Rotating Droplet Hydrodynamic Electrochemistry for Water Toxicity Bioassay Based on Electron-Transfer Mediator
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagent and Solution Preparation
2.2. Culture, Maintenance, and Harvesting the E. coli
2.3. Instrumentation and Selection of Electrodes
2.4. Procedures of Experimental Equipment Settings and Electrochemical Detection
3. Results and Discussion
3.1. Investigation of Catalytic Response of E. coli
3.2. Effect of E. coli on Electrochemical Detection
3.3. Effects of Mediator Concentration on E. coli Catalytic Response
3.4. Effects of E. coli Concentration on Catalytic Response
3.5. Evaluation of Toxicities of Antibiotics on E. coli
3.6. Mean Recovery Test
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sarmah, A.K.; Meyer, M.T.; Boxall, A.B.A. A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere 2006, 65, 725–759. [Google Scholar] [CrossRef] [PubMed]
- Schlüsener, M.P.; Bester, K. Persistence of antibiotics such as macrolides, tiamulin and salinomycin in soil. Environ. Pollut. 2006, 143, 565–571. [Google Scholar] [CrossRef] [PubMed]
- Elmund, G.K.; Morrison, S.M.; Grant, D.W.; Nevins, M.P. Role of excreted chlortetracycline in modifying the decomposition process in feedlot waste. Bull. Environ. Contam. Toxicol. 1971, 6, 129–132. [Google Scholar] [CrossRef] [PubMed]
- Lindsey, M.E.; Meyer, M.; Thurman, E.M. Analysis of trace levels of sulfonamide and tetracycline antimicrobials in groundwater and surface water using solid-phase extraction and liquid chromatography/mass spectrometry. Anal. Chem. 2001, 73, 4640–4646. [Google Scholar] [CrossRef]
- Kolpin, D.W.; Furlong, E.T.; Meyer, M.T.; Thurman, E.M.; Zaugg, S.D.; Barber, L.B.; Buxton, H.T. Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999−2000: A national reconnaissance. Environ. Sci. Technol. 2002, 36, 1202–1211. [Google Scholar] [CrossRef] [PubMed]
- Ye, Z.; Weinberg, H.S.; Meyer, M.T. Trace analysis of trimethoprim and sulfonamide, macrolide, quinolone, and tetracycline antibiotics in chlorinated drinking water using liquid chromatography electrospray tandem mass spectrometry. Anal. Chem. 2007, 79, 1135–1144. [Google Scholar] [CrossRef]
- Lin, A.Y.-C.; Tsai, Y.-T. Occurrence of pharmaceuticals in Taiwan’s surface waters: Impact of waste streams from hospitals and pharmaceutical production facilities. Sci. Total Environ. 2009, 407, 3793–3802. [Google Scholar] [CrossRef]
- Dolliver, H.; Kumar, K.; Gupta, S. Sulfamethazine uptake by plants from manure-amended soil. J. Environ. Qual. 2007, 36, 1224–1230. [Google Scholar] [CrossRef]
- Kong, W.D.; Zhu, Y.G.; Liang, Y.C.; Zhang, J.; Smith, F.A.; Yang, M. Uptake of oxytetracycline and its phytotoxicity to alfalfa (Medicago sativa L.). Environ. Pollut. 2007, 147, 187–193. [Google Scholar] [CrossRef]
- Kim, S.; Aga, D.S. Potential ecological and human health impacts of antibiotics and antibiotic-resistant bacteria from wastewater treatment plants. J. Toxicol. Environ. Health Part B 2007, 10, 559–573. [Google Scholar] [CrossRef]
- Flaherty, C.M.; Dodson, S.I. Effects of pharmaceuticals on Daphnia survival, growth, and reproduction. Chemosphere 2005, 61, 200–207. [Google Scholar] [CrossRef]
- Van der Schalie, W.H.; Shedd, T.R.; Knechtges, P.L.; Widder, M.W. Using higher organisms in biological early warning systems for real-time toxicity detection. Biosens. Bioelectron. 2001, 16, 457–465. [Google Scholar] [CrossRef] [PubMed]
- Thomulka, K.; McGee, D.; Lange, J. Use of the bioluminescent bacterium Photobacterium phosphoreum to detect potentially biohazardous materials in water. Bull. Environ. Contam. Toxicol. 1993, 51, 538–544. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Xu, L.; Wang, S.; Zheng, R.; Jin, S.; Huang, S.; Huang, Y. Toxicity of 40 herbicides to the green alga Chlorella vulgaris. Ecotoxicol. Environ. Saf. 2002, 51, 128–132. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Islam, M.S.; Sazawa, K.; Hata, N.; Taguchi, S.; Nakamura, S.; Sugawara, K.; Kuramitz, H. Development of an electrochemical bioassay based on the alkaline phosphatase activity of to assess the toxicity of heavy metals. Int. J. Electrochem. Sci. 2016, 11, 5090–5102. [Google Scholar] [CrossRef]
