Internet of Vehicles and Real-Time Optimization Algorithms: Concepts for Vehicle Networking in Smart Cities
Abstract
:1. Introduction
- We analyze the main challenges associated with IoV and vehicle networking scenarios.
- We identify the associated optimization problems, some of which need to be solved in real time.
- We discuss how AO and DML approaches allow for the development of efficient transport and mobility systems.
- We provide some numerical evidence of the gains that can be obtained by employing the aforementioned approaches.
2. The IoV Scenario and Use Cases
2.1. Communications and Computation
2.2. Use Cases
2.2.1. Vehicles Platooning
2.2.2. Advanced Driving
2.2.3. Extended Sensors
2.2.4. Remote Driving
3. Literature Review on IoV Analytics
3.1. Main Research Problems
3.2. Optimization Tools
4. Agile Optimization Algorithms
5. Distributed Machine Learning Algorithms
5.1. Centralized Learning
5.2. Decentralized Learning
5.3. Collaborative Learning
5.4. Federated Learning
5.5. Distributed Learning for ISVN
6. Computational Results using AO Algorithms in ISVN
7. Conclusions and Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ji, B.; Zhang, X.; Mumtaz, S.; Han, C.; Li, C.; Wen, H.; Wang, D. Survey on the Internet of Vehicles: Network Architectures and Applications. IEEE Commun. Stand. Mag. 2020, 4, 34–41. [Google Scholar] [CrossRef]
- Yang, F.; Wang, S.; Li, J.; Liu, Z.; Sun, Q. An overview of Internet of Vehicles. China Commun. 2014, 11, 1–15. [Google Scholar] [CrossRef]
- Liu, Y.; Fang, X. Big wave of the intelligent connected vehicles. China Commun. 2016, 13, 27–41. [Google Scholar] [CrossRef]
- Wang, J.; Zhu, K.; Hossain, E. Green Internet of Vehicles (IoV) in the 6G Era: Toward Sustainable Vehicular Communications and Networking. IEEE Trans. Green Commun. Netw. 2022, 6, 391–423. [Google Scholar] [CrossRef]
- Ang, L.M.; Seng, K.P.; Ijemaru, G.K.; Zungeru, A.M. Deployment of IoV for Smart Cities: Applications, Architecture, and Challenges. IEEE Access 2019, 7, 6473–6492. [Google Scholar] [CrossRef]
- Cesarano, L.; Croce, A.; Martins, L.D.C.; Tarchi, D.; Juan, A.A. A Real-Time Energy-Saving Mechanism in Internet of Vehicles Systems. IEEE Access 2021, 9, 157842–157858. [Google Scholar] [CrossRef]
- Martins, L.d.C.; Tarchi, D.; Juan, A.A.; Fusco, A. Agile optimization for a real-time facility location problem in Internet of Vehicles networks. Networks 2022, 79, 501–514. [Google Scholar] [CrossRef]
- Peyman, M.; Copado, P.J.; Tordecilla, R.D.; Martins, L.d.C.; Xhafa, F.; Juan, A.A. Edge Computing and IoT Analytics for Agile Optimization in Intelligent Transportation Systems. Energies 2021, 14, 6309. [Google Scholar] [CrossRef]
- do C. Martins, L.; Hirsch, P.; Juan, A.A. Agile optimization of a two-echelon vehicle routing problem with pickup and delivery. Int. Trans. Oper. Res. 2021, 28, 201–221. [Google Scholar] [CrossRef]
- Kubat, M. An Introduction to Machine Learning, 3rd ed.; Springer: Cham, Switzerland, 2021. [Google Scholar] [CrossRef]
- Muscinelli, E.; Shinde, S.S.; Tarchi, D. Overview of Distributed Machine Learning Techniques for 6G Networks. Algorithms 2022, 15, 210. [Google Scholar] [CrossRef]
- Xu, W.; Zhou, H.; Cheng, N.; Lyu, F.; Shi, W.; Chen, J.; Shen, X. Internet of vehicles in big data era. IEEE/CAA J. Autom. Sin. 2018, 5, 19–35. [Google Scholar] [CrossRef]
- Vannithamby, R.; Soong, A.C. 5G Verticals: Customizing Applications, Technologies and Deployment Techniques; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2022. [Google Scholar]
- Contreras-Castillo, J.; Zeadally, S.; Guerrero-Ibañez, J.A. Internet of Vehicles: Architecture, Protocols, and Security. IEEE Internet Things J. 2018, 5, 3701–3709. [Google Scholar] [CrossRef]
- Li, C.; Luo, Q.; Mao, G.; Sheng, M.; Li, J. Vehicle-Mounted Base Station for Connected and Autonomous Vehicles: Opportunities and Challenges. IEEE Wirel. Commun. 2019, 26, 30–36. [Google Scholar] [CrossRef]
