Seismic Images of Pressurized Sources and Fluid Migration Driving Uplift at the Campi Flegrei Caldera During 2020–2024
Abstract
:1. Introduction
2. Materials and Methods
2.1. Tomographic Inversion for the Vp, Vs, and Vp/Vs Structures
2.2. Dataset and Parameterization of Inversions
3. Results
3.1. The 2020–2024 Inversion
- A wide relative low P-velocity anomaly (2.0 < Vp ≤ 4.0 km/s) in the central part of the caldera, mainly extending inland and down from approximately 0.5 to 3.0 km depth (L1 in Figure 2a). Between 2.5 and 3.0 km depth, this anomaly takes on an almost L-shaped aspect.
- A relative low P-velocity (4.0 < Vp ≤ 5.0 km/s) region located at a depth of 3.0 and 4.0 km (L2 in Figure 2a), showing an almost elliptical shape and encircling a small high Vp anomaly (5.5 < Vp ≤ 6.0 km/s) at 4.0 km depth. This elliptical anomaly appears to delimit the morphological boundary of the internal resurgent dome [16], within which deeper earthquakes are mainly concentrated.
- Some portions of the arc-like high P-velocity anomaly (3.0 < Vp ≤ 5.0 km/s), previously identified in earlier tomographic studies [19,20,21,23] (H1 in Figure 2a). This anomaly, attributed to the buried rim of the Campi Flegrei outer caldera, is primarily located along the southern and western borders of the Gulf of Pozzuoli; it extends from about 0.5 km to approximately 2.0 km in depth, with seismic velocities increasing with depth. It has been interpreted as consolidated lava and/or tuffs and interbedded lava sequences that signify the buried rim of the caldera [19].
- A wide relative high S-velocity anomaly (2.5 < Vs ≤ 3.0 km/s) located inland at about 2.0 km depth, between Pozzuoli and Campi Flegrei, coinciding with the region where a great part of earthquakes occurred (HS in Figure 2b).
- Two high Vp/Vs (≥1.9) volumes (H2 in Figure 2c and Figure 3c) are located in the shallower central part of the caldera, at depths ranging from approximately 0 to 1.5 km, surrounded by regions with normal to low Vp/Vs. The larger of these volumes lies beneath the inland area of Pozzuoli and partially extends offshore.
- A volume with a low Vp/Vs ratio, with values ranging from 1.6 to 1.66, that rises from depth in the central part of the caldera and reaches approximately 1.5 km b.s.l. (L3 in Figure 2c and Figure 3c). This structure widens as it extends downward, merging into an almost continuous layer at 3.5 km, which likely extends beyond 4.0 km depth.
3.2. Temporal Variation of Vp, Vs and Vp/Vs (2023–2024 vs. 2020–2022)
4. Discussion
- (1)
- A small magma intrusion enriched in supercritical fluids. In this case, the intrusion would stiffen the surrounding rock, leading to a significant increase in Vp, a modest increase in Vs, and a slight decrease in Vp/Vs. This behavior aligns with observations that high-pressure, high-density supercritical fluids reduce pore space and enhance rock stiffness [21,50].
- (2)
- The accumulation of pressurized fluids or high-density, mineral-saturated brines. These fluids similarly stiffen the rock matrix, increasing Vp, though their geochemical signatures differ from those associated with magma intrusions [41].
