AI-Driven Future Farming: Achieving Climate-Smart and Sustainable Agriculture
Abstract
:1. Introduction
2. Methods and Results
2.1. The Evolution of Agriculture and Technology
2.1.1. Traditional Farming Practices
2.1.2. Early Applications of Technology in Agriculture
2.1.3. The Shift Towards DATA-Driven Agriculture
2.2. Remote Sensing Data
2.2.1. Satellites
2.2.2. Image Pre-Processing
2.2.3. Spectral Indices in the Literature
2.2.4. Remote Sensing Applications for Improving Agriculture Practices
2.3. Application of Technologies in Modern Agriculture
2.3.1. AI Applications for Predictive Analytics and Decision-Making
- ▪
- Predictive crop modeling
- ▪
- Pest and disease prediction
- ▪
- Soil health analysis
- ▪
- Resource optimization
- ▪
- Automated machinery
2.3.2. Enhancing Agricultural Efficiency with ML and DL Models
- ▪
- Soil properties and weather prediction
- ▪
- Crop yield prediction
- ▪
- Biotic and abiotic stress detection
- ▪
- Intelligent harvesting techniques
2.3.3. Internet of Things (IoT) in Precision Agriculture
2.3.4. Variable-Rate Technology (VRT) in Smart Farming
- ▪
- Map-Based Technologies for Variable-Rate Application
3. Conclusions
4. Future Perspectives
- ○
- Advanced Algorithms: The further exploration of ML, DL, and hybrid algorithms holds promise for improving resource management and sustainability in agriculture. By developing more sophisticated models, we can enhance predictive capabilities and optimize farming operations for maximum efficiency.
- ○
- Data Integration and Analysis: The integration of diverse data sources, including satellite imagery, sensor data, and weather forecasts, presents opportunities for comprehensive analysis and informed decision-making in agriculture. Advanced data mining and management tools will be essential for extracting valuable insights from large datasets.
- ○
- Smart Farming Technologies: Efficiency and advances in agriculture will be fueled by ongoing innovation in smart farming technology, such as robotics, drones, and sensors enabled by the Internet of Things. More sustainable farming methods are made possible by these technologies, which allow for the real-time monitoring and management of crops, livestock, and environmental conditions. In what ways might 3D mapping and monitoring support each farm’s sustainability objectives? How might unmanned hybrid (aerial–ground) drones enhance agricultural monitoring operation management [152]?
- ○
- AI Applications in Irrigation Science and Water Use Efficiency: Artificial intelligence is transforming irrigation science and water usage efficiency, solving water shortage concerns exacerbated by climate change. Precision agriculture, which incorporates AI-powered technologies such as smart sensors, IoT, and wireless sensor networks, optimizes irrigation by considering soil moisture fluctuation and crop water requirements [153]. Smart irrigation delivers accurate water delivery, reducing waste and crop stress while enhancing resource management [154]. Conventional irrigation techniques frequently lead to unequal water distribution, which causes inefficiencies such as nutrient leaching, runoff, and yield decreases, since they fail to take into consideration dynamic soil and weather conditions. Wireless sensor networks, IoT-enabled smart sensors, and AI-driven models have all been used in recent developments to improve irrigation scheduling and track environmental factors in real time [155,156,157]. AI-powered irrigation control systems provide optimal water usage by dynamically adjusting water applications based on crop responses, predictive analytics, and external environmental disturbances. Although there has been a lot of progress, future studies ought to focus on strengthening AI integration with current smart irrigation technologies, enhancing data-driven decision support systems, and tackling issues with system scalability, energy efficiency, and data accuracy. In the face of climate uncertainty, expanding AI applications in irrigation research will be essential to attaining the sustainable management of water resources and ensuring global food security.
- ○
- Digital Agriculture Platforms: The emergence of digital agriculture ecosystems and platforms will make it easier for participants in the agricultural value chain to work together and exchange knowledge. These platforms can provide farmers with access to market information, financial services, and agronomic advice, empowering them to make informed decisions and improve productivity.
- ○
- Policy Support and Investment: Governments and policymakers play a crucial role in supporting the adoption of cutting-edge technologies in agriculture. Policies that promote investment in technology infrastructure, training programs for farmers, and research and development initiatives will be essential for driving innovation and ensuring equitable access to agricultural technologies.
- ○
- Addressing Barriers to Adoption: Overcoming challenges such as high costs, training requirements, and data security concerns will be critical for the broader adoption of AI, ML, DL, and IoT in agriculture. Collaborative efforts between governments, technology providers, and the farming community are needed to address these barriers and realize the full potential of technology-driven agriculture.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Abbreviation | Full Form |
AI | Artificial Intelligence |
IoT | Internet of Things |
PA | Precision Agriculture |
GPS | Global Positioning System |
GIS | Geographic Information Systems |
NDVI | Normalized Difference Vegetation Index |
SAVI | Soil-Adjusted Vegetation Index |
VSSI | Vegetation Soil Salinity Index |
EVI | Enhanced Vegetation Index |
NLVI | Non-Linear Vegetation Index |
DVI | Differential Vegetation Index |
GRVI | Green Ratio Vegetation Index |
SI | Salinity Index |
ERSI | Enhanced Residues Soil Salinity Index |
