Utilizing UAVs in Wireless Networks: Advantages, Challenges, Objectives, and Solution Methods
Abstract
:1. Introduction
2. Optimizing the Deployment of UAVs
2.1. Dimension of the Problem
2.2. The Number of UAVs
2.3. Path Loss
2.4. Interference
2.5. Non-Line-of-Sight Link
2.6. Energy Limitation
2.7. User’s Altitude
2.8. Insight for Future Studies
3. Optimizing the Trajectory of UAVs
3.1. Dimension of the Problem
3.2. Number of UAVs
3.3. Path Loss
3.4. Interference
3.5. Non-Line-of-Sight Link
3.6. Energy Limitation
3.7. User Mobility
3.8. Insight for Future Studies
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
Full Name | Abbreviation |
Unmanned aerial vehicles | UAV |
flying base stations | FBS |
quality of service | QoS |
line of sight | LoS |
non-line of sight | NLoS |
air-to-ground | A2G |
user equipment | UE |
channel state information | CSI |
Mixed-Integer Programming | MIP |
Artificial Bee Colony | ABC |
Global Positioning System | GPS |
Visible Light Communication | VLC |
Gated Recurrent Units | GRU |
Convolutional Neural Network | CNN |
Internet of Things | IoT |
signal-to-noise ratio | SNR |
Successive Convex Approximation | SCA |
Low-Altitude Platform | LAP |
drone base stations | DBSs |
Quality of Experience | QoE |
base stations | BSs |
Flower Pollination Algorithm | FPA |
Salp Swarm Algorithm | SSA |
Sine Cosine Algorithm | SCA |
Mixed-Integer Second-Order Cone Problem | MISOCP |
bat algorithm | BA |
improved bat algorithm | IBA |
polyblock Outer Approximation | POA |
deep reinforcement learning | DRL |
multi-objective particle swarm optimization | MOPSO |
Monte Carlo tree search | MCTS |
transfer learning | TL |
multiple-input multiple-output | MIMO |
optimal deadline-based trajectory | ODT |
deep learning trained with genetic algorithm | DL-GA |
wireless sensor networkv | WSN |
non-linear integer programming | NLIP |
Value Decomposition-based Reinforcement Learning | VD-RL |
device-to-device | D2D |
Alternating Directional Method of Multipliers | ADMM |
particle swarm optimization | PSO |
Advantage Pointer–Critic | APC |
binary linear problem | BLP |
FBS set management | FSM |
References
- Union, I. IMT Traffic Estimates for the Years 2020 to 2030. In Report ITU; ITU: Geneva, Switzerland, 2015; Volume 2370. [Google Scholar]
- Sheth, K.; Patel, K.; Shah, H.; Tanwar, S.; Gupta, R.; Kumar, N. A Taxonomy of AI Techniques for 6G Communication Networks. Comput. Commun. 2020, 161, 279–303. [Google Scholar] [CrossRef]
- Bekmezci, I.; Sahingoz, O.K.; Temel, Ş. Flying ad-hoc networks (FANETs): A survey. Ad Hoc Netw. 2013, 11, 1254–1270. [Google Scholar] [CrossRef]
- Hayat, S.; Yanmaz, E.; Muzaffar, R. Survey on unmanned aerial vehicle networks for civil applications: A communications viewpoint. IEEE Commun. Surv. Tutor. 2016, 18, 2624–2661. [Google Scholar] [CrossRef]
- Bowlin, E.; Khan, M.S.; Bajracharya, B.; Appasani, B.; Bizon, N. Challenges and Solutions for Vehicular Ad-Hoc Networks Based on Lightweight Blockchains. Vehicles 2023, 5, 994–1012. [Google Scholar] [CrossRef]
- Pipicelli, M.; Gimelli, A.; Sessa, B.; De Nola, F.; Toscano, G.; Di Blasio, G. Architecture and Potential of Connected and Autonomous Vehicles. Vehicles 2024, 6, 275–304. [Google Scholar] [CrossRef]
- Shahzadi, R.; Ali, M.; Khan, H.Z.; Naeem, M. UAV assisted 5G and beyond wireless networks: A survey. J. Netw. Comput. Appl. 2021, 189, 103114. [Google Scholar] [CrossRef]
- Shamsoshoara, A.; Afghah, F.; Blasch, E.; Ashdown, J.; Bennis, M. UAV-Assisted Communication in Remote Disaster Areas Using Imitation Learning. IEEE Open J. Commun. Soc. 2021, 2, 738–753. [Google Scholar] [CrossRef]
- Kalantari, E.; Shakir, M.Z.; Yanikomeroglu, H.; Yongacoglu, A. Backhaul-aware robust 3D drone placement in 5G+ wireless networks. In Proceedings of the 2017 IEEE International Conference on Communications Workshops (ICC Workshops), Paris, France, 21–25 May 2017; IEEE: New York, NY, USA, 2017; pp. 109–114. [Google Scholar]
- Alzenad, M.; El-Keyi, A.; Lagum, F.; Yanikomeroglu, H. 3-D placement of an unmanned aerial vehicle base station (UAV-BS) for energy-efficient maximal coverage. IEEE Wirel. Commun. Lett. 2017, 6, 434–437. [Google Scholar] [CrossRef]
- Fotouhi, A.; Qiang, H.; Ding, M.; Hassan, M.; Giordano, L.G.; Garcia-Rodriguez, A.; Yuan, J. Survey on UAV cellular communications: Practical Aspects, Standardization Advancements, Regulation, and Security Challenges. IEEE Commun. Surv. Tutor. 2019, 21, 3417–3442. [Google Scholar] [CrossRef]
- Mozaffari, M.; Saad, W.; Bennis, M.; Nam, Y.H.; Debbah, M. A Tutorial on UAVs for Wireless Networks: Applications, Challenges, and Open Problems. IEEE Commun. Surv. Tutor. 2019, 21, 2334–2360. [Google Scholar] [CrossRef]
- Foukas, X.; Patounas, G.; Elmokashfi, A.; Marina, M.K. Network Slicing in 5G: Survey and Challenges. IEEE Commun. Mag. 2017, 55, 94–100. [Google Scholar] [CrossRef]