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Natale, J.; Camanni, G.; Ferranti, L.; Isaia, R.; Sacchi, M.; Spiess, V.; Steinmann, L.; Vitale, S. Fault systems in the offshore sector of the Campi Flegrei caldera (Southern Italy): Implications for nested caldera structure, resurgent dome, and volcano-tectonic evolution. J. Struct. Geol. 2022, 163, 104723. [Google Scholar] [CrossRef]
- Orsi, G.; De Vita, S.; Di Vito, M. The restless, resurgent Campi Flegrei nested caldera (Italy): Constraints on its evolution and configuration. J. Volcanol. Geotherm. Res. 1996, 74, 179–214. [Google Scholar] [CrossRef]
- Giaccio, B.; Haydas, I.; Isaia, R.; Deino, A.; Nomade, S. High-precision 14C and 40Ar/39Ar dating of Campanian Ignimbrite (Y-5) reconciles the time-scales of climatic cultural processes at 40 ka. Sci. Rep. 2017, 7, 45940. [Google Scholar] [CrossRef] [PubMed]
- Deino, A.L.; Orsi, G.; De Vita, S.; Piochi, M. The age of the Neapolitan Yellow Tuff caldera-forming eruption (Campi Flegrei caldera, Italy) assessed by 40Ar/39Ar dating method. J. Volcanol. Geotherm. Res. 2004, 133, 157–170. [Google Scholar] [CrossRef]
- De Vivo, B.; Rolandi, G. Volcanological risk associated with Vesuvius and Campi Flegrei. In Vesuvius, Campi Flegrei, and Campanian Volcanism; De Vivo, B., Belkin, H.E., Rolandi, G., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 471–493. ISBN 9780128164549. [Google Scholar] [CrossRef]
- Peccerillo, A. Plio-Quaternary Volcanism in Italy: Petrology, Geochemistry, Geodynamics; Springer: Berlin/Heidelberg, Germany, 2005; ISBN 10 3-540-25885-x. [Google Scholar]
- Di Vito, M.A.; Acocella, V.; Aiello, G.; Barra, D.; Battaglia, M.; Carandente, A.; Del Gaudio, C.; de Vita, S.; Ricciardi, G.P.; Ricco, C.; et al. Magma transfer at Campi Flegrei caldera (Italy) before the 1538 AD eruption. Sci. Rep. 2016, 6, 32245. [Google Scholar] [CrossRef] [PubMed]
- Del Gaudio, C.; Aquino, I.; Ricciardi, G.P.; Ricco, C.; Scandone, R. Unrest episodes at Campi Flegrei: A reconstruction of vertical ground movements during 1905–2009. J. Volcanol. Geotherm. Res. 2010, 195, 48–56. [Google Scholar] [CrossRef]
- Woo, J.Y.L.; Kilburn, C.R.J. Intrusion and deformation at Campi Flegrei, southern Italy: Sills, dikes, and regional extension. J. Geophys. Res. Solid Earth 2010, 115, B12210. [Google Scholar] [CrossRef]
- Charlton, D.; Kilburn, C.; Edwards, S. Volcanic unrest scenarios and impact assessment at Campi Flegrei caldera, Southern Italy. J. Appl. Volcanol. 2020, 9, 7. [Google Scholar] [CrossRef]
- Lirer, L.; Petrosino, P.; Alberico, I. Hazard assessment at volcanic fields: The Campi Flegrei case history. J. Volcanol. Geotherm. Res. 2001, 112, 53–73. [Google Scholar] [CrossRef]
- De Natale, G.; Troise, C.; Kilburn, C.R.J.; Somma, R.; Moretti, R. Understanding volcanic hazard at the most populated caldera in the world: Campi Flegrei, Southern Italy. Geochem. Geophys. Geosyst. 2017, 18, 2004–2008. [Google Scholar] [CrossRef]
- Bianco, F.; Caliro, S.; De Martino, P.; Orazi, M.; Ricco, C.; Vilardo, G.; Aquino, I.; Augusti, V.; Avino, R.; Bagnato, E.; et al. The Permanent Monitoring System of the Campi Flegrei Caldera, Italy. In Campi Flegrei. Active Volcanoes of the World; Orsi, G., D’Antonio, M., Civetta, L., Eds.; Springer: Berlin/Heidelberg, Germany, 2022. [Google Scholar] [CrossRef]
- Presidenza della Repubblica. Decreto Legge n.140; Presidenza della Repubblica: Rome, Italy, 2023. (In Italian) [Google Scholar]
- Iervolino, I.; Cito, P.; De Falco, M.; Festa, G.; Herrmann, M.; Lomax, A.; Marzocchi, W.; Santo, A.; Strumia, C.; Massaro, L.; et al. Seismic risk mitigation at Campi Flegrei in volcanic unrest. Nat. Commun. 2024, 15, 10474. [Google Scholar] [CrossRef] [PubMed]
- Sbrana, A.; Marianelli, P.; Pasquini, G. The Phlegrean Fields volcanological evolution. J. Maps 2021, 17, 557–570. [Google Scholar] [CrossRef]
- Piochi, M.; Kilburn, C.R.J.; Di Vito, M.A.; Mormone, A.; Tramelli, A.; Troise, C.; De Natale, G. The volcanic and geothermally active Campi Flegrei caldera: An integrated multidisciplinary image of its buried structure. Int. J. Earth Sci. 2014, 103, 401–421. [Google Scholar] [CrossRef]
- Aster, R.C.; Meyer, R.P. Three-dimensional velocity structure and hypocentral distribution in the Campi Flegrei caldera, Italy. Tectonophysics 1988, 149, 195–218. [Google Scholar] [CrossRef]
- Zollo, A.; Judenherc, S.; Auger, E.; D’Auria, L.; Virieux, J.; Capuano, P.; Chiarabba, C.; de Franco, R.; Makris, J.; Michelini, A.; et al. Evidence for the buried rim of Campi Flegrei caldera from 3-d active seismic imaging. Geophys. Res. Lett. 2003, 30, 2002. [Google Scholar] [CrossRef]
- Judenherc, S.; Zollo, A. The Bay of Naples (southern Italy): Constraints on the volcanic structures inferred from a dense seismic survey. J. Geophys. Res. Solid Earth 2004, 109, B10312. [Google Scholar] [CrossRef]
- Vanorio, T.; Virieux, J.; Capuano, P.; Russo, G. Three-dimensional seismic tomography from P wave and S wave microearthquake travel times and rock physics characterization of the Campi Flegrei caldera. J. Geophys. Res. Solid Earth 2005, 110, B03201. [Google Scholar] [CrossRef]
- Chiarabba, C.; Moretti, M. An insight into the unrest phenomena at the Campi Flegrei caldera from Vp and Vp/Vs tomography. Terra Nova 2006, 18, 373–379. [Google Scholar] [CrossRef]
- Battaglia, J.; Zollo, A.; Virieux, J.; Dello Iacono, D. Merging active and passive data sets in traveltime tomography: The case study of Campi Flegrei Caldera (Southern Italy). Geophys. Prospect. 2008, 56, 555–573. [Google Scholar] [CrossRef]
- Dello Iacono, D.; Zollo, A.; Vassallo, M.; Vanorio, T.; Judenherc, S. Seismic images and rock properties of the very shallow structure of Campi Flegrei caldera (southern Italy). Bull. Volcanol. 2009, 71, 275–284. [Google Scholar] [CrossRef]
- Calò, M.; Tramelli, A. Anatomy of the Campi Flegrei caldera using enhanced seismic tomography models. Sci. Rep. 2018, 8, 16254. [Google Scholar] [CrossRef] [PubMed]
- De Landro, G.; Amoroso, O.; Russo, G.; Zollo, A. 4D travel-time tomography as a tool for tracking fluid-driven medium changes in off-shore oil-gas exploitation areas. Energies 2020, 13, 5878. [Google Scholar] [CrossRef]
- Giacomuzzi, G.; Chiarabba, C.; Bianco, F.; De Gori, P.; Piana Agostinetti, N. Tracking transient changes in the plumbing system at Campi Flegrei Caldera. Earth Planet. Sci. Lett. 2024, 637, 118744. [Google Scholar] [CrossRef]
- Kissling, E.; Ellsworth, W.L.; Eberhart-Phillips, D.; Kradolfer, U. Initial reference models in local earthquake tomography. J. Geophys. Res. Solid Earth 1994, 99, 19635–19646. [Google Scholar] [CrossRef]
