrupedal Locomotion with Impaired Joints Using Random Joint Masking. arXiv 2024, arXiv:2403.00398. [Google Scholar] [CrossRef]
- Roh, S.G. Rapid Speed Change for Quadruped Robots via Deep Reinforcement Learning. In Proceedings of the 2023 IEEE International Conference on Development and Learning (ICDL), Macau, China, 9–11 November 2023; IEEE: New York, NY, USA, 2023; pp. 473–478. [Google Scholar]
- Long, J.; Wang, Z.; Li, Q.; Cao, L.; Gao, J.; Pang, J. Hybrid Internal Model: Learning Agile Legged Locomotion with Simulated Robot Response. In Proceedings of the Twelfth International Conference on Learning Representations, Vienna, Austria, 7–11 May 2024. [Google Scholar]
- Vidal, P.L.; de Moura, J.; Novo, J.; Ortega, M. Multi-stage transfer learning for lung segmentation using portable X-ray devices for patients with COVID-19. Expert Syst. Appl. 2021, 173, 114677. [Google Scholar] [CrossRef]
- Zou, K.; Chen, X.; Wang, Y.; Zhang, C.; Zhang, F. A modified U-Net with a specific data argumentation method for semantic segmentation of weed images in the field. Comput. Electron. Agric. 2021, 187, 106242. [Google Scholar] [CrossRef]
- Safaldin, M.; Zaghden, N.; Mejdoub, M. An Improved YOLOv8 to Detect Moving Objects. IEEE Access 2024, 12, 59782–59806. [Google Scholar] [CrossRef]
- Sohan, M.; Sai Ram, T.; Rami Reddy, C.V. A Review on YOLOv8 and Its Advancements. In Data Intelligence and Cognitive Informatics; Jacob, I.J., Piramuthu, S., Falkowski-Gilski, P., Eds.; Springer Nature: Singapore, 2024; pp. 529–545. [Google Scholar]
- Hussain, M. YOLO-v1 to YOLO-v8, the Rise of YOLO and Its Complementary Nature toward Digital Manufacturing and Industrial Defect Detection. Machines 2023, 11, 677. [Google Scholar] [CrossRef]
- Vroegindeweij, B.A.; Blaauw, S.K.; IJsselmuiden, J.M.M.; van Henten, E.J. Evaluation of the performance of PoultryBot, an autonomous mobile robotic platform for poultry houses. Biosyst. Eng. 2018, 174, 295–315. [Google Scholar] [CrossRef]
- Wu, T.; Dong, Y. YOLO-SE: Improved YOLOv8 for Remote Sensing Object Detection and Recognition. Appl. Sci. 2023, 13, 12977. [Google Scholar] [CrossRef]
- Rekavandi, A.M.; Xu, L.; Boussaid, F.; Seghouane, A.-K.; Hoefs, S.; Bennamoun, M. A Guide to Image and Video based Small Object Detection using Deep Learning: Case Study of Maritime Surveillance. arXiv 2022, arXiv:2207.12926. [Google Scholar] [CrossRef]
- Terven, J.; Córdova-Esparza, D.-M.; Romero-González, J.-A. A Comprehensive Review of YOLO Architectures in Computer Vision: From YOLOv1 to YOLOv8 and YOLO-NAS. Mach. Learn. Knowl. Extr. 2023, 5, 1680–1716. [Google Scholar] [CrossRef]
- Juba, B.; Le, H.S. Precision-Recall versus Accuracy and the Role of Large Data Sets. Proc. AAAI Conf. Artif. Intell. 2019, 33, 4039–4048. [Google Scholar] [CrossRef]
- Held, D.; Thrun, S.; Savarese, S. Learning to Track at 100 FPS with Deep Regression Networks. In Computer Vision—ECCV 2016; Leibe, B., Matas, J., Sebe, N., Welling, M., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 749–765. [Google Scholar]
- Jiang, P.; Ergu, D.; Liu, F.; Cai, Y.; Ma, B. A Review of Yolo Algorithm Developments. Procedia Comput. Sci. 2022, 199, 1066–1073. [Google Scholar] [CrossRef]
- Bist, R.B.; Subedi, S.; Chai, L.; Regmi, P.; Ritz, C.W.; Kim, W.K.; Yang, X. Effects of Perching on Poultry Welfare and Production: A Review. Poultry 2023, 2, 134–157. [Google Scholar] [CrossRef]
- Bist, R.B.; Yang, X.; Subedi, S.; Chai, L. Mislaying behavior detection in cage-free hens with deep learning technologies. Poult. Sci. 2023, 102, 102729. [Google Scholar] [CrossRef]