- Alsamhi, S.; Afghah, F.; Sahal, R.; Hawbani, A.; Al-qaness, M.A.; Lee, B.; Guizani, M. Green internet of things using UAVs in B5G networks: A review of applications and strategies. Ad Hoc Netw. 2021, 117, 102505. [Google Scholar] [CrossRef]
- Adelantado, F.; Ammouriova, M.; Herrera, E.; Juan, A.A.; Shinde, S.S.; Tarchi, D. Internet of Vehicles and Real-Time Optimization Algorithms: Concepts for Vehicle Networking in Smart Cities. Vehicles 2022, 4, 1223–1245. [Google Scholar] [CrossRef]
- Al-Hourani, A.; Kandeepan, S.; Lardner, S. Optimal LAP altitude for maximum coverage. IEEE Wirel. Commun. Lett. 2014, 3, 569–572. [Google Scholar] [CrossRef]
- Gao, W.; Han, C.; Chen, Z. Attenuation and Loss of Spatial Coherence Modeling for Atmospheric Turbulence in Terahertz UAV MIMO Channels. IEEE Trans. Wirel. Commun. 2024, 23, 11636–11648. [Google Scholar] [CrossRef]
- Sobouti, M.J.; Mohajerzadeh, A.H.; Seno, S.A.H.; Yanikomeroglu, H. Managing Sets of Flying Base Stations Using Energy Efficient 3D Trajectory Planning in Cellular Networks. IEEE Sens. J. 2023, 23, 10983–10997. [Google Scholar] [CrossRef]
- Dreifuerst, R.M.; Heath, R.W. Massive MIMO in 5G: How beamforming, codebooks, and feedback enable larger arrays. IEEE Commun. Mag. 2023, 61, 18–23. [Google Scholar] [CrossRef]
- Casarin, E.; Bersan, R.; Piazza, D.; Zecchin, A.; Tomasin, S. Fast 5G Beam Tracking at The User Equipment with Analog Beamformer. In Proceedings of the 2022 IEEE 95th Vehicular Technology Conference: (VTC2022-Spring), Helsinki, Finland, 19–22 June 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Alaghehband, A.; Sobouti, M.J.; Mohajerzadeh, A.H.; Vahedian, A.; Seno, S.A.H. Joint Optimization of 3D Deployment and Trajectory of FBSs to Reduce Power Consumption Under Backhaul Constraints. In Proceedings of the 2021 11th International Conference on Computer Engineering and Knowledge (ICCKE), Mashhad, Iran, 28–29 October 2021; IEEE: New York, NY, USA, 2021; pp. 487–494. [Google Scholar]
- Zhang, C.; Zhang, L.; Zhu, L.; Zhang, T.; Xiao, Z.; Xia, X.G. 3D deployment of multiple UAV-mounted base stations for UAV communications. IEEE Trans. Commun. 2021, 69, 2473–2488. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, T.; Wang, S. Location optimization and user association for unmanned aerial vehicles assisted mobile networks. IEEE Trans. Veh. Technol. 2019, 68, 10056–10065. [Google Scholar] [CrossRef]
- Alaghehband, A.; Ziyainezhad, M.; Sobouti, M.J.; Seno, S.A.H.; Mohajerzadeh, A.H. Efficient Fuzzy Based UAV Positioning in IoT Environment Data Collection. In Proceedings of the 2020 10th International Conference on Computer and Knowledge Engineering (ICCKE), Mashhad, Iran, 29–30 October 2020; IEEE: New York, NY, USA, 2020; pp. 585–591. [Google Scholar]
- Shi, W.; Li, J.; Cheng, N.; Lyu, F.; Zhang, S.; Zhou, H.; Shen, X. Multi-drone 3-D Trajectory Planning and Scheduling in Drone-assisted Radio Access Networks. IEEE Trans. Veh. Technol. 2019, 68, 8145–8158. [Google Scholar] [CrossRef]
- Khamidehi, B.; Sousa, E.S. Trajectory Design for the Aerial Base Stations to Improve Cellular Network Performance. IEEE Trans. Veh. Technol. 2021, 70, 945–956. [Google Scholar] [CrossRef]
- Valiulahi, I.; Masouros, C. Multi-UAV deployment for throughput maximization in the presence of co-channel interference. IEEE Int. Things J. 2020, 8, 3605–3618. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, M.; Yang, Z.; Luo, T.; Saad, W. Deep learning for optimal deployment of UAVs with visible light communications. IEEE Trans. Wirel. Commun. 2020, 19, 7049–7063. [Google Scholar] [CrossRef]
- Shakoor, S.; Kaleem, Z.; Do, D.T.; Dobre, O.A.; Jamalipour, A. Joint optimization of UAV 3-D placement and path-loss factor for energy-efficient maximal coverage. IEEE Int. Things J. 2020, 8, 9776–9786. [Google Scholar] [CrossRef]
- Islambouli, R.; Sharafeddine, S. Optimized 3D deployment of UAV-mounted cloudlets to support latency-sensitive services in IoT networks. IEEE Access 2019, 7, 172860–172870. [Google Scholar] [CrossRef]
- Alzenad, M.; El-Keyi, A.; Yanikomeroglu, H. 3-D placement of an unmanned aerial vehicle base station for maximum coverage of users with different QoS requirements. IEEE Wirel. Commun. Lett. 2017, 7, 38–41. [Google Scholar] [CrossRef]
- Xue, Z.; Wang, J.; Ding, G.; Wu, Q. Joint 3D location and power optimization for UAV-enabled relaying systems. IEEE Access 2018, 6, 43113–43124. [Google Scholar] [CrossRef]
- Mozaffari, M.; Kasgari, A.T.Z.; Saad, W.; Bennis, M.; Debbah, M. Beyond 5G with UAVs: Foundations of a 3D wireless cellular network. IEEE Trans. Wirel. Commun. 2018, 18, 357–372. [Google Scholar] [CrossRef]
- Bor-Yaliniz, I.; Yanikomeroglu, H. The new frontier in RAN heterogeneity: Multi-tier drone-cells. IEEE Commun. Mag. 2016, 54, 48–55. [Google Scholar] [CrossRef]
