Previous Issue
Volume 6, March
 
 

GeoHazards, Volume 6, Issue 2 (June 2025) – 4 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
22 pages, 16941 KiB  
Article
Seismic Images of Pressurized Sources and Fluid Migration Driving Uplift at the Campi Flegrei Caldera During 2020–2024
by Domenico Patanè, Graziella Barberi and Claudio Martino
GeoHazards 2025, 6(2), 19; https://doi.org/10.3390/geohazards6020019 - 2 Apr 2025
Abstract
After the subsidence phase that followed the 1982–1984 bradyseismic crisis, a gradual ground uplift at Campi Flegrei caldera resumed in 2005, while volcanic-tectonic earthquakes have steadily increased in frequency and intensity since 2018, with a significant intensification observed since 2023. This rise in [...] Read more.
After the subsidence phase that followed the 1982–1984 bradyseismic crisis, a gradual ground uplift at Campi Flegrei caldera resumed in 2005, while volcanic-tectonic earthquakes have steadily increased in frequency and intensity since 2018, with a significant intensification observed since 2023. This rise in seismic activity enabled a new tomographic study using data collected from 2020 to June 2024. In this work, 4161 local earthquakes (41,272 P-phases and 14,683 S-phases) were processed with the tomoDDPS code, considering 388,166 P and 107,281 S differential times to improve earthquake locations and velocity models. Compared to previous tomographic studies, the 3D velocity models provided higher-resolution images of the central caldera’s structure down to ~4 km depth. Additionally, separate inversions of the two 2020–2022 (moderate seismicity) and 2023–2024 (intense seismicity) datasets identified velocity variations ranging from 5% to 10% between these periods. These changes observed in 2023–2024 support the existence of two pressurized sources at different depths. The first, located at 3.0–4.0 km depth beneath Pozzuoli and offshore, may represent either a magma intrusion enriched in supercritical fluids or an accumulation of pressurized, high-density fluids—a finding that aligns with recent ground deformation studies and modeled source depths. Additionally, the upward migration of magmatic fluids interacting with the geothermal system generated a secondary, shallower pressurized source at approximately 2.0 km depth beneath the Solfatara-Pisciarelli area. Overall, these processes are responsible for the recent acceleration in uplift, increased seismicity and gases from the fumarolic field, and changes in crustal elastic properties through stress variations and fluid/gas migration. Full article
Show Figures

Figure 1

17 pages, 16472 KiB  
Article
Analysis of Tsunami Economic Loss in Tourism Areas Using High-Resolution Tsunami Run-Up Model
by Wiwin Windupranata, Alqinthara Nuraghnia, Muhammad Wahyu Al Ghifari, Sonia Kartini Pasaribu, Wiwin Indira Rakhmanisa, Tiara Vani, Kevin Agriva Ginting, Michael Bintang Aventa, Intan Hayatiningsih, Deni Suwardhi, Irwan Meilano, Iyan Eka Mulia and Albert Kristiawan Lim
GeoHazards 2025, 6(2), 18; https://doi.org/10.3390/geohazards6020018 - 1 Apr 2025
Viewed by 42
Abstract
A tsunami can cause significant economic losses for tourism areas like Batukaras Village, which is located on the southern coast of Java Island. This paper seeks to elaborate on the calculation of economic losses in tourism areas due to damage to buildings, loss [...] Read more.
A tsunami can cause significant economic losses for tourism areas like Batukaras Village, which is located on the southern coast of Java Island. This paper seeks to elaborate on the calculation of economic losses in tourism areas due to damage to buildings, loss of land production, and loss of income, based on high-resolution geospatial data. The data are derived from UAV photogrammetry surveys and high-resolution tsunami run-up models. The tsunami worst-case scenario run-off model provides an inundation area of 43 ha with 185 buildings and 24.4 ha of productive land. The estimated losses from the tsunami disaster amounted to IDR 208.79 billion, consisting of 49.63 billion from building damage, 6.73 billion from productive land, and 152.43 billion from the tourism sector. These results show that the tsunami disaster will severely affect tourism areas, because the tourism sector makes up 73% of the total economic losses. Reductions in the amount of economic loss, in addition to spatial planning near the coastline to reduce the number of impacted buildings and productive land, can be achieved by accelerating the recovery period so that economic activities after the tsunami disaster can be carried out immediately, including in the tourism sector. Full article
Show Figures