CRSI | Canopy Response Salinity Index |
CI | Clay Index |
GI | Gypsum Index |
BI | Brightness Index |
NMDI | Normalized Multi-Band Drought Index |
L(λ) | Radiance |
ρ(λ) | Reflectance |
USGS | United States Geological Survey |
NASA | National Aeronautics and Space Administration |
ESA | European Space Agency |
SWIR | Shortwave Infrared |
NIR | Near-Infrared |
R | Red |
B | Blue |
G | Green |
π | Pi (Mathematical Constant) |
θ | Solar Zenith Angle |
NRBS | Nitrogen-Rich Biosensor Spots |
DL | Deep Learning |
ML | Machine Learning |
VRT | Variable-Rate Technology |
SVM | Support Vector Machine |
KNN | K-Nearest Neighbors |
DT | Decision Tree |
RF | Random Forest |
ANN | Artificial Neural Network |
MSE | Mean Squared Error |
LSTM | Long Short-Term Memory |
TP | True Positives |
TN | True Negatives |
FP | False Positives |
FN | False Negatives |
T | Number of trees in Random Forest |
P(y∣X) | Posterior probability of data point y given X |
Sentinel-2 | A satellite mission for Earth observation by the European Space Agency |
Landsat-8 | A satellite for remote sensing managed by NASA and USGS |
AS7341 | A spectral sensor commonly used in agricultural remote sensing |
PCM | Predictive Crop Modeling |
HRI | High-Resolution Imagery |
EL | Ensemble Learning |
RS | Remote Sensing |
ELM | Extreme Learning Machine |
SOC | Soil Organic Carbon |
pXRF | Portable X-ray Fluorescence |
DNN | Deep Neural Network |
UAV | Unmanned Aerial Vehicle |
RNN | Recurrent Neural Network |
MODIS | Moderate-Resolution Imaging Spectroradiometer |
SNAP | Sentinel Application Platform |
RMSE | Root Mean Square Error |
R2 | Coefficient of Determination |
LASSO | Least Absolute Shrinkage and Selection Operator |
GA | Genetic Algorithm |
RGB | Red, Green, Blue (color model used for images) |
SIF | Solar-Induced Chlorophyll Fluorescence |
pH | Potential of Hydrogen |
MLP | Multi-Layer Perceptron |
YOLO | You Only Look Once (a family of real-time object detection models) |
RBF | Radial Basis Function (a kernel function used in SVM) |
PCA | Principal Component Analysis |
VFH | Viewpoint Feature Histogram (used in object recognition and classification) |
mAP | Mean Average Precision (used to evaluate object detection models) |
F1 Score | A measure of a model’s accuracy, combining precision and recall |
Inception-ResNet | A hybrid deep learning architecture combining Inception and ResNet models |
SLIC | Simple Linear Iterative Clustering (an algorithm for image segmentation) |
DL Models | Deep Learning Models |
WSN | Wireless Sensor Networks |
Li-ion | Lithium Ion |
SPAD | Soil Plant Analysis Development |
VRA | Variable Rate Application |
NLP | Natural Language Processing |
AI-ML | Artificial Intelligence and Machine Learning |
USDA | United States Department of Agriculture |
NASS | National Agricultural Statistics Service |
References
- Lal, R. Feeding 11 billion on 0.5 billion hectare of area under cereal crops. Food Energy Secur. 2016, 5, 239–251. [Google Scholar]
- Arora, N.K. Impact of climate change on agriculture production and its sustainable solutions. Environ. Sustain. 2019, 2, 95–96. [Google Scholar]
- Chen, S.; Chen, X.; Xu, J. Impacts of climate change on agriculture: Evidence from China. J. Environ. Econ. Manag. 2016, 76, 105–124. [Google Scholar]
- El Bilali, H.; Callenius, C.; Strassner, C.; Probst, L. Food and nutrition security and sustainability transitions in food systems. Food Energy Secur. 2019, 8, e00154. [Google Scholar]
- Grisso, R.D.; Alley, M.M.; Brann, D.E.; Donohue, S.J. Precision Farming Tools: Variable-Rate Application; Virginia Cooperative Extension: Petersburg, VA, USA, 2010. [Google Scholar]
- Kitchen, N.R.; Clay, D.E. Precision agriculture techniques for nutrient management. In GIS Applications in Agriculture; Clay, D.E., Shanahan, J.F., Eds.; CRC Press: Boca Raton, FL, USA, 2018; pp. 245–276. [Google Scholar]
- Probyn-Smith, R. Adopting Precision Agriculture Technologies for Farm Efficiency and Sustainability; AgriFutures Australia: Wagga Wagga, Australia, 2018. [Google Scholar]
- Clay, D.E.; Reese, C.; Chang, J.; Clay, S.A. Grid soil sampling and its implications for nutrient management. Agron. J. 2017, 109, 2210–2220. [Google Scholar]
- Ingram, J.; Maye, D.; Kirwan, J. Digital agriculture and its impact on farm data management practices. J. Rural Stud. 2022, 88, 66–76. [Google Scholar]
- Griffin, T.W.; Yeager, E.A.; Lambert, D.M. Decision agriculture: Data-driven decision-making for farmers. Agric. Syst. 2018, 165, 20–29. [Google Scholar]
- Hitimana, F.; Mahajan, G.R.; Al-Mahmud, S. Machine learning applications for pest and disease management in crops. AI Agric. 2024, 15, 103–116. [Google Scholar]
- Mowla, Q.; Ghosh, S.; Zaman, A. IoT-enabled smart farming systems: An overview. Sensors 2023, 23, 3456. [Google Scholar]
- Babar, M.I.; Akan, B. Smart irrigation systems in IoT for sustainable water management. J. Environ. Manag. 2024, 316, 115347. [Google Scholar]
- Alahmad, H.; Yaseen, Z.M.; Kim, S. Crop modeling and weather prediction for yield optimization. Agric. For. Meteorol. 2023, 325, 109124. [Google Scholar]
- Can, F. The role of big data in advancing agricultural technology and decision-making. Agric. Food Technol. Rev. 2023, 11, 35–52. [Google Scholar]
- Subeesh, M.; Mehta, S. Challenges in integrating AI and IoT in agriculture: A review. Comput. Electron. Agric. 2021, 189, 106359. [Google Scholar]
- Yaqoob, I.; Salah, K.; Al-Fuqaha, A. Policy frameworks for promoting digital agriculture globally. Technol. Forecast. Soc. Change 2022, 182, 121816. [Google Scholar]
- Wang, J.; Ding, J.; Yu, D.; Ma, X.; Zhang, Z.; Ge, X.; Teng, D.; Li, X.; Liang, J.; Lizaga, I.; et al. Capability of Sentinel-2MSI data for monitoring and mapping of soil salinity in dry and wet seasons in the Ebinur Lake region, Xinjiang, China. Geoderma 2019, 353, 172–187. [Google Scholar]
- Mirzaee, S.; Nafchi, A.M. Monitoring Spatiotemporal Vegetation Response to Drought Using Remote Sensing Data. Sensors 2023, 23, 2134. [Google Scholar] [CrossRef]