- Subedi, S.; Bist, R.; Yang, X.; Chai, L. Tracking pecking behaviors and damages of cage-free laying hens with machine vision technologies. Comput. Electron. Agric. 2023, 204, 107545. [Google Scholar] [CrossRef]
- Li, G.; Chesser, G.D., Jr.; Huang, Y.; Zhao, Y.; Purswell, J.L. Development and Optimization of a Deep-Learning-Based Egg-Collecting Robot. Trans. ASABE 2021, 64, 1659–1669. [Google Scholar] [CrossRef]
- Vroegindeweij, B.A.; IJsselmuiden, J.; van Henten, E.J. Probabilistic localisation in repetitive environments: Estimating a robot’s position in an aviary poultry house. Comput. Electron. Agric. 2016, 124, 303–317. [Google Scholar] [CrossRef]
- Hao, H.; Fang, P.; Duan, E.; Yang, Z.; Wang, L.; Wang, H. A Dead Broiler Inspection System for Large-Scale Breeding Farms Based on Deep Learning. Agriculture 2022, 12, 1176. [Google Scholar] [CrossRef]
- Lei, T.; Li, G.; Luo, C.; Zhang, L.; Liu, L.; Gates, R.S. An informative planning-based multi-layer robot navigation system as applied in a poultry barn. Intell. Robot. 2022, 2, 313–332. [Google Scholar] [CrossRef]
- Wang, C.-H.; Xie, B.-X.; Chang, C.-L. Design and Implementation of Livestock Robot for Egg Picking and Classification in the Farm. In Proceedings of the 2019 International Symposium on Electrical and Electronics Engineering (ISEE), Ho Chi Minh City, Vietnam, 10–12 October 2019; IEEE: New York, NY, USA, 2019; pp. 161–165. [Google Scholar]
- Zhang, D.; Zhou, F.; Yang, X.; Gu, Y. Unleashing the Power of Self-Supervised Image Denoising: A Comprehensive Review. arXiv 2023, arXiv:2308.00247. [Google Scholar] [CrossRef]
- Zhou, F.; Fu, Z.; Zhang, D. High Dynamic Range Imaging with Context-aware Transformer. In Proceedings of the 2023 International Joint Conference on Neural Networks (IJCNN), Gold Coast, Australia, 18–23 June 2023; IEEE: New York, NY, USA, 2023; pp. 1–8. [Google Scholar]
- He, P.; Chen, Z.; Yu, H.; Hayat, K.; He, Y.; Pan, J.; Lin, H. Research Progress in the Early Warning of Chicken Diseases by Monitoring Clinical Symptoms. Appl. Sci. 2022, 12, 5601. [Google Scholar] [CrossRef]
Model | Precision (%) | Recall (%) | FPS | mAP@0.5 | Class_loss | Box_loss |
---|---|---|---|---|---|---|
YOLOv8s | 85.39 | 79.32 | 74 | 85.08 | 0.94 | 2.01 |
YOLOv8n | 85.49 | 79.89 | 69 | 85.17 | 0.90 | 1.98 |
YOLOv8m | 90.59 | 79.34 | 63 | 85.40 | 0.92 | 2.02 |
YOLOv8l | 88.10 | 80.72 | 48 | 86.29 | 0.88 | 2.05 |
YOLOv8x | 87.97 | 78.52 | 41 | 85.31 | 0.89 | 2.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, X.; Zhang, J.; Paneru, B.; Lin, J.; Bist, R.B.; Lu, G.; Chai, L. Precision Monitoring of Dead Chickens and Floor Eggs with a Robotic Machine Vision Method. AgriEngineering 2025, 7, 35. https://doi.org/10.3390/agriengineering7020035
Yang X, Zhang J, Paneru B, Lin J, Bist RB, Lu G, Chai L. Precision Monitoring of Dead Chickens and Floor Eggs with a Robotic Machine Vision Method. AgriEngineering. 2025; 7(2):35. https://doi.org/10.3390/agriengineering7020035
Chicago/Turabian StyleYang, Xiao, Jinchang Zhang, Bidur Paneru, Jiakai Lin, Ramesh Bahadur Bist, Guoyu Lu, and Lilong Chai. 2025. "Precision Monitoring of Dead Chickens and Floor Eggs with a Robotic Machine Vision Method" AgriEngineering 7, no. 2: 35. https://doi.org/10.3390/agriengineering7020035
APA StyleYang, X., Zhang, J., Paneru, B., Lin, J., Bist, R. B., Lu, G., & Chai, L. (2025). Precision Monitoring of Dead Chickens and Floor Eggs with a Robotic Machine Vision Method. AgriEngineering, 7(2), 35. https://doi.org/10.3390/agriengineering7020035