- Harounabadi, M.; Soleymani, D.M.; Bhadauria, S.; Leyh, M.; Roth-Mandutz, E. V2X in 3GPP Standardization: NR Sidelink in Release-16 and Beyond. IEEE Commun. Stand. Mag. 2021, 5, 12–21. [Google Scholar] [CrossRef]
- Zeadally, S.; Javed, M.A.; Hamida, E.B. Vehicular Communications for ITS: Standardization and Challenges. IEEE Commun. Stand. Mag. 2020, 4, 11–17. [Google Scholar] [CrossRef]
- Kenney, J.B. Dedicated short-range communications (DSRC) standards in the United States. Proc. IEEE 2011, 99, 1162–1182. [Google Scholar] [CrossRef]
- Anwar, W.; Franchi, N.; Fettweis, G. Physical Layer Evaluation of V2X Communications Technologies: 5G NR-V2X, LTE-V2X, IEEE 802.11bd, and IEEE 802.11p. In Proceedings of the 2019 IEEE 90th Vehicular Technology Conference (VTC2019-Fall), Honolulu, HI, USA, 22–25 September 2019; pp. 1–7. [Google Scholar] [CrossRef]
- Naik, G.; Choudhury, B.; Park, J.M. IEEE 802.11bd & 5G NR V2X: Evolution of Radio Access Technologies for V2X Communications. IEEE Access 2019, 7, 70169–70184. [Google Scholar] [CrossRef]
- Le, T.K.; Salim, U.; Kaltenberger, F. An overview of physical layer design for Ultra-Reliable Low-Latency Communications in 3GPP Releases 15, 16, and 17. IEEE Access 2020, 9, 433–444. [Google Scholar] [CrossRef]
- 3GPP. 3GPP TS 22.186 V17.0.0 Enhancement of 3GPP support for V2X scenarios (Release 17). Technical report, 3GPP. 2022. Available online: https://www.3gpp.org/ftp/Specs/archive/22_series/22.186/22186-h00.zip (accessed on 1 April 2022).
- 3GPP. 3GPP TR 22.886 V16.0.0 Study on enhancement of 3GPP Support for 5G V2X Services (Release 16). Technical report, 3GPP. 2018. Available online: https://www.3gpp.org/ftp//Specs/archive/22_series/22.886/22886-g00.zip (accessed on 21 December 2018).
- Husain, S.S.; Kunz, A.; Prasad, A.; Pateromichelakis, E.; Samdanis, K. Ultra-High Reliable 5G V2X Communications. IEEE Commun. Stand. Mag. 2019, 3, 46–52. [Google Scholar] [CrossRef]
- Ashraf, S.A.; Blasco, R.; Do, H.; Fodor, G.; Zhang, C.; Sun, W. Supporting Vehicle-to-Everything Services by 5G New Radio Release-16 Systems. IEEE Commun. Stand. Mag. 2020, 4, 26–32. [Google Scholar] [CrossRef]
- Bazzi, A.; Berthet, A.O.; Campolo, C.; Masini, B.M.; Molinaro, A.; Zanella, A. On the Design of Sidelink for Cellular V2X: A Literature Review and Outlook for Future. IEEE Access 2021, 9, 97953–97980. [Google Scholar] [CrossRef]
- Silva, L.; Magaia, N.; Sousa, B.; Kobusińska, A.; Casimiro, A.; Mavromoustakis, C.X.; Mastorakis, G.; de Albuquerque, V.H.C. Computing Paradigms in Emerging Vehicular Environments: A Review. IEEE/CAA J. Autom. Sin. 2021, 8, 491–511. [Google Scholar] [CrossRef]
- Filali, A.; Abouaomar, A.; Cherkaoui, S.; Kobbane, A.; Guizani, M. Multi-Access Edge Computing: A Survey. IEEE Access 2020, 8, 197017–197046. [Google Scholar] [CrossRef]
- Meneguette, R.; De Grande, R.; Ueyama, J.; Filho, G.P.R.; Madeira, E. Vehicular Edge Computing: Architecture, Resource Management, Security, and Challenges. ACM Comput. Surv. 2023, 55, 4:1–4:46. [Google Scholar] [CrossRef]
- Bréhon–Grataloup, L.; Kacimi, R.; Beylot, A.L. Mobile edge computing for V2X architectures and applications: A survey. Comput. Netw. 2022, 206, 108797. [Google Scholar] [CrossRef]
- Bouali, F.; Pinola, J.; Karyotis, V.; Wissingh, B.; Mitrou, M.; Krishnan, P.; Moessner, K. 5G for Vehicular Use Cases: Analysis of Technical Requirements, Value Propositions and Outlook. IEEE Open J. Intell. Transp. Syst. 2021, 2, 73–96. [Google Scholar] [CrossRef]
- Alalewi, A.; Dayoub, I.; Cherkaoui, S. On 5G-V2X Use Cases and Enabling Technologies: A Comprehensive Survey. IEEE Access 2021, 9, 107710–107737. [Google Scholar] [CrossRef]
- Thakolsri, S.; Manjunath, R.; Zhou, C.; Sama, M.R.; Erdal, O.B.; Civelek, T.E.; Corujo, D.N.; Mayorga, I.L.; Rodrigues de Lima Tejerina, G.; Cao, H.; et al. 6G Vertical Use Cases—Description and Analysis. White Paper. one6G. June 2022. Available online: https://one6g.org/download/2027/ (accessed on 1 June 2022).