- Wang, F.; Shi, Z.; Biswas, A.; Yang, S.; Ding, J. Multi-algorithm comparison for predicting soil salinity. Geoderma 2020, 365, 114211. [Google Scholar]
- Habib, A.F.; Kersting, A.P.; Shaker, A.; Yan, W.Y. Geometric calibration and radiometric correction of LiDAR data and their impact on the quality of derived products. Sensors 2011, 11, 9069–9097. [Google Scholar] [CrossRef]
- Al Kuwari, N.Y.; Ahmed, S.; Kaiser, M.F. Optimal Satellite Sensor Selection Utilized to Monitor the Impact of Urban Sprawl on the Thermal Environment in Doha City, Qatar; Qatar University Library: Doha, Qatar, 2016. [Google Scholar]
- Mirzaee, S.; Nafchi, A.M.; Ostovari, Y.; Seifid, M.; Ghorbani-Dashtakie, S.; Khodaverdiloo, H.; Chakherlou, S.; Taghizadeh-Mehrjardi, R.; Raei, B. Monitoring and Assessment of Spatiotemporal Soil Salinization in the Lake Urmia Region. Environ. Monit. Assess. J. 2024, 196, 958. [Google Scholar]
- Rouse, J.W.; Haas, R.H.; Schelle, J.A.; Deering, D.W.; Harlan, J.C. Monitoring the Vernal Advancement or Retrogradation of Natural Vegetation; NASA/GSFC 1974, Type III, Final Report; NASA/GSFC: Greenbelt, MD, USA, 1974; p. 371. [Google Scholar]
- Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar]
- Dehni, A.; Lounis, M. Remote sensing techniques for salt affected soil mapping: Application to the Oran region of Algeria. Procedia Eng. 2012, 33, 188–198. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Goel, N.S.; Qin, W. Influences of canopy architecture on relationships between various vegetation indices and LAI and FPAR. Remote Sens. Rev. 1994, 10, 309–347. [Google Scholar] [CrossRef]
- Tucker, C. Red and Photographic Infrared Linear Combinations for Monitoring Vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef]
- Sripada, R.; Heiniger, R.; White, J.; Meijer, A. Aerial Color Infrared Photography for Determining Early In-season Nitrogen Requirements in Corn. Agron. J. 2006, 98, 968–977. [Google Scholar] [CrossRef]
- Tripathi, N.K.; Brijesh, K.R.; Dwivedi, P. Spatial modelling of soil alkalinity in GIS environment using IRS data. In Proceedings of the 18th Asian Conference on Remote Sensing, Kuala Lumpur, Malaysia, 20–24 October 1997. [Google Scholar]
- Douaoui, A.E.K.; Nicolas, H.; Walter, C. Detecting salinity hazards within a semiarid context by means of combining soil and remote-sensing data. Geoderma 2006, 134, 217–230. [Google Scholar] [CrossRef]
- Khan, N.M.; Rastoskuev, V.V.; Shalina, E.; Sato, Y. Mapping saltaffected soil using remote sensing indicators. A simple approach with the use of Gis Idrissi. In Proceedings of the 22nd Asian Conference on Remote Sensing, Singapore, 5–9 November 2001. [Google Scholar]
- Khan, N.M.; Rastoskuev, V.V.; Sato, Y.; Shiozawa, S. Assessment of hydrosaline land degradation by using a simple approach of remote sensing indicators. Agric. Water Manag. 2005, 77, 96–109. [Google Scholar] [CrossRef]
- Manière, R.; Bassisty, E.; Celles, J.C.; Melzi, S. Use of spatial remote sensing (XS data from Spot) for mapping land cover in Mediterranean arid zones: Example of Ain Oussera (Algeria). Cah. Orstom Sér. Pédol. 1993, 28, 67–80. (In French) [Google Scholar]
- Abbas, A.; Khan, S. Using remote sensing techniques for appraisal of irrigated soil salinity. In Proceedings of the Advances and Applications for Management and Decision-Making Land, Water and Environmental Management: Integrated Systems for Sustainability MODSIM07, Christchurch, New Zealand, 10–13 December 2007. [Google Scholar]
- Wang, N.; Peng, J.; Chen, S.; Huang, J.; Li, H.; Biswas, A.; He, Y.; Shi, Z. Improving remote sensing of salinity on topsoil with crop residues using novel indices of optical and microwave bands. Geoderma 2022, 422, 115935. [Google Scholar] [CrossRef]
- Scudiero, E.; Skaggs, T.H.; Corwin, D.L. Regional scale soil salinity evaluation using Landsat 7, western San Joaquin Valley, California, USA. Geoderma Reg. 2014, 2–3, 82–90. [Google Scholar] [CrossRef]
- Drury, S. Image Interpretation in Geology; Allen and Unwin: London, UK, 1987; 243p. [Google Scholar]
- Nield, S.J.; Boettinger, J.L.; Ramsey, R.D. Digitally Mapping Gypsic and Natric Soil Areas Using Landsat ETM Data. Soil Sci. Soc. Am. J. 2007, 71, 245–252. [Google Scholar]
- Wang, L.; Qu, J.J. NMDI: A normalized multiband drought index for monitoring soil and vegetation moisture with satellite remote sensing. Geophys. Res. Lett. 2007, 34, 204–205. [Google Scholar]
- Sadeghi, M.; Babaeian, E.; Tuller, M.; Jones, S.B. The optical trapezoid model: A novel approach to remote sensing of soil moisture applied to Sentinel-2 and Landsat-8 observations. Remote Sens. Environ. 2017, 198, 52–68. [Google Scholar]
- Sahabiev, I.; Smirnova, E.; Giniyatullin, K. Spatial prediction of agrochemical properties on the scale of a single field using machine learning methods based on remote sensing data. Agronomy 2021, 11, 2266. [Google Scholar] [CrossRef]
- Wolters, S.; Söderström, M.; Piikki, K.; Stenberg, M. Near-real time winter wheat N uptake from a combination of proximal and remote optical measurements: How to refine Sentinel-2 satellite images for use in a precision agriculture decision support system. In Precision Agriculture’19; Wageningen Academic: Wageningen, The Netherlands, 2019; pp. 1001–1007. [Google Scholar]
- Mirzaee, S.; Nafchi, A.M. Pros and Cons of Yield Goal-Based Variable Rate Nitrogen Prescription Maps. In SABE Annual International Meeting; American Society of Agricultural and Biological Engineers: Saint Joseph, MI, USA, 2024. [Google Scholar]
- Mirzaee, S.; Nafchi, A.M. Enhancing Nitrogen Use Efficiency and Crop Yields Integrating Biosensors-rich Spots and Remote Sensing. In ASABE Annual International Meeting; American Society of Agricultural and Biological Engineers: Saint Joseph, MI, USA, 2024. [Google Scholar]