- Mozaffari, M.; Saad, W.; Bennis, M.; Debbah, M. Efficient deployment of multiple unmanned aerial vehicles for optimal wireless coverage. IEEE Commun. Lett. 2016, 20, 1647–1650. [Google Scholar] [CrossRef]
- Bor-Yaliniz, R.I.; El-Keyi, A.; Yanikomeroglu, H. Efficient 3-D placement of an aerial base station in next generation cellular networks. In Proceedings of the 2016 IEEE International Conference on Communications (ICC), Kuala Lumpur, Malaysia, 23–27 May 2016; IEEE: New York, NY, USA, 2016; pp. 1–5. [Google Scholar]
- Koivisto, M.; Costa, M.; Hakkarainen, A.; Leppanen, K.; Valkama, M. Joint 3D positioning and network synchronization in 5G ultra-dense networks using UKF and EKF. In Proceedings of the 2016 IEEE Globecom Workshops (GC Wkshps), Washington, DC, USA, 4–8 December 2016; IEEE: New York, NY, USA, 2016; pp. 1–7. [Google Scholar]
- Zhu, Z.; Li, L.; Zhou, W. QoS-aware 3D deployment of UAV base stations. In Proceedings of the 2018 10th International Conference on Wireless Communications and Signal Processing (WCSP), Hangzhou, China, 18–20 October 2018; IEEE: New York, NY, USA, 2018; pp. 1–6. [Google Scholar]
- Mozaffari, M.; Saad, W.; Bennis, M.; Debbah, M. Mobile unmanned aerial vehicles (UAVs) for energy-efficient Internet of Things communications. IEEE Trans. Wirel. Commun. 2017, 16, 7574–7589. [Google Scholar] [CrossRef]
- Li, L.; Wen, X.; Lu, Z.; Jing, W.; Zhang, H. Energy-efficient multi-UAVs deployment and movement for emergency response. IEEE Commun. Lett. 2021, 25, 1625–1629. [Google Scholar] [CrossRef]
- Ahmed, A.; Naeem, M.; Al-Dweik, A. Joint optimization of sensors association and UAVs placement in IoT applications with practical network constraints. IEEE Access 2021, 9, 7674–7689. [Google Scholar] [CrossRef]
- Košmerl, J.; Vilhar, A. Base stations placement optimization in wireless networks for emergency communications. In Proceedings of the 2014 IEEE International Conference on Communications Workshops (ICC), Sydney, Australia, 10–14 June 2014; IEEE: New York, NY, USA, 2014; pp. 200–205. [Google Scholar]
- Yang, P.; Cao, X.; Yin, C.; Xiao, Z.; Xi, X.; Wu, D. Proactive drone-cell deployment: Overload relief for a cellular network under flash crowd traffic. IEEE Trans. Intell. Transp. Syst. 2017, 18, 2877–2892. [Google Scholar] [CrossRef]
- Sharma, V.; Bennis, M.; Kumar, R. UAV-assisted heterogeneous networks for capacity enhancement. IEEE Commun. Lett. 2016, 20, 1207–1210. [Google Scholar] [CrossRef]
- Zahedi, M.H.; Sobouti, M.; Mohajerzadeh, A.; Rezaee, A.; Hosseini Seno, S. Fuzzy based efficient drone base stations (DBSs) placement in the 5G cellular network. Iran. J. Fuzzy Syst. 2020, 17, 29–38. [Google Scholar]
- Chen, M.; Mozaffari, M.; Saad, W.; Yin, C.; Debbah, M.; Hong, C.S. Caching in the sky: Proactive deployment of cache-enabled unmanned aerial vehicles for optimized quality-of-experience. IEEE J. Sel. Areas Commun. 2017, 35, 1046–1061. [Google Scholar] [CrossRef]
- Merwaday, A.; Guvenc, I. UAV assisted heterogeneous networks for public safety communications. In Proceedings of the 2015 IEEE Wireless Communications and Networking Conference Workshops (WCNCW), New Orleans, LA, USA, 9–12 March 2015; IEEE: New York, NY, USA, 2015; pp. 329–334. [Google Scholar]
- Mozaffari, M.; Saad, W.; Bennis, M.; Debbah, M. Mobile Internet of Things: Can UAVs provide an energy-efficient mobile architecture? In Proceedings of the 2016 IEEE Global Communications Conference (GLOBECOM), Washington, DC, USA, 4–8 December 2016; IEEE: New York, NY, USA, 2016; pp. 1–6. [Google Scholar]
- Lyu, J.; Zeng, Y.; Zhang, R.; Lim, T.J. Placement optimization of UAV-mounted mobile base stations. IEEE Commun. Lett. 2016, 21, 604–607. [Google Scholar] [CrossRef]
- Cicek, C.T.; Gultekin, H.; Tavli, B.; Yanikomeroglu, H. UAV base station location optimization for next generation wireless networks: Overview and future research directions. In Proceedings of the 2019 1st International Conference on Unmanned Vehicle Systems-Oman (UVS), Muscat, Oman, 5–7 February 2019; IEEE: New York, NY, USA, 2019; pp. 1–6. [Google Scholar]
- Kalantari, E.; Bor-Yaliniz, I.; Yongacoglu, A.; Yanikomeroglu, H. User association and bandwidth allocation for terrestrial and aerial base stations with backhaul considerations. In Proceedings of the 2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), Montreal, QC, Canada, 8–13 October 2017; IEEE: New York, NY, USA, 2017; pp. 1–6. [Google Scholar]
- Challita, U.; Saad, W. Network formation in the sky: Unmanned aerial vehicles for multi-hop wireless backhauling. In Proceedings of the GLOBECOM 2017—2017 IEEE Global Communications Conference, Singapore, 4–8 December 2017; IEEE: New York, NY, USA, 2017; pp. 1–6. [Google Scholar]
- Ahmed, A.; Awais, M.; Akram, T.; Kulac, S.; Alhussein, M.; Aurangzeb, K. Joint placement and device association of UAV base stations in IoT networks. Sensors 2019, 19, 2157. [Google Scholar] [CrossRef]