- Priolo, E.; Lovisa, L.; Zollo, A.; Böhm, G.; D’Auria, L.; Gautier, S.; Gentile, F.; Klin, P.; Latorre, D.; Michelini, A.; et al. The Campi Flegrei Blind Test: Evaluating the Imaging Capability of Local Earthquake Tomography in a Volcanic Area. Int. J. Geophy. 2012, 37, 1–37. [Google Scholar] [CrossRef]
- Thurber, C.H. Local earthquake tomography: Velocities and Vp/Vs-theory. In Seismic Tomography: Theory and Practice; Iyer, H.M., Hirahara, K., Eds.; Chapman and Hall: London, UK, 1993; pp. 563–583. [Google Scholar]
- Zhang, H.; Thurber, C.H. Double-Difference Tomography: The Method and Its Application to the Hayward fault, California. Bull. Seismol. Soc. Am. 2003, 93, 1875–1889. [Google Scholar] [CrossRef]
- Haslinger, F.; Kissling, E.; Ansorge, J.; Hatzfeld, D.; Papadimitriou, E.; Karakostas, V.; Makropoulos, K.; Kahle, H.-G.; Peter, Y. 3D crustal structure form local earthquake tomography around the Gulf of Arta (Ionian region, NW Greece). Tectonophysics 1999, 304, 201–218. [Google Scholar] [CrossRef]
- Haslinger, F.; Kissling, E. Investigating effects of 3-D ray tracing methods in local earthquake tomography. Phys. Earth Planet. Inter. 2001, 123, 103–114. [Google Scholar] [CrossRef]
- Zhang, H.; Thurber, C.; Bedrosian, P. Joint inversion for Vp, Vs, and Vp/Vs at SAFOD, Parkfield, California. Geochem. Geophys. Geosyst. 2009, 10, Q11002. [Google Scholar] [CrossRef]
- Guo, H.; Zhang, H.; Froment, B. Structural control on earthquake behaviors revealed by high-resolution Vp/Vs imaging along the Gofar transform fault, East Pacific Rise. Earth Planet. Sci. Lett. 2018, 499, 243–255. [Google Scholar] [CrossRef]
- Ricciolino, P.; Lo Bascio, D.; Esposito, R. GOSSIP—Database sismologico Pubblico INGV-Osservatorio Vesuviano; Istituto Nazionale di Geofisica e Vulcanologia (INGV): Naples, Italy, 2024. [CrossRef]
- Zollo, A.; Maercklin, N.; Vassallo, M.; Dello Iacono, D.; Virieux, J.; Gasparini, P. Seismic reflections reveal a massive melt layer feeding Campi Flegrei caldera. Geophys. Res. Lett. 2008, 35, L12306. [Google Scholar] [CrossRef]
- AGIP. Geologia e Geofisica del Sistema Geotermico dei Campi Flegrei; Technical Report SERG-ESG; AGIP: San Donato, Italy, 1987; p. 17. [Google Scholar]
- Lees, J.M.; Wu, H. Poisson’s ratio and porosity at Coso geothermal area, California. J. Volcanol. Geotherm. Res. 2000, 95, 157–173. [Google Scholar] [CrossRef]
- De Matteis, R.; Vanorio, T.; Zollo, A.; Ciuffi, S.; Fiordelisi, A.; Spinelli, E. Three-dimensional tomography and rock properties of the Larderello-Travale geothermal area, Italy. Phys. Earth Planet. Inter. 2008, 168, 37–48. [Google Scholar] [CrossRef]
- Mavko, G.; Mukerji, T.; Dvorkin, J. The Rock Physics Hanbook: Tools for Seismic Analysis of Porous Media, 2nd ed.; Cambridge University Press: Cambridge, UK, 2009; ISBN 978-05-1162-675-3. [Google Scholar] [CrossRef]
- Iverson, W.P.; Fahmy, B.A.; Smithson, S.B. VpVs from mode-converted P-SV reflections. Geophysics 1989, 54, 843–852. [Google Scholar] [CrossRef]
- Patanè, D.; Barberi, G.; Cocina, O.; De Gori, P.; Chiarabba, C. Time-Resolved Seismic Tomography Detects Magma Intrusions at Mount Etna. Science 2006, 313, 821–823. [Google Scholar] [CrossRef] [PubMed]