- Zhu, B.; Wu, Z.-F.; Li, J.; Wang, G.-X. Single and joint action toxicity of heavy metals on early developmental stages of chinese rare minnow (Gobiocypris rarus). Ecotoxicol. Environ. Saf. 2011, 74, 2193–2202. [Google Scholar] [CrossRef]
- Nguyen-Ngoc, H.; Durrieu, C.; Tran-Minh, C. Synchronous-scan fluorescence of algal cells for toxicity assessment of heavy metals and herbicides. Ecotoxicol. Environ. Saf. 2009, 72, 316–320. [Google Scholar] [CrossRef]
- Xiong, J.; Fu, G.; Tao, L.; Zhu, C. Roles of nitric oxide in alleviating heavy metal toxicity in plants. Arch. Biochem. Biophys. 2010, 497, 13–20. [Google Scholar] [CrossRef]
- Liu, Q.; Cai, H.; Xu, Y.; Xiao, L.; Yang, M.; Wang, P. Detection of heavy metal toxicity using cardiac cell-based biosensor. Biosens. Bioelectron. 2007, 22, 3224–3229. [Google Scholar] [CrossRef]
- Wang, F.; Yao, J.; Si, Y.; Chen, H.; Russel, M.; Chen, K.; Qian, Y.; Zaray, G.; Bramanti, E. Short-time effect of heavy metals upon microbial community activity. J. Hazard. Mater. 2010, 173, 510–516. [Google Scholar] [CrossRef]
- Hassan, S.H.A.; Van Ginkel, S.W.; Kim, S.-M.; Yoon, S.-H.; Joo, J.-H.; Shin, B.-S.; Jeon, B.-H.; Bae, W.; Oh, S.-E. Isolation and characterization of acidithiobacillus caldus from a sulfur-oxidizing bacterial biosensor and its role in detection of toxic chemicals. J. Microbiol. Methods 2010, 82, 151–155. [Google Scholar] [CrossRef] [PubMed]
- Tizzard, A.; Webber, J.; Gooneratne, R.; John, R.; Hay, J.; Pasco, N. MICREDOX: Application for rapid biotoxicity assessment. Anal. Chim. Acta 2004, 522, 197–205. [Google Scholar] [CrossRef]
- Fulladosa, E.; Debord, J.; Villaescusa, I.; Bollinger, J.C.; Murat, J.C. Effect of arsenic compounds on Vibrio fischeri light emission and butyrylcholinesterase activity. Environ. Chem. Lett. 2007, 5, 115–119. [Google Scholar] [CrossRef]
- Hernando, M.; Malato, O.; Farré, M.; Fernandez-Alba, A.; Barceló, D. Application of ring study: Water toxicity determinations by bioluminescence assay with Vibrio fischeri. Talanta 2006, 69, 370–376. [Google Scholar] [CrossRef]
- Li, A.; Lee, P.Y.; Ho, B.; Ding, J.L.; Lim, C.T. Atomic force microscopy study of the antimicrobial action of Sushi peptides on Gram negative bacteria. Biochim. Biophys. Acta-Biomembr. 2007, 1768, 411–418. [Google Scholar] [CrossRef]
- Pasco, N.; Joanne, H.; Webber, J. Biosensors: MICREDOX—A new biosensor technique for rapid measurement of BOD and toxicity. Biomarkers 2001, 6, 83–89. [Google Scholar] [CrossRef]
- Evans, M.R.; Jordinson, G.M.; Rawson, D.M.; Rogerson, J.G. Biosensors for the measurement of toxicity of wastewaters to activated sludge. Pestic. Sci. 1998, 54, 447–452. [Google Scholar] [CrossRef]
- Farré, M.; Pasini, O.; Carmen Alonso, M.; Castillo, M.; Barceló, D. Toxicity assessment of organic pollution in wastewaters using a bacterial biosensor. Anal. Chim. Acta 2001, 426, 155–165. [Google Scholar] [CrossRef]
- Hsieh, C.-Y.; Tsai, M.-H.; Ryan, D.K.; Pancorbo, O.C. Toxicity of the 13 priority pollutant metals to Vibrio fisheri in the Microtox® chronic toxicity test. Sci. Total Environ. 2004, 320, 37–50. [Google Scholar] [CrossRef]
- Wang, X.; Liu, M.; Wang, X.; Wu, Z.; Yang, L.; Xia, S.; Chen, L.; Zhao, J. P-benzoquinone-mediated amperometric biosensor developed with Psychrobacter sp. for toxicity testing of heavy metals. Biosens. Bioelectron. 2013, 41, 557–562. [Google Scholar] [CrossRef]
- Stauber, J.L.; Davies, C.M. Use and limitations of microbial bioassays for assessing copper bioavailability in the aquatic environment. Environ. Rev. 2000, 8, 255–301. [Google Scholar] [CrossRef]
- Walsh, G.E.; Merrill, R.G. Algal bioassays of industrial and energy process effluents. In Algae as Ecological Indicators; Schubert, L.E., Ed.; Academic Press: London, UK, 1984; pp. 329–360. [Google Scholar]
- Liu, C.; Yong, D.; Yu, D.; Dong, S. Cell-based biosensor for measurement of phenol and nitrophenols toxicity. Talanta 2011, 84, 766–770. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Sun, T.; Xu, X.; Dong, S. Direct toxicity assessment of toxic chemicals with electrochemical method. Anal. Chim. Acta 2009, 641, 59–63. [Google Scholar] [CrossRef] [PubMed]
- Yong, D.; Liu, C.; Yu, D.; Dong, S. A sensitive, rapid and inexpensive way to assay pesticide toxicity based on electrochemical biosensor. Talanta 2011, 84, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Yong, D.; Liu, L.; Yu, D.; Dong, S. Development of a simple method for biotoxicity measurement using ultramicroelectrode array under non-deaerated condition. Anal. Chim. Acta 2011, 701, 164–168. [Google Scholar] [CrossRef] [PubMed]
- Catterall, K.; Robertson, D.; Hudson, S.; Teasdale, P.R.; Welsh, D.T.; John, R. A sensitive, rapid ferricyanide-mediated toxicity bioassay developed using Escherichia coli. Talanta 2010, 82, 751–757. [Google Scholar] [CrossRef]
- Ramsay, G.; Turner, A.P.F. Development of an electrochemical method for the rapid determination of microbial concentration and evidence for the reaction mechanism. Anal. Chim. Acta 1988, 215, 61–69. [Google Scholar] [CrossRef]
- Yu, D.; Zhai, J.; Yong, D.; Dong, S. A rapid and sensitive p-benzoquinone-mediated bioassay for determination of heavy metal toxicity in water. Analyst 2013, 138, 3297. [Google Scholar] [CrossRef]
- Kuramitz, H.; Dziewatkoski, M.; Barnett, B.; Halsall, H.B.; Heineman, W.R. Application of an automated fluidic system using electrochemical bead-based immunoassay to detect the bacteriophage MS2 and ovalbumin. Anal. Chim. Acta 2006, 561, 69–77. [Google Scholar] [CrossRef]
- Kuramitz, H.; Halsall, H.B.; Heineman, W.R. Magnetic microbead-based enzyme immunoassay for ovalbumin using hydrodynamic voltammetry and fluorometric detection. Anal. Methods 2012, 4, 1783. [Google Scholar] [CrossRef]
- Yong, D.; Liu, C.; Zhu, C.; Yu, D.; Liu, L.; Zhai, J.; Dong, S. Detecting total toxicity in water using a mediated biosensor system with flow injection. Chemosphere 2015, 139, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Kuramitz, H.; Sazawa, K.; Nanayama, Y.; Hata, N.; Taguchi, S.; Sugawara, K.; Fukushima, M. Electrochemical genotoxicity assay based on a SOS/umu test using hydrodynamic voltammetry in a droplet. Sensors 2012, 12, 17414–17432. [Google Scholar] [CrossRef] [PubMed]
Matrix | Additional Concentration of Tetracycline (µM) | Found Concentration (µM) | Recovery (%) | RSD (%) |
---|---|---|---|---|
Pond water | 1 | 0.97 | 97 | 2.1 |
10 | 9.61 | 96 | 3.8 | |
Milk | 1 | 0.90 | 90 | 10.0 |
10 | 9.02 | 90 | 10.0 | |
Powder milk | 1 | 0.99 | 99 | 0.2 |
10 | 9.27 | 93 | 7.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sazawa, K.; Shanjana, Y.; Sugawara, K.; Kuramitz, H. Rotating Droplet Hydrodynamic Electrochemistry for Water Toxicity Bioassay Based on Electron-Transfer Mediator. Electrochem 2024, 5, 370-379. https://doi.org/10.3390/electrochem5030024
Sazawa K, Shanjana Y, Sugawara K, Kuramitz H. Rotating Droplet Hydrodynamic Electrochemistry for Water Toxicity Bioassay Based on Electron-Transfer Mediator. Electrochem. 2024; 5(3):370-379. https://doi.org/10.3390/electrochem5030024
Chicago/Turabian StyleSazawa, Kazuto, Yeasna Shanjana, Kazuharu Sugawara, and Hideki Kuramitz. 2024. "Rotating Droplet Hydrodynamic Electrochemistry for Water Toxicity Bioassay Based on Electron-Transfer Mediator" Electrochem 5, no. 3: 370-379. https://doi.org/10.3390/electrochem5030024
APA StyleSazawa, K., Shanjana, Y., Sugawara, K., & Kuramitz, H. (2024). Rotating Droplet Hydrodynamic Electrochemistry for Water Toxicity Bioassay Based on Electron-Transfer Mediator. Electrochem, 5(3), 370-379. https://doi.org/10.3390/electrochem5030024