- Cicek, C.T.; Kutlu, T.; Gultekin, H.; Tavli, B.; Yanikomeroglu, H. Backhaul-aware placement of a UAV-BS with bandwidth allocation for user-centric operation and profit maximization. arXiv 2018, arXiv:1810.12395. [Google Scholar]
- Lai, C.C.; Chen, C.T.; Wang, L.C. On-demand density-aware UAV base station 3D placement for arbitrarily distributed users with guaranteed data rates. IEEE Wirel. Commun. Lett. 2019, 8, 913–916. [Google Scholar] [CrossRef]
- Kalantari, E.; Yanikomeroglu, H.; Yongacoglu, A. On the number and 3D placement of drone base stations in wireless cellular networks. In Proceedings of the 2016 IEEE 84th Vehicular Technology Conference (VTC-Fall), Montreal, QC, Canada, 18–21 September 2016; IEEE: New York, NY, USA, 2016; pp. 1–6. [Google Scholar]
- Mozaffari, M.; Saad, W.; Bennis, M.; Debbah, M. Optimal transport theory for power-efficient deployment of unmanned aerial vehicles. In Proceedings of the 2016 IEEE International Conference on Communications (ICC), Kuala Lumpur, Malaysia, 22–27 May 2016; IEEE: New York, NY, USA, 2016; pp. 1–6. [Google Scholar]
- Mozaffari, M.; Saad, W.; Bennis, M.; Debbah, M. Drone small cells in the clouds: Design, deployment and performance analysis. In Proceedings of the 2015 IEEE Global Communications Conference (GLOBECOM), San Diego, CA, USA, 6–10 December 2015; IEEE: New York, NY, USA, 2015; pp. 1–6. [Google Scholar]
- Sobouti, M.J.; Rahimi, Z.; Mohajerzadeh, A.H.; Seno, S.A.H.; Ghanbari, R.; Marquez-Barja, J.M.; Ahmadi, H. Efficient deployment of small cell base stations mounted on unmanned aerial vehicles for the internet of things infrastructure. IEEE Sens. J. 2020, 20, 7460–7471. [Google Scholar] [CrossRef]
- Chen, E.; Chen, J.; Mohamed, A.W.; Wang, B.; Wang, Z.; Chen, Y. Swarm intelligence application to UAV aided IoT data acquisition deployment optimization. IEEE Access 2020, 8, 175660–175668. [Google Scholar] [CrossRef]
- De Freitas, E.P.; Heimfarth, T.; Netto, I.F.; Lino, C.E.; Pereira, C.E.; Ferreira, A.M.; Wagner, F.R.; Larsson, T. UAV relay network to support WSN connectivity. In Proceedings of the International Congress on Ultra Modern Telecommunications and Control Systems, Ghent, Belgium, 30 October–1 November 2010; IEEE: New York, NY, USA, 2010; pp. 309–314. [Google Scholar]
- Chen, Y.; Li, N.; Wang, C.; Xie, W.; Xv, J. A 3D placement of unmanned aerial vehicle base station based on multi-population genetic algorithm for maximizing users with different QoS requirements. In Proceedings of the 2018 IEEE 18th International Conference on Communication Technology (ICCT), Chongqing, China, 8–11 October 2018; IEEE: New York, NY, USA, 2018; pp. 967–972. [Google Scholar]
- Khodashahi, M.H.; Tashtarian, F.; Moghaddam, M.H.Y.; Honary, M.T. Optimal location for mobile sink in wireless sensor networks. In Proceedings of the 2010 IEEE Wireless Communication and Networking Conference, Sydney, Australia, 20 April 2010; IEEE: New York, NY, USA, 2010; pp. 1–6. [Google Scholar]
- Liu, Y.; Huangfu, W.; Zhou, H.; Zhang, H.; Liu, J.; Long, K. Fair and energy-efficient coverage optimization for UAV placement problem in the cellular network. IEEE Trans. Commun. 2022, 70, 4222–4235. [Google Scholar] [CrossRef]
- He, X.; Yu, W.; Xu, H.; Lin, J.; Yang, X.; Lu, C.; Fu, X. Towards 3D deployment of UAV base stations in uneven terrain. In Proceedings of the 2018 27th International Conference on Computer Communication and Networks (ICCCN), Hangzhou, China, 30 July–2 August 2018; IEEE: New York, NY, USA, 2018; pp. 1–9. [Google Scholar]
- Rahimi, Z.; Sobouti, M.J.; Ghanbari, R.; Seno, S.A.H.; Mohajerzadeh, A.H.; Ahmadi, H.; Yanikomeroglu, H. An efficient 3-D positioning approach to minimize required UAVs for IoT network coverage. IEEE Int. Things J. 2021, 9, 558–571. [Google Scholar] [CrossRef]
- Zhou, X.; Gao, F.; Fang, X.; Lan, Z. Improved bat algorithm for UAV path planning in three-dimensional space. IEEE Access 2021, 9, 20100–20116. [Google Scholar] [CrossRef]
- Hua, M.; Yang, L.; Wu, Q.; Swindlehurst, A.L. 3D UAV trajectory and communication design for simultaneous uplink and downlink transmission. IEEE Trans. Commun. 2020, 68, 5908–5923. [Google Scholar] [CrossRef]
- Feng, W.; Zhao, N.; Ao, S.; Tang, J.; Zhang, X.; Fu, Y.; So, D.K.; Wong, K.K. Joint 3D trajectory design and time allocation for UAV-enabled wireless power transfer networks. IEEE Trans. Veh. Technol. 2020, 69, 9265–9278. [Google Scholar] [CrossRef]
- You, C.; Zhang, R. 3D trajectory optimization in Rician fading for UAV-enabled data harvesting. IEEE Trans. Wirel. Commun. 2019, 18, 3192–3207. [Google Scholar] [CrossRef]
- Ding, R.; Gao, F.; Shen, X.S. 3D UAV Trajectory Design and Frequency Band Allocation for Energy-efficient and Fair Communication: A Deep Reinforcement Learning Approach. IEEE Trans. Wirel. Commun. 2020, 19, 7796–7809. [Google Scholar] [CrossRef]
