Evaluating the Societal Impact of AI: A Comparative Analysis of Human and AI Platforms Using the Analytic Hierarchy Process
Abstract
:1. Introduction and Literature Review
2. Materials and Methods
2.1. Methodological Framework
- Data Privacy and Security: AI systems rely heavily on large datasets, often containing personal information. Protecting this data from breaches and misuse is critical, and there is ongoing debate over how to balance innovation with privacy rights.
- Economic Disruption: AI has the potential to disrupt labor markets by automating jobs, leading to unemployment and economic inequality. The challenge lies in managing this disruption and ensuring a fair distribution of the benefits AI can bring.
- Ethical and Moral Considerations: AI technologies raise complex ethical issues, such as bias, privacy concerns, and the potential for AI to be used in ways that may harm individuals or society. Determining how to design and deploy AI responsibly is a major challenge.
- Resource and Infrastructure Limitations: The development and deployment of AI require significant computational resources and infrastructure. In some regions, limited access to these resources can hinder AI progress and exacerbate global inequalities.
- Social and Cultural Resistance: AI can sometimes clash with existing cultural norms and societal values. Resistance to AI adoption can arise from fear of the unknown, distrust in technology, or concerns over loss of human agency.
- Regulation and Governance: Governments and regulatory bodies are struggling to keep up with the rapid pace of AI development. Establishing effective regulations that promote innovation while preventing misuse or unintended.
2.2. Pairwise Comparisons
2.3. Participants in the Study
2.3.1. Human Individuals
2.3.2. AI ‘Individuals’
2.4. Prioritizing Judgments in Group AHP Manner
2.4.1. Prioritization Methods
- Logarithmic Least Squares Method (LLS): Provides an explicit solution by minimizing a logarithmic objective function subject to multiplicative constraints [21].
- Weighted Least Squares Method (WLS): Utilizes a modified Euclidean norm as the objective function to minimize deviations [22].
- Fuzzy Preference Programming Method (FPP): Introduced by Mikhailov [23], this method uses a geometrical representation of the prioritization problem, reducing it to a fuzzy programming problem solvable as a standard linear program.
- Cosine Maximization Method (CMM): Developed by Kou and Lin [24], this recent approach maximizes the sum of the cosines of the angles between the priority vector and each column vector of the comparison matrix.
2.4.2. Prioritization by the Eigenvector Method
2.4.3. Consistency Measures
2.4.4. Aggregation of Individual Priorities
3. Results
3.1. Humans
3.2. AI Platforms (Non-Humans)
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- How AI Is Impacting Society And Shaping The Future. Last Updated 20 June 2024. Available online: https://www.geeksforgeeks.org/how-ai-is-impacting-society-and-shaping-the-future/ (accessed on 27 June 2024).
- Kingsley, O.-A. Artificial intelligence research: A review on dominant themes, methods, frameworks and future research directions. Telemat. Inform. Rep. 2024, 14, 100127. [Google Scholar] [CrossRef]
- Ajami, R.A.; Karimi, H. Artificial Intelligence: Opportunities and Challenges. J. Asua-Pac. Bus. 2023, 24, 73–75. [Google Scholar] [CrossRef]
- AI Index Report 2021 // Chapter 5. Available online: https://wp.oecd.ai/app/uploads/2021/03/2021-AI-Index-Report-_Chapter-5.pdf (accessed on 27 June 2024).
- Ghallab, M. Responsible AI: Requirements and challenges. AI Perspect. 2019, 1, 3. [Google Scholar] [CrossRef]
- Raftopoulos, M.; Hamariu, J. Human-AI collaboration in organisations: A literature review on enabling value creation. In Proceedings of the Conference: European Conference on Information Systems (ECIS), Kristiansan, Norway, 11–16 June 2023. [Google Scholar]
- Adere, Y.B. The impact of artificial intelligence on society. International Research Journal of Engineering IT & Scientific Research 2023, 5, 3120–3125. [Google Scholar] [CrossRef]
- Wong, M.F.; Tan, C.W. Aligning Crowd-Sourced Human Feedback for Reinforcement Learning on Code Generation by Large Language Models. IEEE Trans. Big Data 2024, 1–12. [Google Scholar] [CrossRef]
- Chen, S.F.; Rosenfeld, R. A survey of smoothing techniques for me models. IEEE Trans. Speech Audio Process. 2000, 8, 37–50. [Google Scholar] [CrossRef]
- Martins, A.; Smith, N.; Figueiredo, M.; Aguiar, P. Structured sparsity in structured prediction. In Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing, Edinburgh, UK, 27–31 July 2011; Association for Computational Linguistics: Stroudsburg, PA, USA, 2011; pp. 1500–1511. [Google Scholar]
- Nelakanti, A.K.; Archambeau, C.; Mairal, J.; Bach, F.; Bouchard, G. Structured penalties for log-linear language models. In Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, Seattle, WA, USA, 18–21 October 2013; Association for Computational Linguistics: Stroudsburg, PA, USA, 2013; pp. 233–243. [Google Scholar]
- Available online: http://chatGPT.com (accessed on 17 July 2024).