- Rani, R.; Sahoo, J.; Bellamkonda, S.; Kumar, S.; Pippal, S.K. Role of Artificial Intelligence in Agriculture: An Analysis and Advancements with Focus on Plant Diseases. IEEE Access 2023, 11, 137999–138019. [Google Scholar]
- Espinel, R.; Herrera-Franco, G.; Rivadeneira García, J.L.; Escandón-Panchana, P. Artificial intelligence in agricultural mapping: A review. Agriculture 2024, 14, 1071. [Google Scholar] [CrossRef]
- Spanaki, K.; Sivarajah, U.; Fakhimi, M.; Despoudi, S.; Irani, Z. Disruptive technologies in agricultural operations: A systematic review of AI-driven AgriTech research. Ann. Oper. Res. 2022, 308, 491–524. [Google Scholar] [CrossRef]
- Wei, W.; Xiao, M.; Wang, H.; Zhu, Y.; Xie, C.; Geng, G. Research progress of multiple agricultural machines for cooperative operations: A review. Comput. Electron. Agric. 2024, 227, 109628. [Google Scholar]
- Alibabaei, K.; Gaspar, P.D.; Lima, T.M.; Campos, R.M.; Girão, I.; Monteiro, J.; Lopes, C.M. A review of the challenges of using deep learning algorithms to support decision-making in agricultural activities. Remote Sens. 2022, 14, 638. [Google Scholar] [CrossRef]
- Durai, S.K.S.; Shamili, M.D. Smart farming using machine learning and deep learning techniques. Decis. Anal. J. 2022, 3, 100041. [Google Scholar]
- Naseer, A.; Shmoon, M.; Shakeel, T.; Ur Rehman, S.; Ahmad, A.; Gruhn, V. A Systematic Literature Review of the IoT in Agriculture-Global Adoption, Innovations, Security Privacy Challenges. IEEE Access 2024, 12, 60986–61021. [Google Scholar]
- Xu, J.; Gu, B.; Tian, G. Review of agricultural IoT technology. Artif. Intell. Agric. 2022, 6, 10–22. [Google Scholar]
- Saleem, S.R.; Zaman, Q.U.; Schumann, A.W.; Naqvi, S.M.Z.A. Variable rate technologies: Development, adaptation, and opportunities in agriculture. In Precision Agriculture; Academic Press: Boca Raton, FL, USA, 2023; pp. 103–122. [Google Scholar]
- Anggoro, D.A.; Kurnia, N.D. Comparison of accuracy level of support vector machine (SVM) and K-nearest neighbors (KNN) algorithms in predicting heart disease. Int. J. 2020, 8, 1689–1694. [Google Scholar]
- Uddin, S.; Haque, I.; Lu, H.; Moni, M.A.; Gide, E. Comparative performance analysis of K-nearest neighbour (KNN) algorithm and its different variants for disease prediction. Sci. Rep. 2022, 12, 6256. [Google Scholar]
- Mallick, J.; Alkahtani, M.; Hang, H.T.; Singh, C.K. Game-theoretic optimization of landslide susceptibility mapping: A comparative study between Bayesian-optimized basic neural network and new generation neural network models. Environ. Sci. Pollut. Res. 2024, 31, 29811–29835. [Google Scholar]
- Amiri, A.F.; Oudira, H.; Chouder, A.; Kichou, S. Faults detection and diagnosis of PV systems based on machine learning approach using random forest classifier. Energy Convers. Manag. 2024, 301, 118076. [Google Scholar]
- Guruprakash, K.S.; Siva Karthik, P.; Ramachandran, A.; Gayathri, K. Crop pest identification using deep network based extracted features and MobileENet in smart agriculture. Land Degrad. Dev. 2024, 35, 3642–3652. [Google Scholar]
- Laursen, M.S.; Midtiby, H.S.; Krüger, N.; Jørgensen, R.N. Statistics-based segmentation using a continuous-scale naive Bayes approach. Comput. Electron. Agric. 2014, 109, 271–277. [Google Scholar]
- Gao, P.; Qiu, H.; Lan, Y.; Wang, W.; Chen, W.; Han, X.; Lu, J. Modeling for the prediction of soil moisture in litchi orchard with deep long short-term memory. Agriculture 2021, 12, 25. [Google Scholar] [CrossRef]
- Kheir, A.M.; Mkuhlani, S.; Mugo, J.W.; Elnashar, A.; Nangia, V.; Devare, M.; Govind, A. Integrating APSIM model with machine learning to predict wheat yield spatial distribution. Agron. J. 2023, 115, 3188–3196. [Google Scholar] [CrossRef]
- Griffin, T.W.; Shockley, J.M.; Mark, T.B. Economics of precision farming. In Precision Agriculture Basics; American Society of Agronomy: Madison, WI, USA, 2018; pp. 221–230. [Google Scholar]
- Clay, D.E.; Brase, T.A.; Reicks, G. Mathematics of latitude and longitude. In Practical Mathematics for Precision Farming; ASA, CSSA, SSSA: Madison, WI, USA, 2017. [Google Scholar]
- Ouhami, M.; Hafiane, A.; Es-Saady, Y.; El Hajji, M.; Canals, R. Computer vision, IoT and data fusion for crop disease detection using machine learning: A survey and ongoing research. Remote Sens. 2021, 13, 2486. [Google Scholar] [CrossRef]
- Kumari, K.; Nafchi, A.M. Sustainable Agriculture with AI, Machine Learning, Deep Learning, and IoT for Future Farming. In Proceedings of the 2024 ASABE Annual International Meeting American Society of Agricultural and Biological Engineers, Anaheim, CA, USA, 28–31 July 2024; p. 1. [Google Scholar]
- Singh, K.K. An artificial intelligence and cloud based collaborative platform for plant disease identification, tracking and forecasting for farmers. In Proceedings of the 2018 IEEE International Conference on Cloud Computing in Emerging Markets (CCEM), Bangalore, India, 23–24 November 2018; pp. 49–56. [Google Scholar]
- Talaviya, T.; Shah, D.; Patel, N.; Yagnik, H.; Shah, M. Implementation of artificial intelligence in agriculture for optimisation of irrigation and application of pesticides and herbicides. Artif. Intell. Agric. 2020, 4, 58–73. [Google Scholar]
- Klerkx, L.; Jakku, E.; Labarthe, P. A review of social science on digital agriculture, smart farming and agriculture 4.0: New contributions and a future research agenda. NJAS Wagening. J. Life Sci. 2019, 90, 100315. [Google Scholar] [CrossRef]
- Qazi, A.M.; Mahmood, S.H.; Haleem, A.; Bahl, S.; Javaid, M.; Gopal, K. The impact of smart materials, digital twins (DTs) and Internet of things (IoT) in an industry 4.0 integrated automation industry. Mater. Today Proc. 2022, 62, 18–25. [Google Scholar]
- Lowe, M.; Qin, R.; Mao, X. A review on machine learning, artificial intelligence, and smart technology in water treatment and monitoring. Water 2022, 14, 1384. [Google Scholar] [CrossRef]
- Widianto, M.H.; Ardimansyah, M.I.; Pohan, H.I.; Hermanus, D.R. A systematic review of current trends in artificial intelligence for smart farming to enhance crop yield. J. Robot. Control 2022, 3, 269–278. [Google Scholar] [CrossRef]
- Wang, H. The rationality evaluation of green agriculture industry structure in heilongjiang province based on artificial intelligence technology. In Proceedings of the 2019 12th International Conference on Intelligent Computation Technology and Automation (ICICTA), Xiangtan, China, 26–27 October 2019; pp. 719–723. [Google Scholar]
- Nikolaou, G.; Neocleous, D.; Christou, A.; Kitta, E.; Katsoulas, N. Implementing sustainable irrigation in water-scarce regions under the impact of climate change. Agronomy 2020, 10, 1120. [Google Scholar] [CrossRef]
- Castro-Maldonado, J.J.; Patiño-Murillo, J.A.; Florian-Villa, A.E.; Guadrón-Guerrero, O.E. Application of computer vision and low-cost artificial intelligence for the identification of phytopathogenic factors in the agro-industry sector. In Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2018; Volume 1126, p. 012022. [Google Scholar]
- Parikh, S.J.; James, B.R. Soil: The foundation of agriculture. Nat. Educ. Knowl. 2012, 3, 2. [Google Scholar]
- Javed, A.; Ali, E.; Afzal, K.B.; Osman, A.; Riaz, S. Soil fertility: Factors affecting soil fertility, and biodiversity responsible for soil fertility. Int. J. Plant Anim. Environ. Sci. 2022, 12, 21–33. [Google Scholar]
- Emrullah, A.C.A.R.; Ozerdem, M.S.; Ustundag, B.B. Machine learning based regression model for prediction of soil surface humidity over moderately vegetated fields. In Proceedings of the 2019 8th International Conference on Agro-Geoinformatics (Agro-Geoinformatics), Istanbul, Turkey, 16–19 July 2019; pp. 1–4. [Google Scholar]
- Chowdary, V. Machine Learning Applications for Precision Agriculture: A Comprehensive Review. IEEE Access 2021, 9, 4843–4873. [Google Scholar]
- Park, S.; Im, J.; Park, S.; Rhee, J. AMSR2 soil moisture downscaling using multisensor products through machine learning approach. In Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2015; pp. 1984–1987. [Google Scholar]
- Reda, R.; Saffaj, T.; Ilham, B.; Saidi, O.; Issam, K.; Brahim, L. A comparative study between a new method and other machine learning algorithms for soil organic carbon and total nitrogen prediction using near infrared spectroscopy. Chemom. Intell. Lab. Syst. 2019, 195, 103873. [Google Scholar]
- Morellos, A.; Pantazi, X.-E.; Moshou, D.; Alexandridis, T.; Whetton, R.; Tziotzios, G.; Wiebensohn, J.; Bill, R.; Mouazen, A.M. Machine learning based prediction of soil total nitrogen, organic carbon and moisture content by using VIS-NIR spectroscopy. Biosyst. Eng. 2016, 152, 104–116. [Google Scholar]
- Andrade, R.; Silva, S.H.G.; Weindorf, D.C.; Chakraborty, S.; Faria, W.M.; Mesquita, L.F.; Guilherme, L.R.G.; Curi, N. Assessing models for prediction of some soil chemical properties from portable X-ray fluorescence (pXRF) spectrometry data in Brazilian Coastal Plains. Geoderma 2020, 357, 113957. [Google Scholar]
- Deiss, L.; Margenot, A.J.; Culman, S.W.; Demyan, M.S. Tuning support vector machines regression models improves prediction accuracy of soil properties in MIR spectroscopy. Geoderma 2020, 365, 114227. [Google Scholar]
- Stamenkovic, J.; Tuia, D.; De Morsier, F.; Borgeaud, M.; Thiran, J.P. Estimation of soil moisture from airborne hyperspectral imagery with support vector regression. In Proceedings of the 2013 5th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), Gainesville, FL, USA, 26–28 June 2013; pp. 1–4. [Google Scholar]
- Song, X.; Zhang, G.; Liu, F.; Li, D.; Zhao, Y.; Yang, J. Modeling spatio-temporal distribution of soil moisture by deep learning-based cellular automata model. J. Arid Land 2016, 8, 734–748. [Google Scholar]
- Bhanumathi, S.; Vineeth, M.; Rohit, N. Crop yield prediction and efficient use of fertilizers. In Proceedings of the 2019 International Conference on Communication and Signal Processing (ICCSP), Chennai, India, 4–6 April 2019; pp. 769–773. [Google Scholar]
- Peng, B.; Guan, K.; Zhou, W.; Jiang, C.; Frankenberg, C.; Sun, Y.; He, L.; Köhler, P. Assessing the benefit of satellite-based Solar-Induced Chlorophyll Fluorescence in crop yield prediction. Int. J. Appl. Earth Obs. Geoinf. 2020, 90, 102126. [Google Scholar]
- Khaki, S.; Wang, L. Crop yield prediction using deep neural networks. Front. Plant Sci. 2019, 10, 452963. [Google Scholar]
- Cai, Y.; Guan, K.; Lobell, D.; Potgieter, A.B.; Wang, S.; Peng, J.; Xu, T.; Asseng, S.; Zhang, Y.; You, L.; et al. Integrating satellite and climate data to predict wheat yield in Australia using machine learning approaches. Agric. For. Meteorol. 2019, 274, 144–159. [Google Scholar]
- Gümüşçü, A.; Tenekeci, M.E.; Bilgili, A.V. Estimation of wheat planting date using machine learning algorithms based on available climate data. Sustain. Comput. Inform. Syst. 2020, 28, 100308. [Google Scholar]
- Nevavuori, P.; Narra, N.; Lipping, T. Crop yield prediction with deep convolutional neural networks. Comput. Electron. Agric. 2019, 163, 104859. [Google Scholar]
- Koirala, A.; Walsh, K.B.; Wang, Z.; McCarthy, C. Deep learning–Method overview and review of use for fruit detection and yield estimation. Comput. Electron. Agric. 2019, 162, 219–234. [Google Scholar]
- Kuwata, K.; Shibasaki, R. Estimating crop yields with deep learning and remotely sensed data. In Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2015; pp. 858–861. [Google Scholar]
- Kulkarni, S.; Mandal, S.N.; Sharma, G.S.; Mundada, M.R. Predictive analysis to improve crop yield using a neural network model. In Proceedings of the 2018 International Conference on Advances in Computing, Communications, and Informatics (ICACCI), Bangalore, India, 19–22 September 2018; pp. 74–79. [Google Scholar]
- Wulandhari, L.A.; Gunawan, A.A.S.; Qurania, A.; Harsani, P.; Tarawan, T.F.; Hermawan, R.F. Plant nutrient deficiency detection using deep convolutional neural network. ICIC Express Lett. 2019, 13, 971–977. [Google Scholar]