- Wang, W.; Li, X.; Wang, R.; Cumanan, K.; Feng, W.; Ding, Z.; Dobre, O.A. Robust 3D-trajectory and Time Switching Optimization for Dual-UAV-enabled Secure Communications. IEEE J. Sel. Areas Commun. 2021, 39, 3334–3347. [Google Scholar] [CrossRef]
- Amrallah, A.; Mohamed, E.M.; Tran, G.K.; Sakaguchi, K. UAV trajectory optimization in a post-disaster area using dual energy-aware bandits. Sensors 2023, 23, 1402. [Google Scholar] [CrossRef] [PubMed]
- Amrallah, A.; Mohamed, E.M.; Tran, G.K.; Sakaguchi, K. Optimization of UAV 3D trajectory in a post-disaster area using dual energy-aware bandits. IEICE Commun. Express 2023, 12, 403–408. [Google Scholar] [CrossRef]
- Ghafoor, S.; Rehmani, M.H.; Cho, S.; Park, S.H. An efficient trajectory design for mobile sink in a wireless sensor network. Comput. Electr. Eng. 2014, 40, 2089–2100. [Google Scholar] [CrossRef]
- Zhan, C.; Zeng, Y.; Zhang, R. Trajectory design for distributed estimation in UAV-enabled wireless sensor network. IEEE Trans. Veh. Technol. 2018, 67, 10155–10159. [Google Scholar] [CrossRef]
- Zhang, S.; Zeng, Y.; Zhang, R. Cellular-enabled UAV communication: Trajectory optimization under connectivity constraint. In Proceedings of the 2018 IEEE International Conference on Communications (ICC), Kansas City, MO, USA, 20–24 May 2018; IEEE: New York, NY, USA, 2018; pp. 1–6. [Google Scholar]
- Zhang, S.; Zhang, H.; He, Q.; Bian, K.; Song, L. Joint trajectory and power optimization for UAV relay networks. IEEE Commun. Lett. 2017, 22, 161–164. [Google Scholar] [CrossRef]
- Wu, Q.; Zeng, Y.; Zhang, R. Joint trajectory and communication design for UAV-enabled multiple access. In Proceedings of the GLOBECOM 2017—2017 IEEE Global Communications Conference, Singapore, 4–8 December 2017; IEEE: New York, NY, USA, 2017; pp. 1–6. [Google Scholar]
- Bulut, E.; Guevenc, I. Trajectory optimization for cellular-connected UAVs with disconnectivity constraint. In Proceedings of the 2018 IEEE International Conference on Communications Workshops (ICC Workshops), Kansas City, MO, USA, 20–24 May 2018; IEEE: New York, NY, USA, 2018; pp. 1–6. [Google Scholar]
- Bayerlein, H.; De Kerret, P.; Gesbert, D. Trajectory optimization for autonomous flying base station via reinforcement learning. In Proceedings of the 2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Kalamata, Greece, 25–28 June 2018; IEEE: New York, NY, USA, 2018; pp. 1–5. [Google Scholar]
- Deruyck, M.; Marri, A.; Mignardi, S.; Martens, L.; Joseph, W.; Verdone, R. Performance evaluation of the dynamic trajectory design for an unmanned aerial base station in a single frequency network. In Proceedings of the 2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), Montreal, QC, Canada, 8–13 October 2017; IEEE: New York, NY, USA, 2017; pp. 1–7. [Google Scholar]
- Zeng, Y.; Zhang, R.; Lim, T.J. Throughput maximization for UAV-enabled mobile relaying systems. IEEE Trans. Commun. 2016, 64, 4983–4996. [Google Scholar] [CrossRef]
- He, X.; Fu, X.; Yang, Y. Energy-efficient trajectory planning algorithm based on multi-objective PSO for the mobile sink in wireless sensor networks. IEEE Access 2019, 7, 176204–176217. [Google Scholar] [CrossRef]
- Qian, Y.; Sheng, K.; Ma, C.; Li, J.; Ding, M.; Hassan, M. Path Planning for the Dynamic UAV-Aided Wireless Systems using Monte Carlo Tree Search. IEEE Trans. Veh. Technol. 2022, 71, 6716–6721. [Google Scholar] [CrossRef]
- Fontanesi, G.; Zhu, A.; Arvaneh, M.; Ahmadi, H. A Transfer Learning Approach for UAV Path Design with Connectivity Outage Constraint. IEEE Int. Things J. 2022, 10, 4998–5012. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhou, F.; Zhou, H.; Ng, D.W.K.; Hu, R.Q. Robust trajectory and transmit power optimization for secure UAV-enabled cognitive radio networks. IEEE Trans. Commun. 2020, 68, 4022–4034. [Google Scholar] [CrossRef]
- Zhang, T.; Lei, J.; Liu, Y.; Feng, C.; Nallanathan, A. Trajectory Optimization for UAV Emergency Communication with Limited User Equipment Energy: A Safe-DQN Approach. IEEE Trans. Green Commun. Netw. 2021, 5, 1236–1247. [Google Scholar] [CrossRef]
- Li, J.; Zhao, H.; Wang, H.; Gu, F.; Wei, J.; Yin, H.; Ren, B. Joint Optimization on Trajectory, Altitude, Velocity, and Link Scheduling for Minimum Mission Time in UAV-Aided Data Collection. IEEE Int. Things J. 2020, 7, 1464–1475. [Google Scholar] [CrossRef]
- Gong, J.; Chang, T.H.; Shen, C.; Chen, X. Flight Time Minimization of UAV for Data Collection Over Wireless Sensor Networks. IEEE J. Sel. Areas Commun. 2018, 36, 1942–1954. [Google Scholar] [CrossRef]
- Huang, H.; Yang, Y.; Wang, H.; Ding, Z.; Sari, H.; Adachi, F. Deep Reinforcement Learning for UAV Navigation Through Massive MIMO Technique. IEEE Trans. Veh. Technol. 2019, 69, 1117–1121. [Google Scholar] [CrossRef]