- Saaty, T.L. Analytic Hierarchy Process; McGraw-Hill: New York, NY, USA, 1980. [Google Scholar]
- Available online: https://www.perplexity.ai/ (accessed on 12 August 2024).
- Available online: https://gemini.google.com/ (accessed on 12 August 2024).
- Available online: https://dedaai.com/ (accessed on 12 August 2024).
- Saaty, T.L. Eigenvector and logarithmic least squares. Eur. J. Oper. Res. 1990, 48, 156–160. [Google Scholar] [CrossRef]
- Saaty, T.L.; Vargas, L.G. Inconsistency and rank preservation. Math. Psychol. 1984, 28, 205–214. [Google Scholar] [CrossRef]
- Saaty, T.L.; Vargas, L.G. Comparison of eigenvalue, logarithmic least squares and least squares methods in estimating ratios. Math. Model. 1984, 5, 309–324. [Google Scholar] [CrossRef]
- Srdjevic, B. Combining different prioritization methods in the analytic hierarchy process synthesis. Comput. Oper. Res. 2005, 32, 1897–1919. [Google Scholar] [CrossRef]
- Crawford, G.; Williams, C. A note on the analysis of subjective judgment matrices. J. Math. Psychol. 1985, 29, 387–405. [Google Scholar] [CrossRef]
- Chu, A.; Kalaba, R.; Springam, K. A comparison of two methods for determining the weights of belonging to fuzzy sets. J. Optim. Theory Appl. 1979, l27, 531–541. [Google Scholar] [CrossRef]
- Mikhailov, L. A fuzzy programming method for deriving priorities in the analytic hierarchy process. J. Oper. Res. Soc. 2000, 51, 341–349. [Google Scholar] [CrossRef]
- Kou, G.; Lin, C. A cosine maximization method for the priority vector derivation in AHP. Eur. J. Oper. Res. 2014, 235, 225–232. [Google Scholar] [CrossRef]
- Tu, J.; Zhibin, W.; Li, Y.; Xiang, C. Optimization Models to Meet the Conditions of Order Preservation in the Analytic Hierarchy Process. Available online: https://arxiv.org/abs/2411.02227 (accessed on 17 July 2024).
- Takeda, E.; Cogger, K.; Yu, P.L. Estimating criterion weights using eigenvectors: A comparative study. Eur. J. Oper. Res. 1987, 29, 360–369. [Google Scholar] [CrossRef]
- Srđević, B.; Srđević, Z. Prioritisation in the analytic hierarchy process for real and generated comparison matrices. Expert Syst. Appl. 2023, 225, 120015. [Google Scholar] [CrossRef]
- Forman, E.; Peniwati, K. Aggregating individual judgments and priorities with the analytic hierarchy process. Eur. J. Oper. Res. 1998, 108, 165–169. [Google Scholar] [CrossRef]
- Srđević, B. Aggregation of priorities in group applications of the analytic hierarchy process in water management. Vodoprivreda 2024, 56, 37–48. (In Serbian) [Google Scholar] [CrossRef]
Challenges (Initial List) Run 1 | Challenges (Ranked by Importance) Run 2 |
---|---|
Ethical Concerns
| Ethical Concerns
|
Regulatory and Legal Frameworks
| Regulatory and Legal Frameworks
|
Economic Disparities
| Security Risks
|
Security Risks
| Data Issues
|
Environmental Concerns
| Economic Disparities
|
Social Impact
| Social Impact
|