- Wang, B.; Wang, C.; Huang, W.; Song, Y.; Qin, X. A survey and taxonomy on task offloading for edge-cloud computing. IEEE Access 2020, 8, 186080–186101. [Google Scholar] [CrossRef]
- Liu, H.; Zhao, H.; Geng, L.; Wang, Y.; Feng, W. A Distributed Dependency-Aware Offloading Scheme for Vehicular Edge Computing Based on Policy Gradient. In Proceedings of the 2021 8th IEEE International Conference on Cyber Security and Cloud Computing (CSCloud)/2021 7th IEEE International Conference on Edge Computing and Scalable Cloud (EdgeCom), Washington, DC, USA, 26–28 June 2021; pp. 176–181. [Google Scholar] [CrossRef]
- Geng, L.; Zhao, H.; Liu, H.; Wang, Y.; Feng, W.; Bai, L. Deep Reinforcement Learning-based Computation Offloading in Vehicular Networks. In Proceedings of the 2021 8th IEEE International Conference on Cyber Security and Cloud Computing (CSCloud)/2021 7th IEEE International Conference on Edge Computing and Scalable Cloud (EdgeCom), Washington, DC, USA, 26–28 June 2021; pp. 200–206. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, Z.; Liu, K. V2X offloading and resource allocation in SDN-assisted MEC-based vehicular networks. China Commun. 2020, 17, 266–283. [Google Scholar] [CrossRef]
- Wang, H.; Lin, Z.; Guo, K.; Lv, T. Computation offloading based on game theory in MEC-assisted V2X networks. In Proceedings of the 2021 IEEE International Conference on Communications Workshops (ICC Workshops), Montreal, QC, Canada, 14–23 June 2021; pp. 1–6. [Google Scholar]
- Prathiba, S.B.; Raja, G.; Anbalagan, S.; Dev, K.; Gurumoorthy, S.; Sankaran, A.P. Federated Learning Empowered Computation Offloading and Resource Management in 6G-V2X. IEEE Trans. Netw. Sci. Eng. 2021, 9, 3234–3243. [Google Scholar] [CrossRef]
- Bozorgchenani, A.; Maghsudi, S.; Tarchi, D.; Hossain, E. Computation Offloading in Heterogeneous Vehicular Edge Networks: On-line and Off-policy Bandit Solutions. IEEE Trans. Mob. Comput. 2021. Early Access. [Google Scholar] [CrossRef]
- Noor-A-Rahim, M.; Liu, Z.; Lee, H.; Ali, G.G.M.N.; Pesch, D.; Xiao, P. A Survey on Resource Allocation in Vehicular Networks. IEEE Trans. Intell. Transp. Syst. 2022, 23, 701–721. [Google Scholar] [CrossRef]
- Thanh Le, T.T.; Moh, S. Comprehensive Survey of Radio Resource Allocation Schemes for 5G V2X Communications. IEEE Access 2021, 9, 123117–123133. [Google Scholar] [CrossRef]
- Yoon, Y.; Seon, H.; Kim, H. A Defensive Scheduling Scheme to Accommodate Random Selection Devices in 5G NR V2X. IEEE Commun. Lett. 2021, 25, 2068–2072. [Google Scholar] [CrossRef]
- Yoon, Y.; Kim, H. A Stochastic Reservation Scheme for Aperiodic Traffic in NR V2X Communication. In Proceedings of the 2021 IEEE Wireless Communications and Networking Conference (WCNC), Nanjing, China, 29 March–1 April 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Zang, J.; Shikh-Bahaei, M. An Adaptive Full-Duplex Deep Reinforcement Learning-Based Design for 5G-V2X Mode 4 VANETs. In Proceedings of the 2021 IEEE Wireless Communications and Networking Conference (WCNC), Nanjing, China, 29 March–1 April 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Hu, X.; Xu, S.; Wang, L.; Wang, Y.; Liu, Z.; Xu, L.; Li, Y.; Wang, W. A joint power and bandwidth allocation method based on deep reinforcement learning for V2V communications in 5G. China Commun. 2021, 18, 25–35. [Google Scholar] [CrossRef]
- Kumar, A.S.; Zhao, L.; Fernando, X. Mobility Aware Channel Allocation for 5G Vehicular Networks using Multi-Agent Reinforcement Learning. In Proceedings of the ICC 2021—IEEE International Conference on Communications, Montreal, QC, Canada, 14–23 June 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Shi, K.; Gu, X. Performance of V2V Communication Distributed Resource Allocation Scheme in Dense Urban Scenario. In Proceedings of the 2021 IEEE Wireless Communications and Networking Conference (WCNC), Nanjing, China, 29 March–1 April 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Khan, A.A.; Abolhasan, M.; Ni, W.; Lipman, J.; Jamalipour, A. An End-to-End (E2E) Network Slicing Framework for 5G Vehicular Ad-Hoc Networks. IEEE Trans. Veh. Technol. 2021, 70, 7103–7112. [Google Scholar] [CrossRef]
- Okic, A.; Zanzi, L.; Sciancalepore, V.; Redondi, A.; Costa-Pérez, X. π-ROAD: A learn-as-you-go framework for on-demand emergency slices in V2X scenarios. In Proceedings of the IEEE INFOCOM 2021-IEEE Conference on Computer Communications, Vancouver, BC, Canada, 10–13 May 2021; pp. 1–10. [Google Scholar]
- Nassar, A.; Yilmaz, Y. Deep Reinforcement Learning for Adaptive Network Slicing in 5G for Intelligent Vehicular Systems and Smart Cities. IEEE Internet Things J. 2022, 9, 222–235. [Google Scholar] [CrossRef]
- Yu, K.; Zhou, H.; Tang, Z.; Shen, X.; Hou, F. Deep Reinforcement Learning-Based RAN Slicing for UL/DL Decoupled Cellular V2X. IEEE Trans. Wirel. Commun. 2022, 21, 3523–3535. [Google Scholar] [CrossRef]
- Wang, L.; Yang, C.; Hu, R.Q. Autonomous Traffic Offloading in Heterogeneous Ultra-Dense Networks Using Machine Learning. IEEE Wirel. Commun. 2019, 26, 102–109. [Google Scholar] [CrossRef]
- Alablani, I.A.; Arafah, M.A. Applying a Dwell Time-Based 5G V2X Cell Selection Strategy in the City of Los Angeles, California. IEEE Access 2021, 9, 153909–153925. [Google Scholar] [CrossRef]
- Roger, S.; Martín-Sacristán, D.; Garcia-Roger, D.; Monserrat, J.F.; Kousaridas, A.; Spapis, P.; Ayaz, S. 5G V2V Communication with Antenna Selection Based on Context Awareness: Signaling and Performance Study. IEEE Trans. Intell. Transp. Syst. 2022, 23, 1044–1057. [Google Scholar] [CrossRef]
- Wang, C.; Chen, C.; Pei, Q.; Jiang, Z.; Xu, S. An Information Centric In-network Caching Scheme for 5G-Enabled Internet of Connected Vehicles. IEEE Trans. Mob. Comput. 2021. early access. [Google Scholar] [CrossRef]
- Luo, G.; Yuan, Q.; Zhou, H.; Cheng, N.; Liu, Z.; Yang, F.; Shen, X.S. Cooperative vehicular content distribution in edge computing assisted 5G-VANET. China Commun. 2018, 15, 1–17. [Google Scholar] [CrossRef]
- Sanghvi, J.; Bhattacharya, P.; Tanwar, S.; Gupta, R.; Kumar, N.; Guizani, M. Res6Edge: An Edge-AI Enabled Resource Sharing Scheme for C-V2X Communications towards 6G. In Proceedings of the 2021 International Wireless Communications and Mobile Computing (IWCMC), Harbin, China, 28 June–2 July 2021; pp. 149–154. [Google Scholar] [CrossRef]
- Yin, X.; Liu, J.; Cheng, X.; Xiong, X. Large-Size Data Distribution in IoV Based on 5G/6G Compatible Heterogeneous Network. IEEE Trans. Intell. Transp. Syst. 2021, 23, 9840–9852. [Google Scholar] [CrossRef]
- Wang, X.; Weng, Y.; Gao, H. A Low-Latency and Energy-Efficient Multimetric Routing Protocol Based on Network Connectivity in VANET Communication. IEEE Trans. Green Commun. Netw. 2021, 5, 1761–1776. [Google Scholar] [CrossRef]
- He, C.; Qu, G.; Wei, S. A Vehicular Communication Routing Algorithm Based on Graph Theory. In Proceedings of the 2021 International Wireless Communications and Mobile Computing (IWCMC), Harbin, China, 28 June–2 July 2021; pp. 2176–2181. [Google Scholar] [CrossRef]
- Meng, X.; Lv, J.; Ma, S. Applying improved K-means algorithm into official service vehicle networking environment and research. Soft Comput. 2020, 24, 8355–8363. [Google Scholar] [CrossRef]
- Arafat, M.Y.; Moh, S. Routing protocols for unmanned aerial vehicle networks: A survey. IEEE Access 2019, 7, 99694–99720. [Google Scholar] [CrossRef]
- Nazib, R.A.; Moh, S. Routing protocols for unmanned aerial vehicle-aided vehicular ad hoc networks: A survey. IEEE Access 2020, 8, 77535–77560. [Google Scholar] [CrossRef]
- Cheng, J.; Cheng, J.; Zhou, M.; Liu, F.; Gao, S.; Liu, C. Routing in Internet of Vehicles: A Review. IEEE Trans. Intell. Transp. Syst. 2015, 16, 2339–2352. [Google Scholar] [CrossRef]
- Maruf, M.A.; Singh, A.; Azim, A.; Auluck, N. Faster Fog Computing based Over-the-air Vehicular Updates: A Transfer Learning Approach. IEEE Trans. Serv. Comput. 2021. Early Access. [Google Scholar] [CrossRef]
- Labriji, I.; Meneghello, F.; Cecchinato, D.; Sesia, S.; Perraud, E.; Strinati, E.C.; Rossi, M. Mobility Aware and Dynamic Migration of MEC Services for the Internet of Vehicles. IEEE Trans. Netw. Serv. Manag. 2021, 18, 570–584. [Google Scholar] [CrossRef]
- Selvaraj, D.C.; Vitale, C.; Panayiotou, T.; Kolios, P.; Chiasserini, C.F.; Ellinas, G. Edge Learning of Vehicular Trajectories at Regulated Intersections. In Proceedings of the 2021 IEEE 94th Vehicular Technology Conference (VTC2021-Fall), Norman, OK, USA, 27–30 September 2021; pp. 1–7. [Google Scholar] [CrossRef]
- Gupta, S.K.; Khan, J.Y.; Ngo, D.T. A 5G-Based Vehicular Network Architecture to Enhance Road Safety Applications. In Proceedings of the 2021 IEEE 94th Vehicular Technology Conference (VTC2021-Fall), Norman, OK, USA, 27–30 September 2021; pp. 1–7. [Google Scholar] [CrossRef]
- Dhanare, R.; Nagwanshi, K.K.; Varma, S. A Study to Enhance the Route Optimization Algorithm for the Internet of Vehicle. Wirel. Commun. Mob. Comput. 2022, 2022, 1453187:1–1453187:20. [Google Scholar] [CrossRef]
- Aung, N.; Zhang, W.; Dhelim, S.; Ai, Y. T-Coin: Dynamic Traffic Congestion Pricing System for the Internet of Vehicles in Smart Cities. Information 2020, 11, 149. [Google Scholar] [CrossRef] [Green Version]
- Aung, N.; Zhang, W.; Sultan, K.; Dhelim, S.; Ai, Y. Dynamic traffic congestion pricing and electric vehicle charging management system for the internet of vehicles in smart cities. Digit. Commun. Netw. 2021, 7, 492–504. [Google Scholar] [CrossRef]
- Dhanare, R.; Nagwanshi, K.K.; Varma, S. Enhancing the route optimization using hybrid MAF optimization algorithm for the internet of vehicle. Wirel. Pers. Commun. 2022, 125, 1715–1735. [Google Scholar] [CrossRef]
- Zhou, P.; Chen, X.; Liu, Z.; Braud, T.; Hui, P.; Kangasharju, J. DRLE: Decentralized Reinforcement Learning at the Edge for Traffic Light Control in the IoV. IEEE Trans. Intell. Transp. Syst. 2021, 22, 2262–2273. [Google Scholar] [CrossRef]
- Tan, K.; Bremner, D.; Le Kernec, J.; Zhang, L.; Imran, M. Machine learning in vehicular networking: An overview. Digit. Commun. Netw. 2021, 8, 18–24. [Google Scholar] [CrossRef]
- Lalapura, V.S.; Amudha, J.; Satheesh, H.S. Recurrent neural networks for edge intelligence: A survey. ACM Comput. Surv. (CSUR) 2021, 54, 1–38. [Google Scholar] [CrossRef]
- Torres, J.F.; Hadjout, D.; Sebaa, A.; Martínez-Álvarez, F.; Troncoso, A. Deep learning for time series forecasting: A survey. Big Data 2021, 9, 3–21. [Google Scholar] [CrossRef]
- Yu, Y.; Si, X.; Hu, C.; Zhang, J. A review of recurrent neural networks: LSTM cells and network architectures. Neural Comput. 2019, 31, 1235–1270. [Google Scholar] [CrossRef]
- Li, M.; Gao, J.; Zhao, L.; Shen, X. Deep reinforcement learning for collaborative edge computing in vehicular networks. IEEE Trans. Cogn. Commun. Netw. 2020, 6, 1122–1135. [Google Scholar] [CrossRef]
- Li, L.; Fan, Y.; Tse, M.; Lin, K.Y. A review of applications in federated learning. Comput. Ind. Eng. 2020, 149, 106854. [Google Scholar] [CrossRef]
- Balkus, S.V.; Wang, H.; Cornet, B.D.; Mahabal, C.; Ngo, H.; Fang, H. A Survey of Collaborative Machine Learning Using 5G Vehicular Communications. IEEE Commun. Surv. Tutor. 2022, 24, 1280–1303. [Google Scholar] [CrossRef]
- Sun, Z.; Liu, Y.; Wang, J.; Li, G.; Anil, C.; Li, K.; Guo, X.; Sun, G.; Tian, D.; Cao, D. Applications of Game Theory in Vehicular Networks: A Survey. IEEE Commun. Surv. Tutor. 2021, 23, 2660–2710. [Google Scholar] [CrossRef]
- Song, W.; Zeng, F.; Hu, J.; Wang, Z.; Mao, X. An unsupervised-learning-based method for multi-hop wireless broadcast relay selection in urban vehicular networks. In Proceedings of the 2017 IEEE 85th Vehicular Technology Conference (VTC Spring), Sydney, NSW, Australia, 4–7 June 2017; pp. 1–5. [Google Scholar]
- Hewamalage, H.; Bergmeir, C.; Bandara, K. Recurrent neural networks for time series forecasting: Current status and future directions. Int. J. Forecast. 2021, 37, 388–427. [Google Scholar] [CrossRef]
- Salahuddin, M.A.; Al-Fuqaha, A.; Guizani, M. Software-defined networking for rsu clouds in support of the internet of vehicles. IEEE Internet Things J. 2014, 2, 133–144. [Google Scholar] [CrossRef]
- Ning, Z.; Zhang, K.; Wang, X.; Guo, L.; Hu, X.; Huang, J.; Hu, B.; Kwok, R.Y. Intelligent edge computing in internet of vehicles: A joint computation offloading and caching solution. IEEE Trans. Intell. Transp. Syst. 2020, 22, 2212–2225. [Google Scholar] [CrossRef]
- Belloso, J.; Juan, A.A.; Faulin, J. An iterative biased-randomized heuristic for the fleet size and mix vehicle-routing problem with backhauls. Int. Trans. Oper. Res. 2019, 26, 289–301. [Google Scholar] [CrossRef]
- Bellmore, M.; Nemhauser, G.L. The traveling salesman problem: A survey. Oper. Res. 1968, 16, 538–558. [Google Scholar] [CrossRef] [Green Version]
- Ferone, D.; Hatami, S.; González-Neira, E.M.; Juan, A.A.; Festa, P. A biased-randomized iterated local search for the distributed assembly permutation flow-shop problem. Int. Trans. Oper. Res. 2020, 27, 1368–1391. [Google Scholar] [CrossRef]
- Ferone, D.; Gruler, A.; Festa, P.; Juan, A.A. Enhancing and extending the classical GRASP framework with biased randomisation and simulation. J. Oper. Res. Soc. 2019, 70, 1362–1375. [Google Scholar] [CrossRef]
- Mazza, D.; Pages-Bernaus, A.; Tarchi, D.; Juan, A.A.; Corazza, G.E. Supporting mobile cloud computing in smart cities via randomized algorithms. IEEE Syst. J. 2016, 12, 1598–1609. [Google Scholar] [CrossRef]
- Estrada-Moreno, A.; Fikar, C.; Juan, A.A.; Hirsch, P. A biased-randomized algorithm for redistribution of perishable food inventories in supermarket chains. Int. Trans. Oper. Res. 2019, 26, 2077–2095. [Google Scholar] [CrossRef]
- Martí, R.; Resende, M.G.; Ribeiro, C.C. Multi-start Methods for Combinatorial Optimization. Eur. J. Oper. Res. 2013, 226, 1–8. [Google Scholar] [CrossRef]
- Régin, J.C.; Rezgui, M.; Malapert, A. Embarrassingly Parallel Search. In Principles and Practice of Constraint Programming; Schulte, C., Ed.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 596–610. [Google Scholar]
- Parhami, B. Introduction to Parallel Processing: Algorithms and Architectures; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Gulati, K.; Khatri, S.P. GPU Architecture and the CUDA Programming Model. In Hardware Acceleration of EDA Algorithms; Springer: Berlin/Heidelberg, Germany, 2010; pp. 23–30. [Google Scholar]
- Solihin, Y. Fundamentals of Parallel Multicore Architecture; Chapman and Hall/CRC: Boca Raton, FL, USA, 2015. [Google Scholar]
- Xu, J.; Yu, F.R.; Wang, J.; Qi, Q.; Sun, H.; Liao, J. Capsule Network Distributed Learning with Multi-Access Edge Computing for the Internet of Vehicles. IEEE Commun. Mag. 2021, 59, 52–57. [Google Scholar] [CrossRef]
- Dong, J.; Wu, W.; Gao, Y.; Wang, X.; Si, P. Deep reinforcement learning based worker selection for distributed machine learning enhanced edge intelligence in internet of vehicles. Intell. Converg. Netw. 2020, 1, 234–242. [Google Scholar] [CrossRef]
- Ma, X.; Zhao, J.; Gong, Y. Joint Scheduling and Resource Allocation for Efficiency-Oriented Distributed Learning over Vehicle Platooning Networks. IEEE Trans. Veh. Technol. 2021, 70, 10894–10908. [Google Scholar] [CrossRef]
- Kumar, N.; Misra, S.; Obaidat, M.S. Collaborative Learning Automata-Based Routing for Rescue Operations in Dense Urban Regions Using Vehicular Sensor Networks. IEEE Syst. J. 2015, 9, 1081–1090. [Google Scholar] [CrossRef]
- Wu, C.; Liu, Z.; Liu, F.; Yoshinaga, T.; Ji, Y.; Li, J. Collaborative Learning of Communication Routes in Edge-Enabled Multi-Access Vehicular Environment. IEEE Trans. Cogn. Commun. Netw. 2020, 6, 1155–1165. [Google Scholar] [CrossRef]
- Du, Z.; Wu, C.; Yoshinaga, T.; Yau, K.L.A.; Ji, Y.; Li, J. Federated Learning for Vehicular Internet of Things: Recent Advances and Open Issues. IEEE Open J. Comput. Soc. 2020, 1, 45–61. [Google Scholar] [CrossRef]
- Manias, D.M.; Shami, A. Making a Case for Federated Learning in the Internet of Vehicles and Intelligent Transportation Systems. IEEE Netw. 2021, 35, 88–94. [Google Scholar] [CrossRef]
- Posner, J.; Tseng, L.; Aloqaily, M.; Jararweh, Y. Federated Learning in Vehicular Networks: Opportunities and Solutions. IEEE Netw. 2021, 35, 152–159. [Google Scholar] [CrossRef]
- Zhou, X.; Liang, W.; She, J.; Yan, Z.; Wang, K.I.K. Two-Layer Federated Learning with Heterogeneous Model Aggregation for 6G Supported Internet of Vehicles. IEEE Trans. Veh. Technol. 2021, 70, 5308–5317. [Google Scholar] [CrossRef]
- Liang, F.; Yang, Q.; Liu, R.; Wang, J.; Sato, K.; Guo, J. Semi-Synchronous Federated Learning Protocol with Dynamic Aggregation in Internet of Vehicles. IEEE Trans. Veh. Technol. 2022, 71, 4677–4691. [Google Scholar] [CrossRef]
- Li, X.; Cheng, L.; Sun, C.; Lam, K.Y.; Wang, X.; Li, F. Federated-Learning-Empowered Collaborative Data Sharing for Vehicular Edge Networks. IEEE Netw. 2021, 35, 116–124. [Google Scholar] [CrossRef]
- Bao, W.; Wu, C.; Guleng, S.; Zhang, J.; Yau, K.L.A.; Ji, Y. Edge computing-based joint client selection and networking scheme for federated learning in vehicular IoT. China Commun. 2021, 18, 39–52. [Google Scholar] [CrossRef]
- Sun, F.; Zhang, Z.; Zeadally, S.; Han, G.; Tong, S. Edge Computing-Enabled Internet of Vehicles: Towards Federated Learning Empowered Scheduling. IEEE Trans. Veh. Technol. 2022. early access. [Google Scholar] [CrossRef]
- Saputra, Y.M.; Dinh, H.T.; Nguyen, D.; Tran, L.N.; Gong, S.; Dutkiewicz, E. Dynamic Federated Learning-Based Economic Framework for Internet-of-Vehicles. IEEE Trans. Mob. Comput. 2021. early access. [Google Scholar] [CrossRef]
- Shinde, S.S.; Bozorgchenani, A.; Tarchi, D.; Ni, Q. On the Design of Federated Learning in Latency and Energy Constrained Computation Offloading Operations in Vehicular Edge Computing Systems. IEEE Trans. Veh. Technol. 2022, 71, 2041–2057. [Google Scholar] [CrossRef]
- Phung, K.H.; Tran, H.; Nguyen, T.; Dao, H.V.; Tran-Quang, V.; Truong, T.H.; Braeken, A.; Steenhaut, K. oneVFC—A Vehicular Fog Computation Platform for Artificial Intelligence in Internet of Vehicles. IEEE Access 2021, 9, 117456–117470. [Google Scholar] [CrossRef]
- Hammoud, A.; Otrok, H.; Mourad, A.; Dziong, Z. On Demand Fog Federations for Horizontal Federated Learning in IoV. IEEE Trans. Netw. Serv. Manag. 2022. early access. [Google Scholar] [CrossRef]
- Zhao, P.; Huang, Y.; Gao, J.; Xing, L.; Wu, H.; Ma, H. Federated Learning-Based Collaborative Authentication Protocol for Shared Data in Social IoV. IEEE Sens. J. 2022, 22, 7385–7398. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, S.; Zhang, P.; Zhou, X.; Shao, X.; Pu, G.; Zhang, Y. Blockchain and Federated Learning for Collaborative Intrusion Detection in Vehicular Edge Computing. IEEE Trans. Veh. Technol. 2021, 70, 6073–6084. [Google Scholar] [CrossRef]
- Pokhrel, S.R.; Choi, J. Improving TCP Performance Over WiFi for Internet of Vehicles: A Federated Learning Approach. IEEE Trans. Veh. Technol. 2020, 69, 6798–6802. [Google Scholar] [CrossRef]
- Shinde, S.S.; Tarchi, D. Towards a Novel Air–Ground Intelligent Platform for Vehicular Networks: Technologies, Scenarios, and Challenges. Smart Cities 2021, 4, 1469–1495. [Google Scholar] [CrossRef]
- Faulin, J.; Juan, A.; Lera, F.; Grasman, S. Solving the capacitated vehicle routing problem with environmental criteria based on real estimations in road transportation: A case study. Procedia-Soc. Behav. Sci. 2011, 20, 323–334. [Google Scholar] [CrossRef] [Green Version]
- Keenan, P.; Panadero, J.; Juan, A.A.; Martí, R.; McGarraghy, S. A strategic oscillation simheuristic for the time capacitated arc routing problem with stochastic demands. Comput. Oper. Res. 2021, 133, 105377. [Google Scholar] [CrossRef]
- Martins, L.d.C.; Tordecilla, R.D.; Castaneda, J.; Juan, A.A.; Faulin, J. Electric vehicle routing, arc routing, and team orienteering problems in sustainable transportation. Energies 2021, 14, 5131. [Google Scholar] [CrossRef]
- Panadero, J.; Ammouriova, M.; Juan, A.A.; Agustin, A.; Nogal, M.; Serrat, C. Combining parallel computing and biased randomization for solving the team orienteering problem in real-time. Appl. Sci. 2021, 11, 12092. [Google Scholar] [CrossRef]
- Villarinho, P.A.; Panadero, J.; Pessoa, L.S.; Juan, A.A.; Oliveira, F.L.C. A simheuristic algorithm for the stochastic permutation flow-shop problem with delivery dates and cumulative payoffs. Int. Trans. Oper. Res. 2021, 28, 716–737. [Google Scholar] [CrossRef]
- de Armas, J.; Juan, A.A.; Marquès, J.M.; Pedroso, J.P. Solving the deterministic and stochastic uncapacitated facility location problem: From a heuristic to a simheuristic. J. Oper. Res. Soc. 2017, 68, 1161–1176. [Google Scholar] [CrossRef]
- de Armas, J.; Ferrer, A.; Juan, A.A.; Lalla-Ruiz, E. Modeling and solving the non-smooth arc routing problem with realistic soft constraints. Expert Syst. Appl. 2018, 98, 205–220. [Google Scholar] [CrossRef]
Challenge | Methodology | References |
---|---|---|
Clustering vehicles/base stations | Unsupervised learning | Song et al. [83] |
Time series forecasting | Recurrent neural networks | Hewamalage et al. [84] |
Optimal control problems | Reinforcement learning | Zhou et al. [74] |
Latency-critical vehicular networking | Distributed machine learning | Muscinelli et al. [11] |
IoV optimization problems | Game theory | Sun et al. [82] |
IoV optimization problems | Integer programming | Salahuddin et al. [85], Ning et al. [86] |
Characteristics | Centralized Learning | Decentralized Learning | Collaborative Learning | Federated Learning |
---|---|---|---|---|
Learning Entity | Centralized Server | Distributed Servers/Devices | Distributed Servers and/or devices | On Device (VUs) |
Scalability | Low | High | High | Very High |
Energy Cost (VU Side) | Low | High | High | High |
Latency | High | Low | Low | Medium |
VUs Sensitive Data Privacy | Medium | Limited | Limited | High |
Pros | Training Fairly Complex ML models (i.e., DNN with limited number of layers) | Training Complex ML Models | Training Models with Limited Complexity | Training Models with Limited Complexity |
Main Challenges over ISVN | High Resource Requirements, larger training cost/latency | High resource Requirements, Server/Device Selection | VUs mobility, Server/Device Selection with Proper Data | VUs mobility, Proper Device/Server Selection, Model Accuracy |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adelantado, F.; Ammouriova, M.; Herrera, E.; Juan, A.A.; Shinde, S.S.; Tarchi, D. Internet of Vehicles and Real-Time Optimization Algorithms: Concepts for Vehicle Networking in Smart Cities. Vehicles 2022, 4, 1223-1245. https://doi.org/10.3390/vehicles4040065
Adelantado F, Ammouriova M, Herrera E, Juan AA, Shinde SS, Tarchi D. Internet of Vehicles and Real-Time Optimization Algorithms: Concepts for Vehicle Networking in Smart Cities. Vehicles. 2022; 4(4):1223-1245. https://doi.org/10.3390/vehicles4040065
Chicago/Turabian StyleAdelantado, Ferran, Majsa Ammouriova, Erika Herrera, Angel A. Juan, Swapnil Sadashiv Shinde, and Daniele Tarchi. 2022. "Internet of Vehicles and Real-Time Optimization Algorithms: Concepts for Vehicle Networking in Smart Cities" Vehicles 4, no. 4: 1223-1245. https://doi.org/10.3390/vehicles4040065
APA StyleAdelantado, F., Ammouriova, M., Herrera, E., Juan, A. A., Shinde, S. S., & Tarchi, D. (2022). Internet of Vehicles and Real-Time Optimization Algorithms: Concepts for Vehicle Networking in Smart Cities. Vehicles, 4(4), 1223-1245. https://doi.org/10.3390/vehicles4040065