- Foulger, G.R.; Julian, B.R.; Pitt, A.M.; Hill, D.P.; Malin, P.E.; Shalev, E. Three-dimensional crustal structure of Long Valley caldera, California, and evidence for the migration of CO2 under Mammoth Mountain. J. Geophys. Res. Solid Earth 2003, 108, 2147. [Google Scholar] [CrossRef]
- Tezel, T.; Julian, B.R.; Foulger, G.R.; Nunn, C.; Mhana, N. Preliminary 4D Seismic Tomography Images for The Geysers, 2008–2014. In Proceedings of the 41st Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, CA, USA, 22–24 February 2016. [Google Scholar]
- Londoño, J.M.; Kumagai, H. 4D seismic tomography of Nevado del Ruiz Volcano, Colombia, 2000–2016. J. Volcanol. Geotherm. Res. 2018, 358, 105–123. [Google Scholar] [CrossRef]
- Guo, H.; Thurber, C. Temporal changes in seismic velocity and attenuation at The Geysers geothermal field, California, from double-difference tomography. J. Geophys. Res. Solid Earth 2022, 127, e2021JB022938. [Google Scholar]
- Troise, C.; De Natale, G.; Schiavone, R.; Somma, R.; Moretti, R. The Campi Flegrei caldera unrest: Discriminating magma intrusions from hydrothermal effects and implications for possible evolution. Earth Sci. Rev. 2019, 188, 108–122. [Google Scholar] [CrossRef]
- Lees, J.M. Seismic tomography of magmatic systems. J. Volcanol. Geotherm. Res. 2007, 167, 37–56. [Google Scholar] [CrossRef]
- Takei, Y. Effect of pore geometry on Vp /Vs: From equilibrium geometry to crack. J. Geophys. Res. Solid Earth 2002, 107, ECV 6-1–ECV 6-12. [Google Scholar] [CrossRef]
- Ito, H.; DeVilbiss, J.; Nur, A. Compressional and shear waves in saturated rock during water-steam transition. J. Geophys. Res. Solid Earth 1979, 84, 4731–4735. [Google Scholar] [CrossRef]
- Wang, Z.; Nur, A.M. Effects of CO2 flooding on wave velocities in rocks with hydrocarbons. SPE Res. Eng. 1989, 4, 429–436. [Google Scholar] [CrossRef]
- Petrillo, Z.; Chiodini, G.; Mangiacapra, A.; Caliro, S.; Capuano, P.; Russo, G.; Cardellini, C.; Avino, R. Defining a 3D physical model for the hydrothermal circulation at Campi Flegrei caldera (Italy). J. Volcanol. Geotherm. Res. 2013, 264, 172–182. [Google Scholar] [CrossRef]
- Aiuppa, A.; Avino, R.; Brusca, L.; Caliro, S.; Chiodini, G.; D’Alessandro, W.; Favara, R.; Federico, C.; Ginevra, W.; Inguaggiato, S.; et al. Mineral control of arsenic content in thermal waters from volcano-hosted hydrothermal systems: Insights from island of Ischia and Phlegrean Fields (Campanian Volcanic Province, Italy). Chem. Geol. 2006, 229, 313–330. [Google Scholar] [CrossRef]
- Chiodini, G.; Todesco, M.; Caliro, S.; Del Gaudio, C.; Macedonio, G.; Russo, M. Magma degassing as a trigger of bradyseismic events: The case of Phlegrean Fields (Italy). Geophys. Res. Lett. 2003, 30, 1434. [Google Scholar] [CrossRef]
- Giudicepietro, F.; Casu, F.; Bonano, M.; De Luca, C.; De Martino, P.; Di Traglia, F.; Di Vito, M.A.; Macedonio, G.; Manunta, M.; Monterroso, F.; et al. First evidence of a geodetic anomaly in the Campi Flegrei caldera (Italy) ground deformation pattern revealed by DInSAR and GNSS measurements during the 2021–2023 escalating unrest phase. Int. J. Appl. Earth Obs. Geoinf. 2024, 132, 104060. [Google Scholar] [CrossRef]
- Tizzani, P.; Fernández, J.; Vitale, A.; Escayo, J.; Barone, A.; Castaldo, R.; Pepe, S.; De Novellis, V.; Solaro, G.; Pepe, A.; et al. 4D imaging of the volcano feeding system beneath the urban area of the Campi Flegrei caldera. Remote Sens. Environ. 2024, 315, 114480. [Google Scholar] [CrossRef]