Human–AI Collaboration Challenges
| Global Competition
|
Data Issues
| Environmental Concerns
|
Global Competition
| Human–AI Collaboration Challenges
|
Cultural Resistance and Acceptance
| Cultural Resistance and Acceptance
|
Numerical Value | Description |
---|---|
1 | Equal importance |
3 | Moderate importance of one over the other |
5 | Strong importance of one over the other |
7 | Very strong importance of one over the other |
9 | Extreme importance of one over the other |
2, 4, 6, 8 | Intermediate values between the adjacent judgments |
Individ. | w1 | w2 | w3 | w4 | w5 | w6 | CR | ED | CO |
---|---|---|---|---|---|---|---|---|---|
1 | 0.340 | 0.166 | 0.340 | 0.044 | 0.025 | 0.085 | 0.045 | 7.555 | 0.023 |
2 | 0.074 | 0.285 | 0.376 | 0.035 | 0.069 | 0.161 | 0.084 | 7.317 | 0.050 |
3 | 0.160 | 0.116 | 0.397 | 0.084 | 0.061 | 0.182 | 0.078 | 4.736 | 0.024 |
4 | 0.432 | 0.258 | 0.146 | 0.065 | 0.033 | 0.065 | 0.121 | 9.362 | 0.058 |
5 | 0.213 | 0.106 | 0.140 | 0.055 | 0.076 | 0.409 | 0.018 | 1.816 | 0.020 |
6 | 0.594 | 0.066 | 0.156 | 0.047 | 0.104 | 0.034 | 0.186 | 14.786 | 0.040 |
7 | 0.076 | 0.553 | 0.186 | 0.132 | 0.019 | 0.035 | 0.260 | 24.593 | 0.082 |
8 | 0.284 | 0.064 | 0.236 | 0.039 | 0.072 | 0.305 | 0.044 | 4.689 | 0.011 |
9 | 0.067 | 0.341 | 0.341 | 0.030 | 0.153 | 0.067 | 0.016 | 3.994 | 0.018 |
10 | 0.050 | 0.251 | 0.052 | 0.220 | 0.318 | 0.109 | 0.064 | 4.896 | 0.055 |
11 | 0.167 | 0.167 | 0.167 | 0.167 | 0.167 | 0.167 | 0.000 | 0.000 | 0.000 |
12 | 0.293 | 0.068 | 0.068 | 0.068 | 0.068 | 0.435 | 0.023 | 3.494 | 0.035 |
13 | 0.099 | 0.029 | 0.174 | 0.192 | 0.246 | 0.260 | 0.137 | 7.335 | 0.055 |
14 | 0.225 | 0.044 | 0.377 | 0.057 | 0.123 | 0.175 | 0.068 | 6.045 | 0.048 |
15 | 0.617 | 0.069 | 0.174 | 0.046 | 0.047 | 0.046 | 0.094 | 10.250 | 0.046 |
16 | 0.269 | 0.064 | 0.257 | 0.091 | 0.071 | 0.248 | 0.059 | 4.558 | 0.035 |
17 | 0.242 | 0.067 | 0.242 | 0.070 | 0.242 | 0.138 | 0.023 | 2.112 | 0.016 |
18 | 0.198 | 0.135 | 0.320 | 0.049 | 0.212 | 0.087 | 0.144 | 7.617 | 0.100 |
19 | 0.332 | 0.072 | 0.363 | 0.046 | 0.127 | 0.059 | 0.051 | 4.888 | 0.039 |
20 | 0.294 | 0.294 | 0.105 | 0.137 | 0.028 | 0.142 | 0.035 | 4.356 | 0.022 |
21 | 0.365 | 0.077 | 0.118 | 0.026 | 0.081 | 0.334 | 0.075 | 9.426 | 0.043 |
22 | 0.313 | 0.313 | 0.129 | 0.030 | 0.065 | 0.151 | 0.098 | 7.556 | 0.036 |
23 | 0.172 | 0.090 | 0.424 | 0.031 | 0.104 | 0.178 | 0.131 | 8.535 | 0.042 |
24 | 0.112 | 0.040 | 0.428 | 0.130 | 0.113 | 0.177 | 0.187 | 7.330 | 0.070 |
25 | 0.358 | 0.056 | 0.338 | 0.030 | 0.109 | 0.109 | 0.172 | 9.621 | 0.047 |
26 | 0.137 | 0.382 | 0.157 | 0.023 | 0.101 | 0.200 | 0.102 | 8.952 | 0.061 |
27 | 0.169 | 0.146 | 0.075 | 0.389 | 0.100 | 0.121 | 0.158 | 5.269 | 0.034 |
28 | 0.353 | 0.142 | 0.273 | 0.030 | 0.050 | 0.152 | 0.089 | 5.797 | 0.054 |
29 | 0.400 | 0.208 | 0.176 | 0.104 | 0.058 | 0.055 | 0.113 | 6.410 | 0.036 |
