Development of a Portable Optomechatronic System to Obtain the Characterization of Transparent Materials and Dielectric Thin Films
Abstract
:1. Introduction
2. Materials and Methods
2.1. Theory: Matrix Method
2.1.1. Critical Angle
2.1.2. Brewster Method
2.1.3. The Abelès-Brewster
2.1.4. Surface Plasmon Resonance
2.1.5. Surface Plasmon Resonance and Scattering
2.2. Materials and Description of the Methods
3. Results
3.1. Critical Angle Measurement
3.2. Brewster Angle Measurement
3.3. Abelès-Brewster Technique
3.4. Surface Plasmon Resonance with Angular Interrogation and Sensorgram
3.5. SPR and Scattering Measurements
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Laksono, F.D.; Supardianningsih; Arifin, M.; Abraha, K. Development of low cost and accurate homemade sensor system based on Surface Plasmon Resonance (SPR). J. Phys. Conf. Ser. 2018, 1011, 012043. [Google Scholar] [CrossRef]
- Andrushchak, N.; Karbovnyk, I. LabVIEW-Based Automated Setup for Interferometric Refractive Index Probing. SLAS Technol. 2020, 25, 286–292. [Google Scholar] [CrossRef] [PubMed]
- Abdullah, M.R.; Harun, N.H.; Wahab, A.A.; Ibrahim, S.N.; Jamilan, M.A.; Rahim, N.A.S. Development of Low-Cost Plasmonic Tracker via a Microstepping with PC Based System. In Proceedings of the International Conference on Engineering Technology and Technopreneurship (ICE2T); Kuala Lumpur, Malaysia, 15–16 August 2023, IEEE: New York, NY, USA, 2023; pp. 161–166. [Google Scholar] [CrossRef]
- Shukla, N.; Chetri, P.; Boruah, R.; Gogoi, A.; Ahmed, G.A. Surface plasmon resonance biosensors based on Kretschmann configuration: Basic instrumentation and applications. In Recent Advances in Plasmonic Probes: Theory and Practice; Springer International Publishing: Cham, Switzerland, 2022; pp. 191–222. [Google Scholar]
- Oates, T.W.; Wormeester, H.; Arwin, H. Characterization of plasmonic effects in thin films and metamaterials using spectroscopic ellipsometry. Prog. Surf. Sci. 2011, 86, 328–376. [Google Scholar] [CrossRef]
- Guo, W. Temperature dependence of Brewster’s angle. J. Opt. Soc. Am. A 2018, 35, 98–102. [Google Scholar] [CrossRef] [PubMed]
- Sukma, F.O.R.; Hanif, M.A.; Santjojo, D.J.; Apsari, R.; Susanto, H.; Tazi, I. Effects of thickness and roughness on plasmonic characteristics of gold thin films deposited on polished optical fiber. Mater. Res. Express 2024, 11, 016201. [Google Scholar] [CrossRef]
- Rakhmatulin, I.; Risbridger, D.; Carter, R.M.; Esser, M.D.; Erden, M.S. A review of automation of laser optics alignment with a focus on machine learning applications. Opt. Lasers Eng. 2024, 173, 107923. [Google Scholar] [CrossRef]
- Kostyukevych, S.A.; Shirshov, Y.M.; Matsas, E.; Stronski, A.V.; Subbota, Y.V.; Chegel, V.I.; Shepeljavi, P.E. Application of surface plasmon resonance for the investigation of ultrathin metal films. In Proceedings of the International Conference on Optical Diagnostics of Materials and Devices for Opto-, Micro-, and Quantum Electronics, Kiev, Ukraine, 11–13 May 1995; Volume 2648. [Google Scholar] [CrossRef]
- Fontanot, T.; Bhaumik, U.; Kishore, R.; Meuret, Y. POCAL: A Python-based library to perform optical coating analysis and design. Opt. Contin. 2023, 2, 810. [Google Scholar] [CrossRef]
- Hu, J.; Cao, B.; Wang, S.; Li, J.; Wei, W.; Zhao, Y.; Hu, X.; Zhu, J.; Jiang, M.; Sun, X.; et al. Design and fabrication of an angle-scanning based platform for the construction of surface plasmon resonance biosensor. Opt. Lasers Eng. 2016, 78, 1–7. [Google Scholar] [CrossRef]
- Bonal, V.; Quintana, J.M.; Muñoz-Mármol, R.; Villalvilla, J.M.; Boj, P.G.; Díaz-García, M.A. Sub-400 nm film thickness determination from transmission spectra in organic distributed feedback lasers fabrication. Thin Solid Films 2019, 692, 137580. [Google Scholar] [CrossRef]
- Hönig, D.; Möbius, D. Reflectometry at the Brewster angle and Brewster angle microscopy at the air-water interface. Thin Solid Films 1992, 210, 64–68. [Google Scholar] [CrossRef]
- Luna-Moreno, D.; De la Rosa-Cruz, E.; Cuevas, F.J.; Regalado, L.E.; Salas, P.; Rodríguez, R.; Castaño, V.M. Refractive index measurement of pure and Er3þ-doped ZrO2–SiO2 sol-gel film by using the Brewster angle technique. Opt. Mater. 2002, 19, 275–281. [Google Scholar] [CrossRef]
- Li, H.; Xie, S. Measurement method of the refractive index of biotissue by total internal reflection. Appl. Opt. 1996, 35, 1793–1795. [Google Scholar] [CrossRef] [PubMed]
- Calhoun, W.R.; Maeta, H.; Roy, S.; Bali, L.M.; Bali, S. Sensitive real-time measurement of the refractive index and attenuation coefficient of milk and milk-cream mixtures. J. Dairy Sci. 2010, 93, 3497–3504. [Google Scholar] [CrossRef] [PubMed]
- Ulrich, R.; Torge, R. Measurement of Thin Film Parameters with a Prism Coupler. Appl. Opt. 1973, 12, 2901–2908. [Google Scholar] [CrossRef] [PubMed]
- Kashyap, R.; Baruah, U.R.; Gogoi, A.; Mondal, B. Sensitivity-Enhanced Surface Plasmon Resonance Sensor Based on Zinc Oxide and BlueP-MoS2 Heterostructure. Plasmonics 2023, 18, 1679–1693. [Google Scholar] [CrossRef]
- Prajzler, V.; Nekvindova, P.; Spirkova, J.; Novotny, M. The evaluation of the refractive indices of bulk and thick polydimethylsiloxane and polydimethyl-diphenylsiloxane elastomers by the prism coupling technique. J. Mater. Sci. Mater. Electron. 2017, 28, 7951–7961. [Google Scholar] [CrossRef]
- Luna-Moreno, D.; Monzón-Hernández, D.; Noé-Arias, E.; Regalado, L.E. Determination of quality and adulteration of tequila through the use of surface plasmon resonance. Appl. Opt. 2012, 51, 5161–5167. [Google Scholar] [CrossRef]
- Espinosa-Sánchez, Y.M.; Luna-Moreno, D.; Rodríguez-Delgado, M.M.; Sánchez-Álvarez, A. Determination of optical parameters of organic and inorganic thin films using both surface plasmon resonance and Abelès-Brewster methods. Optik 2017, 142, 426–435. [Google Scholar] [CrossRef]
- Espinosa-Sanchez, Y.M.; Luna-Moreno, D.; Monzon-Hernández, D. Detection of aromatic compounds in tequila through the use of surface plasmon resonance. Appl. Opt. 2015, 54, 4439–4446. [Google Scholar] [CrossRef]
- Luna-Moreno, D.; Sánchez-Álvarez, A.; Islas-Flores, I.; Canto-Canche, B.; Carrillo-Pech, M.; Villarreal-Chiu, J.F.; Rodríguez-Delgado, M. Early Detection of the Fungal Banana Black Sigatoka Pathogen Pseudocercospora fijiensis by an SPR Immunosensor Method. Sensors 2019, 19, 464. [Google Scholar] [CrossRef]
- Mcleod, H.A. Thin Film Optical Filters, 2nd ed.; Adam Hilger: Bristol, UK, 1986; p. 519. [Google Scholar]
- Reyes-Coronado, A.; Garcia-Valenzuela, A.; Sanchez-Perez, C.; Barrera, R.G. Measurement of the effective refractive index of a turbid colloidal suspension using light refraction. New J. Phys. 2005, 7, 89. [Google Scholar] [CrossRef]
- Wu, Q.H.; Hodgkinson, I. Precision of Brewster-angle methods for optical thin films. J. Opt. Soc. Am. A 1993, 10, 2072–2075. [Google Scholar] [CrossRef]
- Bennet, H.E.; Bennet, J.M. Precision measurements in thin films optics. In Physics of Thin Films; Hass, G., Thun, R.E., Eds.; Academic Press: New York, NY, USA; London, UK, 1967; Volume 4, Chapter 1. [Google Scholar]
- Homola, J. (Ed.) Electromagnetic Theory of Surface Plasmons, in Chemical Sensor Biosensor; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Tuoriniemi, J.; Moreira, B.; Safina, G. Determining Number Concentrations and Diameters of Polystyrene Particles by Measuring the Effective Refractive Index of Colloids Using Surface Plasmon Resonance. Langmuir 2016, 32, 10632–10640. [Google Scholar] [CrossRef] [PubMed]
- Bohren, C.F.; Huffman, D.R. Absorption and Scattering of Light by Small Particles; John Wiley & Sons Inc.: Hoboken, NJ, USA, 1983. [Google Scholar]
- Mätzler, C. MATLAB Functions for Mie Scattering and Absorption; Research Report No. 2002-08; Institute of Applied Physics, University of Bern: Bern, Switzerland, 2002. [Google Scholar]
- Karadeniz, A.; Alkayyali, M.; Szemes, P.T. Modeling and Simulation of Stepper Motor for Position Control Using LabVIEW. Recent Innov. Mechatron. 1970, 5, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Arduino—Home. (s. f.). Available online: https://www.arduino.cc (accessed on 1 September 2023).