Figure 1

22 pages, 6920 KiB  
Article
Analysis and Application of the CAUSE Model in Regional Disaster Prevention Measures
by Zhijun Tang, Takeyasu Suzuki, Shangning Tao, Linyao Dong and Zhongjie Fan
GeoHazards 2025, 6(2), 17; https://doi.org/10.3390/geohazards6020017 - 1 Apr 2025
Viewed by 54
Abstract
Sediment disasters, triggered by heavy rainfall, have resulted in significant human casualties and economic damage annually worldwide. Therefore, the promotion and implementation of disaster prevention strategies have emerged as crucial measures to mitigate the human and financial losses inflicted by these disasters. This [...] Read more.
Sediment disasters, triggered by heavy rainfall, have resulted in significant human casualties and economic damage annually worldwide. Therefore, the promotion and implementation of disaster prevention strategies have emerged as crucial measures to mitigate the human and financial losses inflicted by these disasters. This article examines case studies in the mountainous regions of China and Japan, encompassing terrain conditions, local disaster risk factors, and residents’ awareness of disaster prevention, as well as their living conditions. The CAUSE model was employed to cultivate a relationship of mutual trust and cooperation with the residents through activities that promote disaster prevention and reduction. Feedback was also collected from the residents. In addition, relevant disaster prevention personnel were organized to participate in disaster prevention technical training, and feedback was collected through questionnaires (CAUSE is an acronym derived from the first letter of Confidence, Awareness, Understanding, Satisfaction with proposed Solutions, and Enactment). From the above inspection and analysis techniques used in the case studies in China and Japan, it is confirmed that disaster prevention and promotion work is closely linked. This analysis underscores the importance, necessity, and effectiveness of promoting disaster prevention at the local level. Furthermore, it offers crucial technical support for the local government’s efforts in disaster reduction and prevention. Full article
Show Figures

Figure 1

15 pages, 11281 KiB  
Article
Assessment of the Tectonic Activity of the Muong La–Bac Yen–Cho Bo Fault (Northwest Vietnam) by Analysis of Geomorphological Indices
by Phung Thi Thu Hang, Renat Shakirov, Bui Van Thom, Lê Van Dung, Nadezhda Syrbu, Tran Trung Hieu, Phung Thi Ngoc Anh, Tran Hoang Yen, Elena Maltseva, Andrey Kholmogorov, Nguyen Huu Tuyen and Vu Hoa An
GeoHazards 2025, 6(2), 16; https://doi.org/10.3390/geohazards6020016 - 1 Apr 2025
Viewed by 42
Abstract
The Muong La–Bac Yen–Cho Bo fault is one of the seismic faults in the northwest region of Vietnam. Neo-tectonic activities and exogenous processes have influenced the drainage system and topographic–geomorphologic features on both walls of the fault. The results of topographic analysis and [...] Read more.
The Muong La–Bac Yen–Cho Bo fault is one of the seismic faults in the northwest region of Vietnam. Neo-tectonic activities and exogenous processes have influenced the drainage system and topographic–geomorphologic features on both walls of the fault. The results of topographic analysis and geomorphological indices have confirmed the active tectonics of the fault during the Neo-tectonic period (Pliocene–Quaternary, about 5 million years). The valley floor width-to-height ratio (Vf) of less than 0.5 indicates the “rejuvenation” of the streams and the obvious influence of tectonic activities on the two walls of the studied fault. The Hypsometric curve (HC) in the study area has a straight–convex shape and the basins on the northeast wall have hypsometric integral index values ranging from 0.46 to 0.481, which are lower and more convex than those of the southwest wall. The Mountain-front sinuosity index (Smf) from 1.92 to 3.28 along the foot slope of the Hoang Lien Son range (the segment from Than Uyen to Bac Yen and Phu Yen) and the highly variable stream-length gradient index (SL) value on the northeast wall signify the relative tectonic uplift on the northeast wall of the fault. The deformed geomorphological indications (steep cliffs, slip surfaces, etc.) in the field confirm the active tectonics of the Muong La–Bac Yen–Cho Bo fault during the Neo-tectonic period. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop