Pseudospherical Bismuth Oxychloride-Modified Carbon Paste Electrode for the Determination of Quinine in Beverages
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Instrumentation
2.3. Methods
2.4. Synthesis of BiOCl
2.5. Preparation of Unmodified and Modified Carbon Paste Electrodes
3. Results and Discussion
3.1. Morphological Characterization of Synthesized Material
3.2. Electrochemical Characterization of Prepared Electrode
3.3. Electrochemistry of QN and Method Development
3.4. Quantification of QN
3.5. Stability, Repeatability, and Reproducibility Studies
3.6. Selectivity Studies
3.7. Real Sample Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. World Malaria Report 2022. Available online: https://www.who.int/teams/global-malaria-programme (accessed on 1 September 2024).
- Leoriza, M.D.; Sabriena, N.; Ramadhan, M.R.; Tajalla, G.U.N.; Umaningrum, D.; Ismail, A.I.; Ogata, G.; Einaga, Y.; Triana, Y. Study of Quinine Hydrochloride Detection Using Boron-Doped Diamond Electrodes. Int. J. Electrochem. Sci. 2024, 19, 100778. [Google Scholar] [CrossRef]
- Gong, H.; Bao, C.; Luo, X.; Yu, Y.; Yang, W. Reusable electrochemical sensor for quinine detection via β-cyclodextrin-based indicator displacement assay. Microchem. J. 2024, 198, 110109. [Google Scholar] [CrossRef]
- Nate, Z.; Gill, A.A.; Chauhan, R.; Karpoormath, R. Recent progress in electrochemical sensors for detection and quantification of malaria. Anal. Biochem. 2022, 643, 114592. [Google Scholar] [CrossRef] [PubMed]
- Sato, S. Plasmodium—A brief introduction to the parasites causing human malaria and their basic biology. J. Physiol. Anthr. 2021, 40, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Dar, R.A.; Brahman, P.K.; Tiwari, S.; Pitre, K.S. Electrochemical studies of quinine in surfactant media using hanging mercury drop electrode: A cyclic voltammetric study. Colloids Surf. B Biointerfaces 2012, 98, 72–79. [Google Scholar] [CrossRef]
- Bannon, P.; Yu, P.; Cook, J.M.; Roy, L.; Villeneuve, J.-P. Identification of quinine metabolites in urine after oral dosing in humans. J. Chromatogr. B Biomed. Sci. Appl. 1998, 715, 387–393. [Google Scholar] [CrossRef]
- Donovan, J.L.; DeVane, C.; Boulton, D.; Dodd, S.; Markowitz, J.S. Dietary levels of quinine in tonic water do not inhibit CYP2D6 in vivo. Food Chem. Toxicol. 2003, 41, 1199–1201. [Google Scholar] [CrossRef]
- Shrivas, K.; Wu, H.-F. Quantitative bioanalysis of quinine by atmospheric pressure-matrix assisted laser desorption/ionization mass spectrometry combined with dynamic drop-to-drop solvent microextraction. Anal. Chim. Acta 2007, 605, 153–158. [Google Scholar] [CrossRef]
- Imanzadeh, H.; Sefid-Sefidehkhan, Y.; Afshary, H.; Afruz, A.; Amiri, M. Nanomaterial-based electrochemical sensors for detection of amino acids. J. Pharm. Biomed. Anal. 2023, 230, 115390. [Google Scholar] [CrossRef]
- Maduraiveeran, G.; Jin, W. Nanomaterials based electrochemical sensor and biosensor platforms for environmental applications. Trends Environ. Anal. Chem. 2017, 13, 10–23. [Google Scholar] [CrossRef]
- Curulli, A. Nanomaterials in Electrochemical Sensing Area: Applications and Challenges in Food Analysis. Molecules 2020, 25, 5759. [Google Scholar] [CrossRef] [PubMed]
- Ognjanović, M.; Nikolić, K.; Radenković, M.; Lolić, A.; Stanković, D.; Živković, S. Picosecond laser-assisted synthesis of silver nanoparticles with high practical application as electroanalytical sensor. Surf. Interfaces 2022, 35, 102464. [Google Scholar] [CrossRef]
- Đurđić, S.; Vlahović, F.; Ognjanović, M.; Gemeiner, P.; Sarakhman, O.; Stanković, V.; Mutić, J.; Stanković, D.; Švorc, Ľ. Nano-size cobalt-doped cerium oxide particles embedded into graphitic carbon nitride for enhanced electrochemical sensing of insecticide fenitrothion in environmental samples: An experimental study with the theoretical elucidation of redox events. Sci. Total. Environ. 2024, 909, 168483. [Google Scholar] [CrossRef] [PubMed]
- Martynov, L.Y.; Sadova, M.K.; Sakharov, K.A.; Yashtulov, N.A.; Zaytsev, N.K. Determination of indium by adsorptive stripping voltammetry at the bismuth film electrode using combined electrode system facilitating medium exchange. Talanta 2024, 271, 125680. [Google Scholar] [CrossRef] [PubMed]
- De Benedetto, A.; Della Torre, A.; Guascito, M.R.; Di Corato, R.; Chirivì, L.; Rinaldi, R.; Aloisi, A. Spectroscopic investigations of a commercial graphite screen printed electrode modified by bismuth oxide drop deposition and electrochemical reduction, for cadmium and lead ions simultaneous determination. J. Electroanal. Chem. 2024, 964. [Google Scholar] [CrossRef]
- Bi, H.; Zhang, W.; Cao, P. Effect of bismuth doping on electrodeposition, physicochemical properties and electrocatalytic activity of lead dioxide electrodes. Int. J. Electrochem. Sci. 2024, 19, 100635. [Google Scholar] [CrossRef]
- Chmurzyński, L. High-performance liquid chromatographic determination of quinine in rat biological fluids. J. Chromatogr. B: Biomed. Sci. Appl. 1997, 693, 423–429. [Google Scholar] [CrossRef]
- Samanidou, V.F.; Evaggelopoulou, E.N.; Papadoyannis, I.N. Simultaneous determination of quinine and chloroquine anti-malarial agents in pharmaceuticals and biological fluids by HPLC and fluorescence detection. J. Pharm. Biomed. Anal. 2005, 38, 21–28. [Google Scholar] [CrossRef]
- Li, B. Flow-injection chemiluminescence determination of quinine using on-line electrogenerated cobalt(III) as oxidant. Talanta 2000, 51, 515–521. [Google Scholar] [CrossRef]
- Zhang, W.; Danielson, N.D. Determination of phenols by flow injection and liquid chromatography with on-line quinine-sensitized photo-oxidation and quenched luminol chemiluminescence detection. Anal. Chim. Acta 2003, 493, 167–177. [Google Scholar] [CrossRef]
- Damien, R.; Daval, S.; Souweine, B.; Deteix, P.; Eschalier, A.; Coudoré, F. Rapid gas chromatography/mass spectrometry quinine determination in plasma after automated solid-phase extraction. Rapid Commun. Mass Spectrom. 2006, 20, 2528–2532. [Google Scholar] [CrossRef] [PubMed]
- Jain, R.; Mudiam, M.K.R.; Ch, R.; Chauhan, A.; A Khan, H.; Murthy, R. Ultrasound Assisted Dispersive Liquid–Liquid Microextraction Followed by Injector Port Silylation: A Novel Method for Rapid Determination of Quinine in Urine by GC–MS. Bioanalysis 2013, 5, 2277–2286. [Google Scholar] [CrossRef] [PubMed]
- Kluska, M.; Marciniuk-Kluska, A.; Prukała, D.; Prukała, W. Determination of Quinine, Quinidine, and Cinquinidine by Capillary Electrophoresis. J. Liq. Chromatogr. Relat. Technol. 2015, 38, 886–890. [Google Scholar] [CrossRef]
- Mikuš, P.; Maráková, K.; Veizerová, L.; Piešt’Anský, J. Determination of quinine in beverages by online coupling capillary isotachophoresis to capillary zone electrophoresis with UV spectrophotometric detection. J. Sep. Sci. 2011, 34, 3392–3398. [Google Scholar] [CrossRef] [PubMed]
- Mutić, T.; Ognjanović, M.; Kodranov, I.; Robić, M.; Savić, S.; Krehula, S.; Stanković, D.M. The influence of bismuth participation on the morphological and electrochemical characteristics of gallium oxide for the detection of adrenaline. Anal. Bioanal. Chem. 2023, 415, 4445–4458. [Google Scholar] [CrossRef]
- Sochr, J.; Švorc, Ľ.; Rievaj, M.; Bustin, D. Electrochemical determination of adrenaline in human urine using a boron-doped diamond film electrode. Diam. Relat. Mater. 2014, 43, 5–11. [Google Scholar] [CrossRef]
- Azadmehr, F.; Zarei, K. Fabrication of an imprinted electrochemical sensor from l-tyrosine, 3-methyl-4-nitrophenol and gold nanoparticles for quinine determination. Bioelectrochemistry 2019, 127, 59–67. [Google Scholar] [CrossRef]
- Buleandra, M.; Rabinca, A.A.; Cheregi, M.C.; Ciucu, A.A. Rapid voltammetric method for quinine determination in soft drinks. Food Chem. 2018, 253, 1–4. [Google Scholar] [CrossRef]
- Dushna, O.; Dubenska, L.; Marton, M.; Hatala, M.; Vojs, M. Sensitive and selective voltammetric method for determination of quinoline alkaloid, quinine in soft drinks and urine by applying a boron-doped diamond electrode. Microchem. J. 2023, 191, 108839. [Google Scholar] [CrossRef]
- Kaleeswarran, P.; Priya, T.S.; Chen, T.-W.; Chen, S.-M.; Kokulnathan, T.; Arumugam, A. Construction of a Copper Bismuthate/Graphene Nanocomposite for Electrochemical Detection of Catechol. Langmuir 2022, 38, 10162–10172. [Google Scholar] [CrossRef]
- Zhang, X.; Ai, Z.; Jia, F.; Zhang, L. Generalized One-Pot Synthesis, Characterization, and Photocatalytic Activity of Hierarchical BiOX (X = Cl, Br, I) Nanoplate Microspheres. J. Phys. Chem. C 2008, 112, 747–753. [Google Scholar] [CrossRef]
- Li, T.; Liu, T.; Wei, H.; Gu, X. Facile synthesis of different 3D bismuth oxychloride hierarchitectures and their visible-light photocatalytic properties. J. Mater. Sci. Mater. Electron. 2016, 27, 3456–3461. [Google Scholar] [CrossRef]
- Laschuk, N.O.; Easton, E.B.; Zenkina, O.V. Reducing the resistance for the use of electrochemical impedance spectroscopy analysis in materials chemistry. RSC Adv. 2021, 11, 27925–27936. [Google Scholar] [CrossRef] [PubMed]
- Zhu, P.; Zhao, Y. Cyclic voltammetry measurements of electroactive surface area of porous nickel: Peak current and peak charge methods and diffusion layer effect. Mater. Chem. Phys. 2019, 233, 60–67. [Google Scholar] [CrossRef]
- Venkatesh, K.; Muthukutty, B.; Chen, S.-M.; Karuppasamy, P.; Haidyrah, A.S.; Karuppiah, C.; Yang, C.-C.; Ramaraj, S.K. Spinel CoMn2O4 nano-/micro-spheres embedded RGO nanosheets modified disposable electrode for the highly sensitive electrochemical detection of metol. J. Ind. Eng. Chem. 2022, 106, 287–296. [Google Scholar] [CrossRef]
- Mutić, T.; Stanković, D.; Manojlović, D.; Petrić, D.; Pastor, F.; Avdin, V.V.; Ognjanović, M.; Stanković, V. Micromolar Levofloxacin Sensor by Incorporating Highly Crystalline Co3O4 into a Carbon Paste Electrode Structure. Electrochem 2024, 5, 45–56. [Google Scholar] [CrossRef]
- Geto, A.; Amare, M.; Tessema, M.; Admassie, S. Polymer-modified glassy carbon electrode for the electrochemical detection of quinine in human urine and pharmaceutical formulations. Anal. Bioanal. Chem. 2012, 404, 525–530. [Google Scholar] [CrossRef]
- Zhan, X.-M.; Liu, L.-H.; Gao, Z.-N. Electrocatalytic oxidation of quinine sulfate at a multiwall carbon nanotubes-ionic liquid modified glassy carbon electrode and its electrochemical determination. J. Solid State Electrochem. 2011, 15, 1185–1192. [Google Scholar] [CrossRef]
- Food and Agriculture Organization; World Health Organization. Evaluation of Certain Food Additives and Contaminants: Forty-First Report of the Joint FAO/WHO Expert Committee on Food Additives; WHO Press: Geneva, Switzerland, 1993; WHO Library Cataloguing-in-Publication Data. WHO Technical Report Series; no. 837; ISBN 92-4-120837-6. Available online: https://www.who.int/publications/i/item/9241208376 (accessed on 1 September 2024).
Electrode | Method | pH | LR (μM) | LOD (μM) | Sample | Ref. |
---|---|---|---|---|---|---|
BDDE | DPV | 5.5 | 0.1–1.96 | 0.07 | soft drinks and urine | [30] |
p-(AHNSA)/GCE | SWV | 7 | 0.1–100 | 0.0142 | urine and pharmaceutical formulations | [38] |
MIP–MIC-AuNPs/MWCNT-chitosan/PGE | DPV | 8 | 10−7–10−3 | 5 × 10−8 | blood and urine | [28] |
MWCNTs-RTIL/GCE | SWV | 6.8 | 3–100 | 0.44 | commercial injection | [39] |
HMDE | SWV | 10.4 | 9.73–74.62 | 0.043 | soft drinks | [6] |
BiOCl/CPE | DPV | 6 | 10–140 | 0.14 | soft drinks | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mutić, T.; Stanković, V.; Ognjanović, M.; Nikolić, V.B.; Gao, G.; Sojic, N.; Stanković, D. Pseudospherical Bismuth Oxychloride-Modified Carbon Paste Electrode for the Determination of Quinine in Beverages. Electrochem 2024, 5, 407-420. https://doi.org/10.3390/electrochem5040027
Mutić T, Stanković V, Ognjanović M, Nikolić VB, Gao G, Sojic N, Stanković D. Pseudospherical Bismuth Oxychloride-Modified Carbon Paste Electrode for the Determination of Quinine in Beverages. Electrochem. 2024; 5(4):407-420. https://doi.org/10.3390/electrochem5040027
Chicago/Turabian StyleMutić, Tijana, Vesna Stanković, Miloš Ognjanović, Vladimir B. Nikolić, Guanyue Gao, Neso Sojic, and Dalibor Stanković. 2024. "Pseudospherical Bismuth Oxychloride-Modified Carbon Paste Electrode for the Determination of Quinine in Beverages" Electrochem 5, no. 4: 407-420. https://doi.org/10.3390/electrochem5040027
APA StyleMutić, T., Stanković, V., Ognjanović, M., Nikolić, V. B., Gao, G., Sojic, N., & Stanković, D. (2024). Pseudospherical Bismuth Oxychloride-Modified Carbon Paste Electrode for the Determination of Quinine in Beverages. Electrochem, 5(4), 407-420. https://doi.org/10.3390/electrochem5040027