- Muñoz-Galeano, N.; Quintero, J.B.; López-Lezama, J.M. Enseñando el Funcionamiento de los Inversores Puente H: Análisis del Intercambio de Potencia entre Bobinas y Condensadores. Form. Univ. 2016, 9, 117–124. [Google Scholar] [CrossRef]
- Adafruit Industries. (s. f.). Adafruit Industries, Unique & Fun DIY Electronics and Kits. Available online: https://www.adafruit.com (accessed on 1 September 2023).
- Marvin, I.M. Computation: Finite and Infinite Machines; Prentice–Hall Series in Automatic Computation; Prentice-Hall: Englewood Clifts, NJ, USA, 1967. [Google Scholar]
- Available online: https://www.schott.com/pt-br/special-selection-tools/interactive-abbe-diagram (accessed on 5 November 2024).
- García-Valenzuela, A.; Peña-Gomar, M.; García-Segundo, C.; Flandes-Aburto, V. Dynamic reflectometry near the critical angle for high-resolution sensing the index of refraction. Sens. Actuators B Chem. 1998, 52, 236–242. [Google Scholar] [CrossRef]
- Meeten, G.H.; North, A.N. Refractive index measurement of absorbing and turbid fluids by reflection near the critical angle. Meas. Sci. Technol. 1995, 6, 214–225. [Google Scholar] [CrossRef]
- Sánchez-Álvarez, A.; Luna-Moreno, D.; Silva-Hernández, O.; Rodríguez-Delgado, M.M. Application of SPR Method as an Approach to Gas Phase Sensing of Volatile Compound Profile in Mezcal Spirits Conferred by Agave Species. Chemosensors 2023, 11, 70. [Google Scholar] [CrossRef]
- Sánchez-Alvarez, A.; Luna-Moreno, D.; Hernández-Morales, J.A.; Zaragoza-Zambrano, J.O.; Castillo-Guerrero, D.H. Control of Stepper Motor Rotary Stages applied to optical sensing technique using LabView. Optik 2018, 164, 65–71. [Google Scholar] [CrossRef]
Prism | [37] | ± 3.82 × 10−4 | Difference |
---|---|---|---|
FK5 | 1.4858 | tan 56.07° = 1.4865 | ±7 × 10−4 |
BK7 | 1.5149 | tan 56.55° = 1.5137 | ±12 × 10−4 |
SK16 | 1.6180 | tan 58.21° = 1.6135 | ±45 × 10−4 |
SF6 | 1.7981 | tan 60.82° = 1.7908 | ±73 × 10−4 |
Previous System [41] | Proposed System | |
---|---|---|
Light source | He-Ne laser (polarized). The intensity output is controlled by a neutral attenuator. | Diode laser (a linear polarizer must be used). The intensity output is controlled by a frontal panel program. |
Motorized rotation stages | Resolution of 0.0002 degrees with integrated motor controller (motorized rotation stage Newport model FCR100) | Resolution is 0.01 degrees. Motor controller with the Arduino board (Motorized Rotation Stage, STANDA, model 8MR-180) |
All system | Non-portable | Portable |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez-Alvarez, A.; Rodríguez-Quiroz, O.; Quintanilla-Villanueva, G.E.; Rodríguez-Delgado, M.M.; Villarreal-Chiu, J.F.; Silva-Hernández, O.J.; Luna-Moreno, D. Development of a Portable Optomechatronic System to Obtain the Characterization of Transparent Materials and Dielectric Thin Films. Optics 2024, 5, 595-610. https://doi.org/10.3390/opt5040044
Sánchez-Alvarez A, Rodríguez-Quiroz O, Quintanilla-Villanueva GE, Rodríguez-Delgado MM, Villarreal-Chiu JF, Silva-Hernández OJ, Luna-Moreno D. Development of a Portable Optomechatronic System to Obtain the Characterization of Transparent Materials and Dielectric Thin Films. Optics. 2024; 5(4):595-610. https://doi.org/10.3390/opt5040044
Chicago/Turabian StyleSánchez-Alvarez, Araceli, Osvaldo Rodríguez-Quiroz, Gabriela Elizabeth Quintanilla-Villanueva, Melissa Marlene Rodríguez-Delgado, Juan Francisco Villarreal-Chiu, Oscar Javier Silva-Hernández, and Donato Luna-Moreno. 2024. "Development of a Portable Optomechatronic System to Obtain the Characterization of Transparent Materials and Dielectric Thin Films" Optics 5, no. 4: 595-610. https://doi.org/10.3390/opt5040044
APA StyleSánchez-Alvarez, A., Rodríguez-Quiroz, O., Quintanilla-Villanueva, G. E., Rodríguez-Delgado, M. M., Villarreal-Chiu, J. F., Silva-Hernández, O. J., & Luna-Moreno, D. (2024). Development of a Portable Optomechatronic System to Obtain the Characterization of Transparent Materials and Dielectric Thin Films. Optics, 5(4), 595-610. https://doi.org/10.3390/opt5040044