- Watchareeruetai, U.; Noinongyao, P.; Wattanapaiboonsuk, C.; Khantiviriya, P.; Duangsrisai, S. Identification of plant nutrient deficiencies using convolutional neural networks. In Proceedings of the 2018 International Electrical Engineering Congress (iEECON), Krabi, Thailand, 7–9 March 2018; pp. 1–4. [Google Scholar]
- Ghosal, S.; Blystone, D.; Singh, A.K.; Ganapathysubramanian, B.; Singh, A.; Sarkar, S. An explainable deep machine vision framework for plant stress phenotyping. Proc. Natl. Acad. Sci. USA 2018, 115, 4613–4618. [Google Scholar]
- Sarkar, S.K.; Das, J.; Ehsani, R.; Kumar, V. Towards autonomous phytopathology: Outcomes and challenges of citrus greening disease detection through close-range remote sensing. In Proceedings of the 2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 16–21 May 2016; pp. 5143–5148. [Google Scholar]
- Ebrahimi, M.A.; Khoshtaghaza, M.H.; Minaei, S.; Jamshidi, B. Vision-based pest detection based on SVM classification method. Comput. Electron. Agric. 2017, 137, 52–58. [Google Scholar]
- Pantazi, X.E.; Moshou, D.; Tamouridou, A.A. Automated leaf disease detection in different crop species through image features analysis and One Class Classifiers. Comput. Electron. Agric. 2019, 156, 96–104. [Google Scholar]
- Sambasivam, G.; Opiyo, G.D. A predictive machine learning application in agriculture: Cassava disease detection and classification with imbalanced dataset using convolutional neural networks. Egypt. Inform. J. 2021, 22, 27–34. [Google Scholar]
- Ramcharan, A.; Baranowski, K.; McCloskey, P.; Ahmed, B.; Legg, J.; Hughes, D.P. Deep learning for image-based cassava disease detection. Front. Plant Sci. 2017, 8, 1852. [Google Scholar]
- Mohanty, S.P.; Hughes, D.P.; Salathé, M. Using deep learning for image-based plant disease detection. Front. Plant Sci. 2016, 7, 215232. [Google Scholar]
- Amara, J.; Bouaziz, B.; Algergawy, A. A deep learning-based approach for banana leaf diseases classification. In Datenbanksysteme für Business, Technologie und Web (BTW 2017)-Workshopband; Gesellschaft für Informatik eV: Bonn, Germany, 2017. [Google Scholar]
- dos Santos Ferreira, A.; Freitas, D.M.; da Silva, G.G.; Pistori, H.; Folhes, M.T. Weed detection in soybean crops using ConvNets. Comput. Electron. Agric. 2017, 143, 314–324. [Google Scholar]
- Kumari, K.; Won, K.; Nafchi, A.M. YOLOv5 deep learning model for mixed seed detection, classification, and counting. In Proceedings of the 2024 ASABE Annual International Meeting American Society of Agricultural and Biological Engineers, Anaheim, CA, USA, 28–31 July 2024; p. 1. [Google Scholar]
- Kumari, K.; Parray, R.; Basavaraj, Y.B.; Godara, S.; Mani, I.; Kumar, R.; Khura, T.; Sarkar, S.; Ranjan, R.; Mirzakhaninafchi, H. Spectral sensor-based device for real-time detection and severity estimation of groundnut bud necrosis virus in tomato. J. Field Robot. 2024, 42, 5–19. [Google Scholar]
- Boursianis, A.D.; Papadopoulou, M.S.; Diamantoulakis, P.; Liopa-Tsakalidi, A.; Barouchas, P.; Salahas, G.; Karagiannidis, G.; Wan, S.; Goudos, S.K. Internet of things (IoT) and agricultural unmanned aerial vehicles (UAVs) in smart farming: A comprehensive review. Internet Things 2022, 18, 100187. [Google Scholar]
- Barhate, D.; Nemade, V. Comprehensive study on automated image detection by using robotics for agriculture applications. In Proceedings of the 2019 3rd International Conference on Electronics, Communication and Aerospace Technology (ICECA), Coimbatore, India, 12–14 June 2019; pp. 637–641. [Google Scholar]
- Jha, K.; Doshi, A.; Patel, P.; Shah, M. A comprehensive review on automation in agriculture using artificial intelligence. Artif. Intell. Agric. 2019, 2, 1–12. [Google Scholar]
- Ian, H.; Wang, T.; Liu, Y.; Qiao, X.; Li, Y. Computer vision technology in agricultural automation—A review. Inf. Process. Agric. 2020, 7, 1–19. [Google Scholar]
- Sakai, H.; Shiigi, T.; Kondo, N.; Ogawa, Y.; Taguchi, N. Accurate position detecting during asparagus spear harvesting using a laser sensor. Eng. Agric. Environ. Food 2013, 6, 105–110. [Google Scholar]
- Monta, M.; Namba, K. Three-dimensional sensing system for agricultural robots. In Proceedings of the 2003 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM 2003), Kobe, Japan, 20–24 July 2003; Volume 2, pp. 1216–1221. [Google Scholar]
- De Preter, A.; Anthonis, J.; De Baerdemaeker, J. Development of a robot for harvesting strawberries. IFAC-Pap. 2018, 51, 14–19. [Google Scholar]
- Zhang, J.; Karkee, M.; Zhang, Q.; Zhang, X.; Yaqoob, M.; Fu, L.; Wang, S. Multi-class object detection using faster R-CNN and estimation of shaking locations for automated shake-and-catch apple harvesting. Comput. Electron. Agric. 2020, 173, 105384. [Google Scholar]
- Kane, K.E.; Lee, W.S. Spectral sensing of different citrus varieties for precision agriculture. In Proceedings of the 2006 ASAE Annual Meeting, Boston, MA, USA, 19–22 August 2006; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2006; p. 1. [Google Scholar]
- Silwal, A.; Karkee, M.; Zhang, Q. A hierarchical approach to apple identification for robotic harvesting. Trans. ASABE 2016, 59, 1079–1086. [Google Scholar]
- Pise, D.; Upadhye, G.D. Grading of harvested mangoes quality and maturity based on machine learning techniques. In Proceedings of the 2018 International Conference on Smart City and Emerging Technology (ICSCET), Mumbai, India, 5 January 2018; pp. 1–6. [Google Scholar]
- Jun, J.; Kim, J.; Seol, J.; Kim, J.; Son, H.I. Towards an efficient tomato harvesting robot: 3d perception, manipulation, and end-effector. IEEE Access 2021, 9, 17631–17640. [Google Scholar]
- Liu, J.; Liu, Z. The Vision-Based Target Recognition, Localization, and Control for Harvesting Robots: A Review. Int. J. Precis. Eng. Manuf. 2024, 25, 409–428. [Google Scholar]
- De-An, Z.; Jidong, L.; Wei, J.; Ying, Z.; Yu, C. Design and control of an apple harvesting robot. Biosyst. Eng. 2011, 110, 112–122. [Google Scholar]
- Farooq, M.S.; Riaz, S.; Abid, A.; Umer, T.; Zikria, Y.B. Role of IoT technology in agriculture: A systematic literature review. Electronics 2020, 9, 319. [Google Scholar] [CrossRef]
- Kusumam, K.; Krajník, T.; Pearson, S.; Duckett, T.; Cielniak, G. 3D-vision based detection 2020, localization, and sizing of broccoli heads in the field. J. Field Robot. 2017, 34, 1505–1518. [Google Scholar] [CrossRef]
- Vincent, D.R.; Deepa, N.; Elavarasan, D.; Srinivasan, K.; Chauhdary, S.H.; Iwendi, C. Sensors driven AI-based agriculture recommendation model for assessing land suitability. Sensors 2019, 19, 3667. [Google Scholar] [CrossRef] [PubMed]
- Mekonnen, Y.; Namuduri, S.; Burton, L.; Sarwat, A.; Bhansali, S. Machine learning techniques in wireless sensor network-based precision agriculture. J. Electrochem. Soc. 2019, 167, 037522. [Google Scholar] [CrossRef]
- Shadrin, D.; Menshchikov, A.; Somov, A.; Bornemann, G.; Hauslage, J.; Fedorov, M. Enabling precision agriculture through embedded sensing with artificial intelligence. IEEE Trans. Instrum. Meas. 2019, 69, 4103–4113. [Google Scholar] [CrossRef]
- Estrada-López, J.J.; Castillo-Atoche, A.A.; Vázquez-Castillo, J.; Sánchez-Sinencio, E. Smart soil parameters estimation system using an autonomous wireless sensor network with dynamic power management strategy. IEEE Sens. J. 2018, 18, 8913–8923. [Google Scholar] [CrossRef]
- Ferentinos, K.P.; Tsiligiridis, T.A. Adaptive design optimization of wireless sensor networks using genetic algorithms. Comput. Netw. 2007, 51, 1031–1051. [Google Scholar] [CrossRef]
- Horng, G.J.; Liu, M.X.; Chen, C.C. The smart image recognition mechanism for crop harvesting system in intelligent agriculture. IEEE Sens. J. 2019, 20, 2766–2781. [Google Scholar] [CrossRef]
- Abdalla, A.K.; Nafchi, A.M. Desing of a Variable Rate Applicator Controller. In 2024 ASABE Annual International Meeting; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2024; p. 1. [Google Scholar]
- Grisso, R.; Alley, M.; Thomason, W.; Holshouser, D.; Gary; Roberson, T. Precision Farming Tools: Variable-Rate Application, Virginia Cooperative Extension; PUBLICATION 442–505; Communications and Marketing, College of Agriculture and Life Sciences, Virginia Polytechnic Institute and State University: Blacksburg, VA, USA, 2011. [Google Scholar]
- He, X.; Ding, Y.; Zhang, D.; Yang, L.; Cui, T.; Zhong, X. Development of a variable-rate seeding control system for corn planters Part II: Field performance. Comput. Electron. Agric. 2019, 162, 309–317. [Google Scholar] [CrossRef]
- Shi, Y.; Zhang, K. Advanced model predictive control framework for autonomous intelligent mechatronic systems: A tutorial overview and perspectives. Annu. Rev. Control 2021, 52, 170–196. [Google Scholar] [CrossRef]
- Escolà, A.; Rosell-Polo, J.R.; Planas, S.; Gil, E.; Pomar, J.; Camp, F.; Llorens, J.; Solanelles, F. Variable rate sprayer. Part 1–Orchard prototype: Design, implementation and validation. Comput. Electron. Agric. 2013, 95, 122–135. [Google Scholar]
- Zhang, Q. Precision Agriculture Technology for Crop Farming; Taylor & Francis: Abingdon, UK, 2016; p. 374. [Google Scholar]
- Pawase, P.P.; Nalawade, S.M.; Bhanage, G.B.; Walunj, A.A.; Kadam, P.B.; Durgude, A.G.; Patil, M.G. Variable rate fertilizer application technology for nutrient management: A review. Int. J. Agric. Biol. Eng. 2023, 16, 11–19. [Google Scholar]
- Swathy, R.; Geethalakshmi, V.; Pazhanivelan, S.; Kannan, P.; Annamalai, S.; Hwang, S. Real-time nitrogen monitoring and management to augment N use efficiency and ecosystem sustainability—A review. J. Hazard. Mater. Adv. 2024, 16, 100466. [Google Scholar]
- Teoh, C.C.; Syaifudin, A.M.; Isa, O.M.; Bakar, B.A. Estimation of rice plant population using digital image processing technique. J. Trop. Agric. Food Sci. 2008, 36. [Google Scholar]
- Mohd, A.; Syaifudin, M.G.; Mohd, S.S.; Teoh, C.C.; Mohamad, A.; Mohd, N.N. Variable rate application of fertilizer in rice precision farming. In Proceedings of the International Conference on Agricultural and Food Engineering (Cafei2016), Kuala Lumpur, Malaysia, 23–25 August 2016; pp. 277–281. [Google Scholar]
- Mirzakhaninafchi, H.; Singh, M.; Bector, V.; Gupta, O.P.; Singh, R. Design and development of a variable rate applicator for real-time application of fertilizer. Sustainability 2021, 13, 8694. [Google Scholar] [CrossRef]
- Taylor, R.; Fulton, J. Sensor–Based Variable Rate Application for Cotton; Oklahoma Cooperative Extension Service; Oklahoma State University: Stillwater, OH, USA, 2010; pp. 1–8. [Google Scholar]
- Chattha, H.S.; Zaman, Q.U.; Chang, Y.K.; Read, S.; Schumann, A.W.; Brewster, G.R.; Farooque, A.A. Variable rate spreader for real-time spot-application of granular fertilizer in wild blueberry. Comput. Electron. Agric. 2014, 100, 70–78. [Google Scholar]
- Al-Gaadi, K.A.; Tola, E.; Alameen, A.A.; Madugundu, R.; Marey, S.A.; Zeyada, A.M.; Edrris, M.K. Control and monitoring systems used in variable rate application of solid fertilizers: A review. J. King Saud Univ. Sci. 2023, 35, 102574. [Google Scholar]
- Yamin, M.; Ismail, W.; Wan Ismail, W.I.b.; Saufi, M.; Kassim, M.S.M.; Abd Aziz, S.; Shamshiri, R.R. VRT liquid fertilizer applicator for soil nutrient management. J. Teknol. Sci. Eng. 2016, 78. [Google Scholar]
- Lowenberg-DeBoer, J.; Erickson, B. Setting the record straight on precision agriculture adoption. Agron. J. 2019, 111, 1552–1569. [Google Scholar]
- Erickson, B.; Lowenberg-DeBoer, J.; Bradford, J. 2020 Precision Agriculture Dealership Survey; Department of Agricultural Economics and Agronomy, Purdue University: West Lafayette, IN, USA, 2020. [Google Scholar]
- McFadden, J.; Njuki, E.; Griffin, T. Precision Agriculture in the Digital Era: Recent Adoption on US Farms; Economic Research Service, U.S. Department of Agriculture: Washington, DC, USA, 2023.
- Tormen, G.P.; de Andrade, A.M.; Evaristo, A.B.; Campos, D.S.; Vieira, L.M.; Ferreira, M.L. Effect of Variable Rate Seeding and Fertilizer on Yield and Spectro-Temporal Behavior of Bean Crop. J. Indian Soc. Remote Sens. 2025, 1–12. Available online: https://link.springer.com/article/10.1007/s12524-024-02085-9 (accessed on 24 December 2024).
- Shimada, B.S.; Simon, M.V.; Da Silva, V.B.; Oliveira Nunes, D.S.D.; Miranda Litaiff, I. The importance of Nitrogen in corn culture. J. Exp. Agric. Int. 2021, 43, 37–45. [Google Scholar]
- Sands, R.D.; Meade, B.; Seale, J.L., Jr.; Robinson, S.; Seeger, R. Scenarios of Global Food Consumption: Implications for Agriculture; Economic Research Service, U.S. Department of Agriculture: Washington, DC, USA, 2023.
- Yin, H.; Cao, Y.; Marelli, B.; Zeng, X.; Mason, A.J.; Cao, C. Soil sensors and plant wearables for smart and precision agriculture. Adv. Mater. 2021, 33, 2007764. [Google Scholar] [CrossRef] [PubMed]
- Singh, U.; Praharaj, C.S.; Gurjar, D.S.; Kumar, R. Precision Irrigation Management: Concepts and Applications for Higher Use Efficiency in Field Crops. In Scaling Water Productivity and Resource Conservation in Upland Field Crops Ensuring More Crop per Drop; ICAR-IIPR: Kanpur, Indian, 2019. [Google Scholar]
- Adeyemi, O.; Grove, I.; Peets, S.; Norton, T. Advanced monitoring and management systems for improving sustainability in precision irrigation. Sustainability 2017, 9, 353. [Google Scholar] [CrossRef]
- Hamami, L.; Nassereddine, B. Application of wireless sensor networks in the field of irrigation: A review. Comput. Electron. Agric. 2020, 179, 105782. [Google Scholar] [CrossRef]
- Li, W.; Awais, M.; Ru, W.; Shi, W.; Ajmal, M.; Uddin, S.; Liu, C. Review of Sensor Network-Based Irrigation Systems Using IoT and Remote Sensing. Adv. Meteorol. 2020, 2020, 8396164. [Google Scholar] [CrossRef]
Types | Indices | Formula | References |
---|---|---|---|
Vegetation Indices | NDVI | [24] | |
SAVI | [25] | ||
VSSI | [26] | ||
EVI | [27] | ||
NLVI | [28] | ||
DVI | [29] | ||
GRVI | [30] | ||
Salinity Indices | SIT | [31] | |
SI | [32] | ||
SI (1) | [33] | ||
SI (2) | [34] | ||
SI (3) | [35] | ||
SI (4) | [32] | ||
SI (7) | [23] | ||
SI (I) | [36] | ||
SI (II) | [36] | ||
SI (III) | [36] | ||
SI (IV) | [36] | ||
SI (IV) | [36] | ||
ESRI | [37] | ||
CRSI | [38] | ||
Soil Indices | CI | [39] | |
GI | [40] | ||
BI | [31] | ||
NMDI | [41] |
S. No | Technology | Applications | Limitations and Challenges | References |
---|---|---|---|---|
1. | Artificial intelligence (AI) |
|
| [47,48,49,50] |
2. | Deep learning (DL) and machine learning (ML) models |
|
| [51,52] |
3. | Internet of thing (IoT) |
|
| [53,54] |
4. | Variable-rate technology (VRT): map-based and sensor-based techniques |
|
| [55] |
Model | Performance Analysis Parameter | Description | References |
---|---|---|---|
Support Vector Machine (SVM) | Accuracy = where TP = True Positives, TN = True Negatives, FP = False Positives, FN = False Negatives | SVM finds the hyperplane that maximizes the margin between classes. It uses hinge loss to discard the incorrect classifications. | [56] |
K-Nearest Neighbors (KNN) | KNN uses its neighbors’ approval rating to classify a data point. Performance is strongly impacted by KNN selection. | [57] | |
Decision Tree (DT) | where p is the proportion of samples belonging to class i | To reduce the impurity (such as Gini or entropy), decision trees divide data according to feature thresholds | [58] |
Random Forest (RF) | where T is the number of trees | Random Forest combines predictions using an ensemble of decision trees to increase prediction accuracy and decrease overfitting | [59] |
Artificial Neural Network (ANN) | An ANN uses layers of neurons to map inputs to outputs, optimizing weights by backpropagation with a differentiable loss function, such as cross-entropy | [60] | |
Naïve Bayes | Posterior Probability, P(y∣X) = P(X)P(X∣y)P(y) P(yi∣Xi): Posterior probability of the i-th data point being in class yi | Naïve Bayes models eliminate complicated joint probability computations; they simplify calculations and are especially useful when the independence condition is roughly valid | [61] |
Long Short-Term Memory (LSTM) | MSE = N: Total number of observations in the dataset. i: Index for individual data points. yi: True label. : Predicted value | Temporal dependencies in sequential data are captured by LSTM, a recurrent neural network that utilizes gates (forget, input, and output) | [62] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumari, K.; Mirzakhani Nafchi, A.; Mirzaee, S.; Abdalla, A. AI-Driven Future Farming: Achieving Climate-Smart and Sustainable Agriculture. AgriEngineering 2025, 7, 89. https://doi.org/10.3390/agriengineering7030089
Kumari K, Mirzakhani Nafchi A, Mirzaee S, Abdalla A. AI-Driven Future Farming: Achieving Climate-Smart and Sustainable Agriculture. AgriEngineering. 2025; 7(3):89. https://doi.org/10.3390/agriengineering7030089
Chicago/Turabian StyleKumari, Karishma, Ali Mirzakhani Nafchi, Salman Mirzaee, and Ahmed Abdalla. 2025. "AI-Driven Future Farming: Achieving Climate-Smart and Sustainable Agriculture" AgriEngineering 7, no. 3: 89. https://doi.org/10.3390/agriengineering7030089
APA StyleKumari, K., Mirzakhani Nafchi, A., Mirzaee, S., & Abdalla, A. (2025). AI-Driven Future Farming: Achieving Climate-Smart and Sustainable Agriculture. AgriEngineering, 7(3), 89. https://doi.org/10.3390/agriengineering7030089