30 | 0.331 | 0.326 | 0.181 | 0.057 | 0.077 | 0.027 | 0.041 | 7.129 | 0.023 |
31 | 0.464 | 0.082 | 0.157 | 0.057 | 0.046 | 0.194 | 0.152 | 7.891 | 0.063 |
32 | 0.210 | 0.073 | 0.210 | 0.064 | 0.031 | 0.412 | 0.039 | 7.084 | 0.024 |
33 | 0.051 | 0.182 | 0.052 | 0.192 | 0.052 | 0.470 | 0.040 | 6.354 | 0.032 |
34 | 0.289 | 0.307 | 0.076 | 0.071 | 0.123 | 0.134 | 0.139 | 5.724 | 0.027 |
35 | 0.324 | 0.169 | 0.079 | 0.086 | 0.045 | 0.297 | 0.036 | 3.787 | 0.035 |
36 | 0.312 | 0.141 | 0.379 | 0.063 | 0.026 | 0.079 | 0.082 | 9.666 | 0.016 |
37 | 0.225 | 0.313 | 0.194 | 0.134 | 0.080 | 0.054 | 0.259 | 8.206 | 0.086 |
38 | 0.039 | 0.242 | 0.086 | 0.136 | 0.031 | 0.467 | 0.068 | 8.573 | 0.028 |
Group | 0.259 | 0.166 | 0.226 | 0.085 | 0.093 | 0.171 | 0.093 | 7.045 | 0.040 |
Rank | (1) | (4) | (2) | (6) | (5) | (3) |
AI Challenge | Priority | Rank | |
---|---|---|---|
C1 | Data Privacy and Security | 0.259 | 1 |
C2 | Economic Disruption | 0.166 | 4 |
C3 | Ethical and Moral Considerations | 0.226 | 2 |
C4 | Resource and Infrastructure Limitations | 0.085 | 6 |
C5 | Social and Cultural Resistance | 0.093 | 5 |
C6 | Regulation and Governance | 0.171 | 3 |
Platform | w1 | w2 | w3 | w4 | w5 | w6 | CR | ED | CO |
---|---|---|---|---|---|---|---|---|---|
ChatGPT | 0.446 | 0.220 | 0.087 | 0.146 | 0.062 | 0.039 | 0.035 | 5.180 | 0.028 |
Gemini | 0.403 | 0.200 | 0.174 | 0.104 | 0.069 | 0.050 | 0.123 | 6.765 | 0.044 |
Perplexity | 0.410 | 0.204 | 0.068 | 0.104 | 0.162 | 0.051 | 0.044 | 3.572 | 0.038 |
DedaAI | 0.472 | 0.253 | 0.128 | 0.058 | 0.029 | 0.058 | 0.041 | 8.106 | 0.037 |
Group | 0.445 | 0.225 | 0.110 | 0.101 | 0.069 | 0.050 | 0.061 | 5.906 | 0.037 |
Rank | (1) | (2) | (3) | (4) | (5) | (6) |
AI Challenge | Priority | Rank | |
---|---|---|---|
C1 | Data Privacy and Security | 0.445 | 1 |
C2 | Economic Disruption | 0.225 | 2 |
C3 | Ethical and Moral Considerations | 0.110 | 3 |
C4 | Resource and Infrastructure Limitations | 0.101 | 4 |
C5 | Social and Cultural Resistance | 0.069 | 5 |
C6 | Regulation and Governance | 0.050 | 6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Srđević, B. Evaluating the Societal Impact of AI: A Comparative Analysis of Human and AI Platforms Using the Analytic Hierarchy Process. AI 2025, 6, 86. https://doi.org/10.3390/ai6040086
Srđević B. Evaluating the Societal Impact of AI: A Comparative Analysis of Human and AI Platforms Using the Analytic Hierarchy Process. AI. 2025; 6(4):86. https://doi.org/10.3390/ai6040086
Chicago/Turabian StyleSrđević, Bojan. 2025. "Evaluating the Societal Impact of AI: A Comparative Analysis of Human and AI Platforms Using the Analytic Hierarchy Process" AI 6, no. 4: 86. https://doi.org/10.3390/ai6040086
APA StyleSrđević, B. (2025). Evaluating the Societal Impact of AI: A Comparative Analysis of Human and AI Platforms Using the Analytic Hierarchy Process. AI, 6(4), 86. https://doi.org/10.3390/ai6040086