- Nur, A. Dilatancy, pore fluids, and premonitory variations of ts/tp travel times. Bull. Seismol. Soc. Am. 1972, 62, 1217–1222. [Google Scholar] [CrossRef]
- O’Connell, R.J.; Budiansky, B. Seismic velocities in dry and saturated cracked solids. J. Geophys. Res. 1974, 79, 5412–5426. [Google Scholar] [CrossRef]
- Vitale, S.; Isaia, R. Fractures and faults in volcanic rocks (Campi Flegrei, southern Italy): Insight into volcano-tectonic processes. Int. J. Earth Sci. 2014, 103, 801–819. [Google Scholar] [CrossRef]
- Caliro, S.; Avino, R.; Capecchiacci, F.; Carandente, A.; Chiodini, G.; Cuoco, E.; Minopoli, C.; Rufino, F.; Santi, A.; Rizzo, A.L.; et al. Chemical and isotopic characterization of groundwater and thermal waters from the Campi Flegrei caldera (southern Italy). J. Volcanol. Geotherm. Res. 2025, 460, 108280. [Google Scholar] [CrossRef]
- Moretti, R.; Troise, C.; Sarno, F.; De Natale, G. Caldera unrest driven by CO2-induced drying of the deep hydrothermal system. Sci. Rep. 2018, 8, 8309. [Google Scholar] [CrossRef] [PubMed]
- Chiodini, G.; Caliro, S.; Avino, R.; Bini, G.; Giudicepietro, F.; De Cesare, W.; Ricciolino, P.; Aiuppa, A.; Cardellini, C.; Petrillo, Z.; et al. Hydrothermal pressure-temperature control on CO2 emissions and seismicity at Campi Flegrei (Italy). J. Volcanol. Geotherm. Res. 2021, 414, 107245. [Google Scholar] [CrossRef]
- Buono, G.; Caliro, S.; Paonita, A.; Pappalardo, L.; Chiodini, G. Discriminating carbon dioxide sources during volcanic unrest: The case of Campi Flegrei caldera (Italy). Geology 2023, 51, 397–401. [Google Scholar] [CrossRef]
- Astort, A.; Trasatti, E.; Caricchi, L.; Polcari, M.; De Martino, P.; Acocella, V.; Di Vito, M.A. Tracking the 2007–2023 magma-driven unrest at Campi Flegrei caldera (Italy). Commun. Earth Environ. 2024, 5, 506. [Google Scholar] [CrossRef]
- Zhao, D.; Hasegawa, A.; Horiuchi, S. Tomographic imaging of P and S wave velocity structure beneath northeastern Japan. J. Geophys. Res. Solid Earth 1992, 97, 19909–19928. [Google Scholar] [CrossRef]
- Rawlinson, N.; Spakman, W. On the use of sensitivity tests in seismic tomography. Geophys. J. Int. 2016, 205, 1221–1243. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Patanè, D.; Barberi, G.; Martino, C. Seismic Images of Pressurized Sources and Fluid Migration Driving Uplift at the Campi Flegrei Caldera During 2020–2024. GeoHazards 2025, 6, 19. https://doi.org/10.3390/geohazards6020019
Patanè D, Barberi G, Martino C. Seismic Images of Pressurized Sources and Fluid Migration Driving Uplift at the Campi Flegrei Caldera During 2020–2024. GeoHazards. 2025; 6(2):19. https://doi.org/10.3390/geohazards6020019
Chicago/Turabian StylePatanè, Domenico, Graziella Barberi, and Claudio Martino. 2025. "Seismic Images of Pressurized Sources and Fluid Migration Driving Uplift at the Campi Flegrei Caldera During 2020–2024" GeoHazards 6, no. 2: 19. https://doi.org/10.3390/geohazards6020019
APA StylePatanè, D., Barberi, G., & Martino, C. (2025). Seismic Images of Pressurized Sources and Fluid Migration Driving Uplift at the Campi Flegrei Caldera During 2020–2024. GeoHazards, 6(2), 19. https://doi.org/10.3390/geohazards6020019