- Samir, M.; Assi, C.; Sharafeddine, S.; Ebrahimi, D.; Ghrayeb, A. Age of Information Aware Trajectory Planning of UAVs in Intelligent Transportation Systems: A Deep Learning Approach. IEEE Trans. Veh. Technol. 2020, 69, 12382–12395. [Google Scholar] [CrossRef]
- Tashtarian, F.; Moghaddam, M.Y.; Sohraby, K.; Effati, S. ODT: Optimal deadline-based trajectory for mobile sinks in WSN: A decision tree and dynamic programming approach. Comput. Netw. 2015, 77, 128–143. [Google Scholar] [CrossRef]
- Pan, Y.; Yang, Y.; Li, W. A deep learning trained by genetic algorithm to improve the efficiency of path planning for data collection with multi-UAV. IEEE Access 2021, 9, 7994–8005. [Google Scholar] [CrossRef]
- Xia, Q.; Liu, S.; Guo, M.; Wang, H.; Zhou, Q.; Zhang, X. Multi-UAV trajectory planning using gradient-based sequence minimal optimization. Robot. Auton. Syst. 2021, 137, 103728. [Google Scholar] [CrossRef]
- Samir, M.; Sharafeddine, S.; Assi, C.; Nguyen, T.M.; Ghrayeb, A. Trajectory planning and resource allocation of multiple UAVs for data delivery in vehicular networks. IEEE Netw. Lett. 2019, 1, 107–110. [Google Scholar] [CrossRef]
- Jiang, F.; Swindlehurst, A.L. Optimization of UAV heading for the ground-to-air uplink. IEEE J. Sel. Areas Commun. 2012, 30, 993–1005. [Google Scholar] [CrossRef]
- Dogancay, K. UAV path planning for passive emitter localization. IEEE Trans. Aerosp. Electr. Syst. 2012, 48, 1150–1166. [Google Scholar] [CrossRef]
- Fadlullah, Z.M.; Takaishi, D.; Nishiyama, H.; Kato, N.; Miura, R. A dynamic trajectory control algorithm for improving the communication throughput and delay in UAV-aided networks. IEEE Netw. 2016, 30, 100–105. [Google Scholar] [CrossRef]
- He, Y.; Gan, Y.; Cui, H.; Guizani, M. Fairness-Based 3D Multi-UAV Trajectory Optimization in Multi-UAV-Assisted MEC System. IEEE Int. Things J. 2023, 10, 11383–11395. [Google Scholar] [CrossRef]
- Hu, Y.; Chen, M.; Saad, W.; Poor, H.V.; Cui, S. Distributed Multi-agent Meta Learning for Trajectory Design in Wireless Drone Networks. IEEE J. Sel. Areas Commun. 2021, 39, 3177–3192. [Google Scholar] [CrossRef]
- Ji, J.; Zhu, K.; Niyato, D.; Wang, R. Joint trajectory design and resource allocation for secure transmission in cache-enabled UAV-relaying networks with D2D communications. IEEE Int. Things J. 2020, 8, 1557–1571. [Google Scholar] [CrossRef]
- Ji, J.; Zhu, K.; Niyato, D.; Wang, R. Joint cache placement, flight trajectory, and transmission power optimization for multi-UAV assisted wireless networks. IEEE Trans. Wirel. Commun. 2020, 19, 5389–5403. [Google Scholar] [CrossRef]
- Wu, Q.; Zeng, Y.; Zhang, R. Joint trajectory and communication design for multi-UAV enabled wireless networks. IEEE Trans. Wirel. Commun. 2018, 17, 2109–2121. [Google Scholar] [CrossRef]
- Tang, H.; Wu, Q.; Xu, J.; Chen, W.; Li, B. A novel alternative optimization method for joint power and trajectory design in UAV-enabled wireless network. IEEE Trans. Veh. Technol. 2019, 68, 11358–11362. [Google Scholar] [CrossRef]
- Zhao, N.; Pang, X.; Li, Z.; Chen, Y.; Li, F.; Ding, Z.; Alouini, M.S. Joint trajectory and precoding optimization for UAV-assisted NOMA networks. IEEE Trans. Commun. 2019, 67, 3723–3735. [Google Scholar] [CrossRef]
- Zeng, Y.; Xu, X.; Zhang, R. Trajectory Design for Completion Time Minimization in UAV-enabled Multicasting. IEEE Trans. Wirel. Commun. 2018, 17, 2233–2246. [Google Scholar] [CrossRef]
- Xu, J.; Zeng, Y.; Zhang, R. UAV-enabled wireless power transfer: Trajectory design and energy optimization. IEEE Trans. Wirel. Commun. 2018, 17, 5092–5106. [Google Scholar] [CrossRef]
- Nguyen, K.K.; Duong, T.Q.; Do-Duy, T.; Claussen, H.; Hanzo, L. 3D UAV Trajectory and Data Collection Optimisation via Deep Reinforcement Learning. IEEE Trans. Commun. 2022, 70, 2358–2371. [Google Scholar] [CrossRef]
- Huang, Y.; Cui, M.; Zhang, G.; Chen, W. Bandwidth, power and trajectory optimization for UAV base station networks with backhaul and user QoS constraints. IEEE Access 2020, 8, 67625–67634. [Google Scholar] [CrossRef]
- Chowdhury, M.M.U.; Bulut, E.; Guvenc, I. Trajectory optimization in UAV-assisted cellular networks under mission duration constraint. In Proceedings of the 2019 IEEE Radio and Wireless Symposium (RWS), Orlando, FL, USA, 20–23 January 2019; IEEE: New York, NY, USA, 2019; pp. 1–4. [Google Scholar]
- Lee, J.; Friderikos, V. Interference-aware path planning optimization for multiple UAVs in beyond 5G networks. J. Commun. Netw. 2022, 24, 125–138. [Google Scholar] [CrossRef]
- Hu, J.; Zhang, H.; Song, L. Reinforcement learning for decentralized trajectory design in cellular UAV networks with sense-and-send protocol. IEEE Int. Things J. 2018, 6, 6177–6189. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, H.; Di, B.; Song, L. Joint trajectory and power optimization for UAV sensing over cellular networks. IEEE Commun. Lett. 2018, 22, 2382–2385. [Google Scholar] [CrossRef]
- Tang, Y.; Miao, Y.; Barnawi, A.; Alzahrani, B.; Alotaibi, R.; Hwang, K. A joint global and local path planning optimization for UAV task scheduling towards crowd air monitoring. Comput. Netw. 2021, 193, 107913. [Google Scholar] [CrossRef]
- Di Franco, C.; Buttazzo, G. Energy-aware coverage path planning of UAVs. In Proceedings of the 2015 IEEE International Conference on Autonomous Robot Systems and Competitions, Vila Real, Portugal, 8–10 April 2015; IEEE: New York, NY, USA, 2015; pp. 111–117. [Google Scholar]
- Alsharoa, A.; Ghazzai, H.; Yuksel, M.; Kadri, A.; Kamal, A.E. Trajectory optimization for multiple UAVs acting as wireless relays. In Proceedings of the 2018 IEEE International Conference on Communications Workshops (ICC Workshops), Kansas City, MO, USA, 20–24 May 2018; IEEE: New York, NY, USA, 2018; pp. 1–6. [Google Scholar]
- Zeng, S.; Zhang, H.; Bian, K.; Song, L. UAV relaying: Power allocation and trajectory optimization using decode-and-forward protocol. In Proceedings of the 2018 IEEE International Conference on Communications Workshops (ICC Workshops), Kansas City, MO, USA, 20–24 May 2018; IEEE: New York, NY, USA, 2018; pp. 1–6. [Google Scholar]
- Lyu, J.; Zeng, Y.; Zhang, R. UAV-aided cellular offloading: A potential solution to hot-spot issue. IEEE Trans. Wirel. Commun. 2017. [Google Scholar]
- Zeng, Y.; Zhang, R. Energy-efficient UAV communication with trajectory optimization. IEEE Trans. Wirel. Commun. 2017, 16, 3747–3760. [Google Scholar] [CrossRef]
- Koyuncu, E.; Shabanighazikelayeh, M.; Seferoglu, H. Deployment and trajectory optimization of UAVs: A quantization theory approach. IEEE Trans. Wirel. Commun. 2018, 17, 8531–8546. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Z.; Chen, Y.; Liu, M.; Lyu, X.; Hou, X.; Wang, J. Joint Resource Allocation and UAV Trajectory Optimization for Space-Air-Ground Internet of Remote Things Networks. IEEE Syst. J. 2021, 15, 4745–4755. [Google Scholar] [CrossRef]
- Li, K.; Ni, W.; Tovar, E.; Jamalipour, A. On-Board Deep Q-Network for UAV-Assisted Online Power Transfer and Data Collection. IEEE Trans. Veh. Technol. 2019, 68, 12215–12226. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, R.; Liu, Q.; Thompson, J.S.; Kadoch, M. Energy-Efficient Data Collection and Device Positioning in UAV-Assisted IoT. IEEE Int. Things J. 2019, 7, 1122–1139. [Google Scholar] [CrossRef]
- Zhan, C.; Zeng, Y. Aerial–Ground Cost Tradeoff for Multi-UAV-Enabled Data Collection in Wireless Sensor Networks. IEEE Trans. Commun. 2020, 68, 1937–1950. [Google Scholar] [CrossRef]
- Kouroshnezhad, S.; Peiravi, A.; Haghighi, M.S.; Jolfaei, A. Energy-efficient Drone Trajectory Planning for the Localization of 6G-enabled IoT Devices. IEEE Int. Things J. 2021, 8, 5202–5210. [Google Scholar] [CrossRef]
- Sobouti, M.J.; Adarbah, H.Y.; Alaghehband, A.; Chitsaz, H.; Mohajerzadeh, A.; Sookhak, M.; Seno, S.A.H.; Vahedian, A.; Afghah, F. Efficient Fuzzy-Based 3-D Flying Base Station Positioning and Trajectory for Emergency Management in 5G and Beyond Cellular Networks. IEEE Syst. J. 2024, 18, 814–825. [Google Scholar] [CrossRef]
- Hou, Q.; Cai, Y.; Hu, Q.; Lee, M.; Yu, G. Joint resource allocation and trajectory design for multi-UAV systems with moving Users: Pointer network and unfolding. IEEE Trans. Wirel. Commun. 2022, 22, 3310–3323. [Google Scholar] [CrossRef]
- Muslam, M.M.A. Enhancing Security in Vehicle-to-Vehicle Communication: A Comprehensive Review of Protocols and Techniques. Vehicles 2024, 6, 450–467. [Google Scholar] [CrossRef]
- Singh, R.; Ren, J.; Lin, X. A Review of Deep Reinforcement Learning Algorithms for Mobile Robot Path Planning. Vehicles 2023, 5, 1423–1451. [Google Scholar] [CrossRef]
Paper | 2D/3D | Users Altitude | Interference | Energy Limitations | Single/Multi UAV | LOS/NLOS | Attenuation |
---|---|---|---|---|---|---|---|
[16] | 3D | - | - | - | Multi | Both | Path loss |
[22] | 3D | - | + | - | Multi | Both | Path loss |
[23] | 3D | - | - | - | Multi | Both | Path loss |
[27] | 3D | - | + | + | Multi | LoS | - |
[28] | 3D | - | + | + | Multi | LoS | - |
[29] | 3D | - | + | + | Single | Both | Path loss |
[30] | 3D | - | - | + | Multi | Both | Path loss |
[31] | 3D | - | - | - | Single | Both | Path loss |
[32] | 3D | - | - | + | Single | LoS | Path loss |
[33] | 3D | + | + | - | Multi | Both | Path loss |
[34] | 3D | - | - | - | Single | LoS | - |
[35] | 3D | - | + | + | Multi | Both | Path loss |
[36] | 3D | - | - | - | Single | Both | Path loss |
[37] | 3D | - | + | - | Single | LoS | - |
[38] | 3D | - | - | - | Multi | Both | Path loss |
[39] | 3D | - | - | + | Multi | Both | Path loss |
[40] | 2D | - | + | Energy efficiency | Multi | LoS | Path loss |
[41] | 2D | - | - | - | Multi | Both | Path loss |
[42] | 2D | - | - | - | Multi | - | - |
[43] | 2D | - | - | - | Multi | Both | Path loss |
[44] | 2D | - | + | - | Multi | LoS | Path loss |
[45] | 2D | - | - | - | Multi | LoS | Path loss |
[46] | 2D | - | + | - | Multi | Both | Path loss |
[47] | 2D | - | + | - | Multi | Both | Path loss |
[48] | 2D | - | - | + | Multi | LoS | Path loss |
[49] | 2D | - | - | - | Multi | LoS | Path loss |
[51] | 3D | - | + | - | Multi | LoS | Path loss |
[52] | 2D | - | + | - | Multi | Both | Path loss |
[53] | 2D | - | - | - | Multi | Both | Path loss |
[54] | 2D | - | - | - | Single | Both | Path loss |
[55] | 3D | - | - | - | Single | Both | Path loss |
[56] | 3D | - | + | - | Multi | Both | Path loss |
[57] | 3D | - | + | + | Multi | Both | Path loss |
[58] | 3D | - | + | + | Multi | Both | Path loss |
[59] | 2D | - | + | - | Multi | LoS | Path loss |
[60] | 2D | - | - | + | Single | - | - |
[62] | 3D | - | - | + | Single | Both | Path loss |
[63] | 2D | - | - | + | Multi | - | - |
[64] | 2D | - | - | + | Single | LoS | - |
[65] | 3D | + | - | - | Multi | Both | Path loss |
[66] | 3D | - | + | - | Multi | Both | Path loss |
Paper | 2D/3D | Users Mobility | Interference | Energy Limitations | Single/Multi UAV | LoS/NLoS | Attenuation |
---|---|---|---|---|---|---|---|
[18] | 3D | + | + | + | Multi | Both | Path loss |
[25] | 3D | - | + | - | Multi | LoS | Path loss |
[26] | 3D | + | + | + | Multi | LoS | - |
[67] | 3D | - | - | - | Single | LoS | - |
[68] | 3D | - | + | + | Single | LoS | Path loss |
[69] | 3D | - | + | + | Single | LoS | Path loss |
[70] | 3D | - | - | - | Single | LoS | Rician fading |
[71] | 3D | - | + | + | Single | LoS | - |
[72] | 3D | + | + | + | Dual | LoS | Path loss |
[76] | 2D | - | - | - | Single | LoS | - |
[77] | 2D | - | - | - | Single | LoS | - |
[78] | 2D | - | - | + | Single | - | Path loss, channel fading coefficients |
[80] | 2D | - | - | + | Single | - | - |
[81] | 2D | - | - | - | Single | Both | Path loss, small-scale fading, obstacle shadowing |
[84] | 2D | - | - | Energy efficient | Single | - | - |
[85] | 3D | Random waypoint | - | + | Single | LoS | Free-space path loss |
[86] | 2D | - | - | - | Single | LoS | - |
[87] | 2D | - | + | + | Multi | LoS | - |
[88] | 2D | + | - | + | Single | Both | Fading |
[89] | 3D | + | - | - | Single | LoS | - |
[90] | 2D | - | - | + | Single | LoS | - |
[91] | 2D | - | - | - | Single | LoS | - |
[92] | 2D | - | - | - | Multi | LoS | - |
[93] | 2D | - | - | + | Multi | - | - |
[94] | 2D | - | - | + | Multi | LoS | - |
[95] | 2D | - | - | + | Multi | - | - |
[96] | 2D | + | - | - | Multi | LoS | - |
[97] | 2D | + | - | - | Multi | LoS | Path loss |
[100] | 3D | + | - | + | Multi | LoS | - |
[101] | 2D | - | - | - | Multi | LoS | - |
[102] | 2D | - | + | + | Single | LoS | Path loss |
[103] | 2D | - | + | + | Multi | LoS | Path loss |
[104] | 2D | - | + | + | Multi | LoS | Path loss |
[105] | 2D | - | - | + | Single | LoS | Path loss |
[106] | 2D | - | + | - | Single | LoS | Path loss |
[107] | 2D | - | - | + | Single | LoS | Path loss and Rician fading |
[108] | 2D | - | - | + | Single | LoS | Path loss |
[110] | 2D | - | + | + | Single | LoS | - |
[111] | 2D | - | + | - | Single | - | Path loss |
[112] | 3D | - | + | + | Multi | Both | - |
[113] | 2D | - | - | - | Multi | Both | Path loss |
[114] | 2D | - | - | + | Single | Both | Path loss |
[115] | 2D | + | - | + | Single | LoS | - |
[117] | 2D | + | - | + | Multi | Both | Path loss |
[118] | 3D | - | - | + | Single | - | Path loss |
[121] | 2D | - | - | + | Multi | LoS | Path loss |
[122] | 3D | + | + | + | Single | LoS | - |
[123] | 2D | - | - | - | Single | LoS | - |
[124] | 3D | - | - | + | Single | LoS | - |
[125] | 2D | - | - | + | Multi | LoS | - |
[126] | 2D | - | - | + | Single | LoS | - |
[127] | 3D | + | - | + | Multi | Both | Path loss |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sobouti, M.J.; Mohajerzadeh, A.; Adarbah, H.Y.; Rahimi, Z.; Ahmadi, H. Utilizing UAVs in Wireless Networks: Advantages, Challenges, Objectives, and Solution Methods. Vehicles 2024, 6, 1769-1800. https://doi.org/10.3390/vehicles6040086
Sobouti MJ, Mohajerzadeh A, Adarbah HY, Rahimi Z, Ahmadi H. Utilizing UAVs in Wireless Networks: Advantages, Challenges, Objectives, and Solution Methods. Vehicles. 2024; 6(4):1769-1800. https://doi.org/10.3390/vehicles6040086
Chicago/Turabian StyleSobouti, Mohammad Javad, Amirhossein Mohajerzadeh, Haitham Y. Adarbah, Zahra Rahimi, and Hamed Ahmadi. 2024. "Utilizing UAVs in Wireless Networks: Advantages, Challenges, Objectives, and Solution Methods" Vehicles 6, no. 4: 1769-1800. https://doi.org/10.3390/vehicles6040086
APA StyleSobouti, M. J., Mohajerzadeh, A., Adarbah, H. Y., Rahimi, Z., & Ahmadi, H. (2024). Utilizing UAVs in Wireless Networks: Advantages, Challenges, Objectives, and Solution Methods. Vehicles, 6(4), 1769-1800. https://doi.org/10.3390/vehicles6040086